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Abstract: Besides achieving secure communication between two spatially-separated parties,
another important issue in modern cryptography is related to secure communication in
time, i.e., the possibility to confidentially store information on a memory for later retrieval.
Here we explore this possibility in the setting of quantum reading, which exploits quantum
entanglement to efficiently read data from a memory whereas classical strategies (e.g., based
on coherent states or their mixtures) cannot retrieve any information. From this point of
view, the technique of quantum reading can provide a new form of technological security for
data storage.
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1. Introduction

Quantum cryptography [1,2] aims to realize a completely unbreakable scheme for the distribution of
a secret key between two remote parties, usually called Alice and Bob. Indeed quantum key distribution
(QKD) relies its security on one of the the most fundamental physical laws, the uncertainty principle,
which is actively exploited for detecting and overcoming the presence of a malicious eavesdropper,
usually called Eve. In this scenario, an important role is also played by quantum entanglement [3], which
can be exploited to make QKD protocols device-independent, i.e., more robust to practical flaws (e.g., in
the detectors) which may potentially be exploited by Eve. Very recently, quantum discord [4] (see [5] for
its computation with Gaussian states) has also been identified as a useful resource for device-dependent
QKD with trusted noise [6], e.g., in scenarios such as measurement-device independent QKD [7–10].

In this preliminary study, we investigate a different but still important problem: The confidential
storage of information on a physical device, such as an optical memory. It has been recently proven that
quantum entanglement can provide an advantage in the readout of classical data from optical memories,
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especially in the low-energy regime, i.e., when a few photons are irradiated over the memory cells. This
approach is known as quantum reading [11] (see also follow-up papers [12–23]), a notable application
of quantum channel discrimination to a practical task as the memory readout. From this point of view,
another well-known protocol is quantum illumination, which aims at improving target detection [25–31],
and has been recently extended to its most natural domain, the microwaves [32].

Here we show how the performance advantage given by quantum reading can be exploited to
completely hide classical information in optical memories. The strategy is to design a photo-degradable
optical memory whose cells have very close reflectivities (each reflectivity encoding a bit-value).
Because of the photodegrable effects, each cell can only be read with a limited number of photons.
In these low-energy conditions, we find that only well-tailored quantum sources (in particular, entangled)
are able to discriminate two very close reflectivities and, therefore, retrieve the information stored in the
cell. Specifically, we derive a simple analytical formula which relates the reflectivities of the memory
cell with the mean number of photons to be employed by the quantum source.

This approach would provide a layer of technological security to the stored data, in the sense that only
an advanced laboratory equipped with quantum-correlated sources would be able to read the information,
whereas any other standard optical reader based on classical states, such as coherent states or even
thermal states, can only extract a negligible number of bits.

The paper is organized as follows. In Section 2, we briefly review the basic setup of quantum reading
and we discuss the performances achievable by quantum entanglement and classical (coherent) states.
Then, in Section 3 we show how to design memories which are not accessible to classical methods.
Finally, Section 4 is for conclusions.

2. Basic Setup for Quantum Reading

For our purpose we consider the simplest version of quantum reading, considering only ideal optical
memories, i.e., with high reflectivities, and neglecting decoherence effects (see [11] for more advanced
models). Each memory cell is assumed to be in one of two hypotheses: Non-unit reflectivity r0 :=

r < 1 (encoding bit-value 0) or unit reflectivity r1 = 1 (encoding bit-value 1). Mathematically, this is
equivalent to distinguish between a lossy channel Er whose loss parameter is the reflectivity r < 1 and
an identity channel I.

In symmetric quantum hypothesis testing, these two hypotheses have the same cost, so that we aim
to optimize the mean error probability. In other words, we need to minimize p̄ := p(1|0)p0 + p(0|1)p1,
where p0 and p1 are the a priori probabilities of the two hypotheses, while p(1|0) is the probability
of a false positive and p(0|1) is the probability of a false negative. For simplicity, we consider here
equiprobable hypotheses, i.e., p0 = p1 = 1/2, which means that a bit of information is stored
per cell. The amount of information which is retrieved in the readout process is therefore given by
Iread(p̄) = 1−H(p̄), where H(p̄) = −p̄ log2 p̄− (1− p̄) log2(1− p̄) is the binary formula of the Shannon
entropy [33].
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2.1. Classical Benchmark

To distinguish between the two hypotheses Alice exploits an input source of light (a transmitter) and
an output detection scheme (a receiver). In the classical reading setup, the transmitter consists of a single
bosonic mode, the signal (S), which is prepared in a coherent state |α〉 sent to the memory cell. At the
output, the receiver is typically a photodetector counting the number of photons reflected, followed by a
digital processing based on a classical hypothesis test. The performance of this receiver can be bounded
by considering an optimal quantum measurement, constructed from the Helstrom matrix ρ0 − ρ1 of the
two possible output states ρ0 = |

√
rα〉 〈

√
rα| and ρ1 = |α〉 〈α|.

The minimum error probability is given by the Helstrom bound [34] which is here very simple to
compute since the two states are pure. In fact, for two arbitrary pure states |ϕ0〉 and |ϕ1〉, the Helstrom
bounds reads

p̄ =
1−D(|ϕ0〉 , |ϕ1〉)

2
, (1)

where the trace distance [3] D is determined by the fidelity

D(|ϕ0〉 , |ϕ1〉) =
√

1− F (|ϕ0〉 , |ϕ1〉), (2)

F (|ϕ0〉 , |ϕ1〉) = |〈ϕ0 |ϕ1〉|2 . (3)

In our specific case, we have [2]

F (
∣∣√rα〉 , |α〉) = exp

(
−
∣∣α−√rα∣∣2) = exp[−n̄(1−

√
r)2], (4)

where n̄ = |α|2 is the mean number of photons of the input coherent state. As a result, we achieve the
following Helstrom bound for the coherent state transmitter

p̄coh(n̄, r) =
1−

√
1− e−n̄(1−

√
r)2

2
, (5)

which is therefore able to read an average of Iclass
read = Iread(p̄class) bits per cell.

2.2. Quantum Transmitter

In the quantum reading setup, we consider a transmitter composed of two entangled modes, that we
call signal (S) and reference (R). This is taken to be an Einstein–Podolsky–Rosen (EPR) state, also
known as a two-mode squeezed vacuum state [2]. An EPR state is a zero-mean pure Gaussian state
|µ〉SR with covariance matrix (CM)

V(µ) =

(
µI

√
µ2 − 1Z√

µ2 − 1Z µI

)
,

Z := diag(1,−1),

I := diag(1, 1),
(6)

where µ ≥ 1 quantifies both the mean number of thermal photons in each mode, given by n̄ = (µ−1)/2,
and the amount of entanglement between the signal and reference modes [2].

The signal mode, with n̄ mean photons, is sent to read the memory cell and its reflection S ′ is
combined with the reference mode in an optimal quantum measurement. Given the state ρSR = |µ〉SR 〈µ|
of the input modes S and R, we get two possible states

σ0 = (Er ⊗ I)(ρSR), (7)

σ1 = (I ⊗ I)(ρSR) = ρSR, (8)
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for the output modes S ′ and R at the receiver. One is just the input EPR state, while the other state σ0 is
a mixed Gaussian state with CM

V0(µ, r) =

(
(rµ+ 1− r)I

√
r(µ2 − 1)Z√

r(µ2 − 1)Z µI

)
. (9)

The minimum mean error probability is given by the Helstrom bound p̄quantum = [1 − D(σ0, σ1)]/2,
where D(σ0, σ1) is the trace distance between σ0 and σ1. The Helstrom bound is difficult to compute
when one or both the output states are mixed. For this reason, we resort to an upper-bound, known as
quantum Chernoff bound (QCB) [35–37]. This can be written as

p̄QCB
quantum :=

C

2
, C := inf

s∈(0,1)
Cs, (10)

where Cs := Tr(σs
0σ

1−s
1 ) is the s-overlap between the two states. In the specific case where one of the

output states is pure σ1 = |ϕ〉 〈ϕ|, we may write C = F , using the quantum fidelity F = 〈ϕ|σ0 |ϕ〉.
For zero-mean Gaussian states, this fidelity can easily be computed in terms of their CMs [38,39]. In fact,
we have

F =
4√

det[V(µ) + V0(µ, r)]
=

4

[1 + µ+
√
r(1− µ)]

2 =
(
1 + n̄+ n̄

√
r
)−2

. (11)

As a result, the mean error probability associated with this quantum transmitter is upperbounded by
the QCB as follows

p̄quantum ≤ p̄QCB
quantum =

(1 + n̄+ n̄
√
r)
−2

2
. (12)

Thus, the EPR transmitter is able to read at least Iquant
read = Iread(p̄

QCB
quantum) bits per cell.

3. Data Secured by Quantum Reading

We can compare the readout performances of the two transmitters by considering the information
gain ∆ := Iquant

read − Iclass
read . Its positivity means that quantum reading outperforms the classical readout

strategy. In particular, for ∆ ' 1 bit per cell we have that the EPR transmitter reads all data, while the
classical transmitter is not able to retrieve any information. Here we aim to exploit this feature to make
the data storage secure in absence of entanglement (and, more generally, quantum resources). As we
can see from Figure 1, the value of the gain ∆ is close to the maximum value of 1 bit per cell when
the memory cell is characterized by very high reflectivities, i.e., r ' 1. In particular, the good region
where ∆ > 0.95 is particularly evident at low photon numbers, while it tends to shrink towards r = 1

for increasing energy.
We now discuss how we can exploit this advantage of quantum reading for designing a secure classical

memory. Let us expand the information quantities Iclass
read and Iquant

read at the leading order in (1 − r) ' 0.
We find

Iclass
read '

n̄(1− r)2

ln 256
, Iquant

read '
n̄2(1− r)2

ln 4
. (13)

As we can see, at high reflectivities, there is a different behaviour of these quantities in the mean
number of photons n̄. In particular, we may write

Iquant
read ' 4n̄Iclass

read . (14)
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Figure 1. We plot ∆(n̄, r) in the high-reflectivity range 0.99 ≤ r < 1 and wide range of n̄
up to 5 × 104. We see how the Einstein–Podolsky–Rosen (EPR) transmitter is superior for
r ' 1, where ∆ becomes close to 1 bit per cell.

According to Equation (13), a non-trivial difference between Iclass
read and Iquant

read arises by imposing
the condition

1− r = n̄−1 . (15)

Indeed this leads to the following behaviour for large n̄

Iclass
read '

1

n̄ ln 256
→ 0, Iquant

read '
ln
(

2048
81

)
− 7 ln

(
9
7

)
ln 512

' 0.235. (16)

We can see that only quantum reading enables to retrieve non-zero information from the memory
(combining this performance with suitable error correcting codes would enable us to achieve a complete
readout of the memory). In the following Figure 2, we show the behaviour of the two information
quantities Iclass

read and Iquant
read in terms of the mean photon number n̄ and assuming the condition of

Equation (15).
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Figure 2. We plot Iclass
read (lower curve) and Iquant

read (upper curve) versus the mean photon number
n̄ ≥ 1. We assume a memory with reflectivity r satisfying the condition of Equation (15).

We can see that, at any fixed energy n̄ irradiated over the memory cell, there is a memory with
reflectivity r satisfying Equation (15) which is readable by using a quantum transmitter with signal
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energy n̄ but unreadable by a classical transmitter with the same irradiated energy n̄. More precisely, any
classical transmitter with energy up to n̄ is inefficient. In fact, let us fix some value n̄max and consider a
memory with 1−r = n̄−1

max, then the performance of all classical transmitters with signal energy n̄ ≤ n̄max

is shown in Figure 3. We see that the optimal classical transmitter is that with the maximal energy n̄max

as clearly expected from the monotonic expression in Equation (5).
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Figure 3. We plot the information quantity Iclass
read in log-scale for n̄ ≤ n̄max. We consider the

readout of a memory with 1− r = n̄−1
max. Here we consider the numerical value n̄max = 1000

but the behaviour is generic.

Thus, if we construct a theoretical memory which can be irradiated with at most n̄max photons
per cell (otherwise data is lost, e.g., due to photodegrable effects) and having reflectivity r satisfying
Equation (15), then this will be unreadable by any classical transmitter based on coherent states while its
data can be retrieved by a quantum transmitter with signal energy 'n̄max.

Note that in general, we can design a memory with reflectivity r such that

1− r = cn̄−1, (17)

for some constant c. For large n̄, we have Iclass
read → 0, while Iquant

read tends to a constant ≤ 1 which depends
on c. For instance, we have Iquant

read → 0.895 for c = 0.1, and Iquant
read → 0.997 for c = 0.01. In the following

Figure 4, we show the behaviour of the two information quantities Iclass
read and Iquant

read assuming the condition
of Equation (17) with c = 0.1. We see how the memories remains unreadable by classical means while
the peformance of quantum reading approaches 1 bit per cell.
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Figure 4. We plot the information quantities Iclass
read (lower curve) and Iquant

read (upper curve)
versus the mean photon number n̄ ≥ 1. We consider memories with reflectivity r satisfying
Equation (17) with c = 0.1.
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4. Conclusions

In this preliminary study on the cryptographic aspects of quantum reading, we have shown how it
is possible to construct classical memories which cannot be read by classical means, namely coherent
states (and mixtures of coherent states, by invoking the same convexity arguments of Ref. [26]) but still
they can be read using quantum entanglement. In particular, we have considered an EPR state and we
have connected the mean number of photons to be employed by this quantum source with the reflectivies
to be used in the memory cells, see Equation (15) and also its generalization in Equation (17). Note that
other non-classical states may also provide non-trivial advantages with respect to coherent states and
their mixtures. In general, the security provided by the scheme relies on the technological difference
between two types of labs, one limited to classical sources and the other able to access quantum features,
such as entanglement or squeezing.

It is interesting to discuss the connections between our scheme of data-hiding by quantum reading and
the traditional technique of quantum data hiding [40,41]. The latter is about to store classical information
into entangled states, so that it can only be retrieved by joint measurements. It is clearly an application
of quantum state discrimination. By contrast, data-hiding by quantum reading is related to the problem
of quantum channel discrimination. Classical data is stored in a channel (not a state) and quantum
entanglement is used as an input resource to be processed by the channel. This is a crucial difference,
also for practical purposes, since data stored in a classical memory does not decohere (like the entangled
states typically prepared in quantum data hiding), and quantum entanglement is used a resource on
demand, which is needed only for the readout of the information (not for the storage process).

Note that our study can be extended in several ways. We have only considered ideal memories
where the cells are addressed individually and have very high reflectivities (in particular, we have
assumed unit reflectivity for one of the two bit values stored in the cell). There is no inclusion of
additional noise sources in the model, e.g., coming from stray photons scattered during the readout
process, neither analysis of diffraction or other optical effects. Finally, we have also assumed that high
values of entanglement can be generated. While this is possible theoretically, it is very hard to achieve
experimentally. This would not be a problem if we were able to construct memories which are extremely
photo-sensitive, so that that the maximum values of tolerable energies are of the order of n̄max . 10

photons per cell.
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