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Abstract: We examine the behavior of quantum correlations of spin pairs in a finite

anisotropic XY spin chain immersed in a transverse magnetic field, through the analysis

of the quantum discord and the conventional and quadratic one-way information deficits.

We first provide a brief review of these measures, showing that the last ones can be obtained

as particular cases of a generalized information deficit based on general entropic forms.

All of these measures coincide with an entanglement entropy in the case of pure states,

but can be non-zero in separable mixed states, vanishing just for classically correlated states.

It is then shown that their behavior in the exact ground state of the chain exhibits similar

features, deviating significantly from that of the pair entanglement below the critical field.

In contrast with entanglement, they reach full range in this region, becoming independent of

the pair separation and coupling range in the immediate vicinity of the factorizing field.

It is also shown, however, that significant differences between the quantum discord and

the information deficits arise in the local minimizing measurement that defines them. Both

analytical and numerical results are provided.
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1. Introduction

The investigation of non-classical correlations in mixed states of composite quantum systems has

attracted strong attention in recent years. While in pure states, such correlations can be identified with

entanglement [1–7], in the case of mixed states, separable (unentangled) states, defined in general

as convex mixtures of product states [8], i.e., as states that can be generated by local operations

and classical communication (LOCC), may still exhibit non-classical features. The latter emerge

from the possible non-commutativity of the different products and lead, for instance, to a finite

value of the quantum discord [9–13] and other recently introduced related quantifiers of quantum

correlations [14,15]. These quantifiers include the one-way information deficit [12,13,16–18], the

geometric discord [19], generalized entropic measures [20,21] and, more recently, the local quantum

uncertainty [22,23] and the trace distance discord [24–27]. While entanglement is certainly

necessary for quantum teleportation [28] and for an exponential speed-up in pure state-based quantum

computation [29,30], interest in these new measures has been triggered by the existence of mixed

state-based quantum algorithms, like that of [31], able to achieve an exponential speedup over the best

classical algorithms for a certain task, with vanishing entanglement [32], but finite quantum discord [33].

Additionally, various operational interpretations of the quantum discord and other related measures have

been provided [15,22,26,34–39].

In this article, we will concentrate on the quantum discord [9–13] and the generalized entropic

measures of [20], which include as particular cases the von Neumann-based one-way information deficit

[12,13,16–18] and the geometric discord [19] and which represent a generalized information deficit.

The quantum discord, as well as all other related measures require a rather complex minimization over a

local measurement or operation, which has limited their applicability to small systems or special states.

The optimization problem for the quantum discord was in fact recently shown to be NP complete [40].

The advantage of the generalized entropic formalism is, first, the possibility of using simpler entropic

forms, like the linear entropy, which, as will be discussed in Section 2, enables an easier evaluation (it

does not require the diagonalization of the density matrix) and a more direct experimental access (it can

be determined without a full state tomography). This entails that an explicit solution of the associated

optimization problem for certain states can be achieved. The generalized formalism also allows one to

identify some universal properties, i.e., valid for any entropic form (and not just for a particular choice

of entropy) satisfied by the post-measurement state.

We first provide in Section 2 an overview of the main concepts and properties associated with

these measures. We then apply these measures to examine the quantum correlations of spin pairs

in the exact ground state of finite spin 1/2 chains with XY -type couplings in a transverse magnetic

field, through their entanglement, quantum discord and information deficit. All separations between

the pairs are considered. Several important studies of the quantum discord in spins chains have been

made [41–52], but the relation to the generalized information deficit and the differences between their

optimizing measurements in these spin pairs have not yet been analyzed in detail. We have recently

investigated these aspects for an XX spin chain in [51] and will here extend this analysis to the

anisotropic XY case. It is first shown that in contrast with the pair entanglement, the quantum discord

and the information deficit exhibit, for the exact ground state of these chains, common features, such as
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an appreciable finite value below the critical field, for all separations. Moreover, they approach a finite

common non-zero value [44] at the remarkable factorizing field [49,50,53–60] that these chains can

exhibit in the anisotropic case. On the other hand, we will also show that important differences between

the quantum discord on the one side and the standard and generalized information deficit on the other

side do arise in the minimizing local spin measurement that defines them. While in the quantum discord,

the direction of the latter is always orthogonal to the transverse field, in the other measures, it exhibits a

perpendicular to parallel transition as the field increases, which is present for all separations and which

reflects significant qualitative changes in the reduced state of the pair. This difference indicates a distinct

response of the minimizing measurement of these quantities to the onset of quantum correlations.

2. Measures of Quantum Correlations

2.1. Quantum Entanglement

We start by providing a brief overview of the basic notions. A pure state |ΨAB〉 of a bipartite

system A + B is separable iff (if and only if) it is a product state |ΨA〉|ΨB〉. Otherwise, it is entangled.

The Schmidt decomposition [5]:

|ΨAB〉 =
ns
∑

k=1

√
pk |kA〉|kB〉 (1)

where |kA(B)〉 denote orthonormal states for subsystem A(B) and pk ≥ 0,
∑ns

k=1 pk = 1, allows one

to easily distinguish separable pure states (ns = 1) from entangled states (ns ≥ 2). Here, ns is the

Schmidt rank of |ΨAB〉 (ns ≤ Min[dA, dB], with dA(B) the Hilbert space dimensions of A(B)). Pure sate

entanglement can be measured by the entanglement entropy [3,4]:

E(A,B) = S(ρA) = S(ρB) = −
ns
∑

k=1

pk log pk (2)

where ρA(B) = TrB(A) ρAB =
∑ns

k=1 pk|kA(B)〉〈kA(B)|, with ρAB = |ΨAB〉〈ΨAB|, are the reduced states

of A(B) and S(ρ) = −Tr ρ logρ is the von Neumann entropy. We will set in what follows log p ≡
log2 p, such that E(A,B) = 1 for a maximally entangled two-qubit state (ns = 2, p1 = p2 = 1/2).

On the other hand, a general mixed state ρAB (ρAB ≥ 0, Tr ρAB = 1) of a bipartite system A + B is

separable iff it can be expressed as a convex mixture of product states [8]:

ρAB separable ⇔ ρAB =
∑

α

pαρ
α
A ⊗ ρα

B pα > 0 (3)

where
∑

α pα = 1 and ρα
A(B) denote mixed states for subsystem A (B). Otherwise, it is entangled.

The meaning is that a separable state can be created by LOCC, i.e., Alice prepares a state ρα
A with

probability pα and tells Bob to prepare a partner state ρα
B.

For pure states ρAB = |ΨAB〉〈ΨAB|, Equation (3) is equivalent to the previous definition (|ΨAB〉 =
|ΨA〉|ΨB〉), but in the case of mixed states, product states ρAB = ρA ⊗ ρB are just a very particular

case of separable states. The latter also include: (a) classically-correlated states, i.e., states diagonal in a

standard product basis {|ij〉 ≡ |iA〉|jB〉},

ρAB =
∑

i,j

pij|iA〉〈iA| ⊗ |jB〉〈jB| , pij ≥ 0 (4)
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where
∑

i,j pij = 1 and |iA(B)〉 are orthonormal states of A(B); (b) classically-correlated states from one

of the subsystems, say B, which are of the form:

ρAB =
∑

j

pjρA/j ⊗ |jB〉〈jB| , pj ≥ 0 , (5)

where
∑

j pj = 1 and ρA/j are states of A, which are then diagonal in a conditional product basis

{|ijj〉 ≡ |iA/j〉|jB〉} with |iA/j〉 the eigenstates of ρA/j (the case (4) recovered when all ρA/j commute);

and (c) convex mixtures of product states, which are not of the previous forms of (a) or (b). The latter

typically possess entangled eigenstates. For this reason, it is much more difficult to determine whether

a mixed state is separable or entangled. The well-known positive partial transpose criterion [61,62]

(ρ
tB
AB ≥ 0, with ρ

tB
ij,kl = ρil,kj for ρilkj = 〈il|ρAB|kj〉) provides a necessary criterion for separability,

which is sufficient for two-qubit or qubit-qutrit states.

For mixed states, the marginal entropies S(ρA), S(ρB) no longer provide a measure of entanglement.

Instead, it is possible to use the entanglement of formation [63], defined through the convex roof

extension of the pure state definition:

E(A,B) = Min∑
α
pα|Ψα

AB〉〈Ψα

AB |=ρAB

S(ρα
A) (6)

where the minimization is over all decompositions of ρAB as convex mixtures of pure states

(pα ≥ 0,
∑

α pα = 1) and S(ρα
A) = S(ρα

B) is the entanglement entropy of the pure state |Ψα
AB〉.

Equation (6) vanishes iff ρAB is separable and reduces to the entanglement entropy (2) for pure states.

It is an entanglement monotone [64], i.e., it does not increase by LOCC, staying unaltered under local

unitary operations ρAB → UA ⊗ UB ρAB U †
A ⊗ U †

B . Its evaluation is, however, difficult in general.

A general analytic expression has been derived just for the two-qubit case [65,66], which will be specified

in Section 3.

While the marginal entropies are no longer entanglement indicators, it can still be shown [67] that if

S(ρA) > S(ρAB) or S(ρB) > S(ρAB), ρAB is entangled, i.e.,

ρAB separable ⇒ S(ρA) ≤ S(ρAB) , S(ρB) ≤ S(ρAB) . (7)

Equation (7) provides an entropic criterion for separability [67] (necessary, but not sufficient in general),

which can be also extended to more general entropic forms [68–70] and which will be invoked in

Section 2.3.

2.2. Quantum Discord

For the classically-correlated states (4) or in general (5), there is a complete local measurement

on B that leaves the state unaltered. This is not the case for entangled states, nor for separable states not

of the form of (4) or (5). Let us recall here that a general positive operator valued measurement (POVM)

[5] on system A+B is defined by a set of operators {Mj} satisfying
∑

j M
†
jMj = IAB ≡ IA⊗ IB , such

that the probability of outcome j and the joint state after such an outcome are:

pj = Tr ρAB Mj , ρ′
AB/j = MjρABM

†
j /pj (8)
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The post-measurement state if the outcome is unknown is then:

ρ′
AB =

∑

j

pjρ
′
AB/j =

∑

j

MjρABM
†
j . (9)

Standard projective measurements correspond to the case where the Mj are orthogonal projectors

(MkMj = δjkMj), while a local measurement on B corresponds to Mj = IA ⊗ MB
j . By a complete

local measurement on B, we will mean one based on rank one orthogonal projectors MB
j = PB

j . It is

then apparent that the states (4) and (5) remain unchanged (ρ′
AB = ρAB) after a local measurement on B

based on the projectors PB
j = |jB〉〈jB|. For the states (4) (but not necessarily (5)), there is also a local

measurement on A (that based on the projectors |iA〉〈iA|), which leaves them unchanged.

The quantum discord [9–13] is a measure of quantum correlations, which, unlike the entanglement

of formation, can distinguish the classically-correlated states (5) from the rest of separable states:

It vanishes iff ρAB is of the form of (4) or (5), being positive in the other separable states (c), and

reduces to the entanglement entropy (2) in the case of pure states. It can be defined as the minimum

difference between two distinct quantum versions of the mutual information, or equivalently, of the

conditional entropy:

D(A|B) = Min
MB

[I(A,B)− I(A,BMB
)] = Min

MB

S(A|BMB
)− S(A|B) (10)

where the minimization is over all local measurements MB on B and:

I(A,B) = S(ρA)− S(A|B) , S(A|B) = S(ρAB)− S(ρB) (11)

are, respectively, the standard quantum mutual information and conditional entropy, while:

I(A,BMB
) = S(ρA)− S(A|BMB

) , S(A|BMB
) =

∑

j

pjS(ρA/j) (12)

are the mutual information and conditional entropy after the local measurement MB , with ρA/j =

TrB ρ′
AB/j the reduced state of A after outcome j. Equation (10) is always non-negative [9–11], a

property that arises from the concavity of the conditional von Neumann entropy [71].

In the case of complete local projective measurements MB , we have:

S(A|BMB
) = S(ρ′

AB)− S(ρ′
B) (13)

where ρ′
B = TrA ρ′

AB and ρ′
AB is the post-measurement state (9). It is then apparent that if the state is

of the form (4) or (5), a measurement MB based on the projectors PB
j = |jB〉〈jB| leads to S(A|BMB

) =

S(A|B) and, hence, D(A|B) = 0. For all other states (i.e., entangled states or separable states not of

the form of (4) or (5)), D(A|B) > 0. In the case of pure states, S(ρAB) = 0, while S(A|BMB
) = 0

if MB is any complete local measurement, entailing D(A|B) = S(ρB) = E(A,B). For mixed states,

the quantum discord can be related to the entanglement of formation E(A,C) with a third system C

purifying the whole system [35–38].

The mutual information I(A,B) is a measure of all correlations between A and B, being non-negative

and vanishing just for product states ρAB = ρA ⊗ ρB. The bracket in (10) can then be interpreted as

the difference between all correlations (classical + quantum) present in the original state minus the
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classical correlations left after the local measurement on B, which leaves then the quantum correlations.

The evaluation of Equation (10) is, nevertheless, difficult in the general case, being in fact an NP

complete problem [40] due to the minimization over all possible local measurements MB . Nonetheless,

the minimum is always attained for measurements based on rank one projectors PB
j , not necessarily

orthogonal [15,72,73].

2.3. Information Deficit

The one-way information deficit can be considered as an alternative measure of quantum correlations,

with basic properties similar to those of the quantum discord. It can be defined as [12,13,16–18,20]:

I(A|B) = Min
MB

S(ρ′
AB)− S(ρAB) (14)

where ρ′
AB is the post-measurement state (9) and MB is here restricted to complete local projective

measurements on B, such that ρ′
AB is of the form of (5). Like the quantum discord, Equation (14) is

a non-negative quantity, which also vanishes just for the states (4) or (5) and which also reduces to the

entanglement entropy (2) in the case of pure states. These properties will be shown below in a more

general context, although they are also apparent from the alternative expression:

I(A|B) = Min
MB

S(ρAB||ρ′
AB) (15)

where S(ρ||σ) = Tr ρ(log ρ−log σ) is the relative entropy [71,74] and a quantity satisfying S(ρ||σ) ≥ 0,

with S(ρ||σ) = 0 iff ρ = σ. Equation (15) can be shown by noting that ρ′
AB is the diagonal part of ρAB

in the basis defined by the projective measurement (the minimization in (15) can in fact be extended

to all ρ′
AB of the form of (5) [20]). Nevertheless, differences with the quantum discord may arise in

the minimizing measurement, as discussed in the next section. We also note that if the minimizing

measurement of D(A|B) is projective and in the basis of eigenstates of ρB, then ρ′
B = ρB and

Equations (10)–(13) lead to D(A|B) = I(A|B). Otherwise, D(A|B) ≤ I(A|B), since for projective

measurements, Equations (10)–(13) imply D(A|B) ≤ S(ρ′
AB) − S(ρAB) − [S(ρ′

B) − S(ρB)] ≤
S(ρ′

AB)− S(ρAB).

Equation (14) admits a simple interpretation in terms of the entanglement generated

between the system and a measuring apparatus M performing the complete local measurement [18].

The measurement on the local basis {|iB〉} can be represented through a unitary operator UBM satisfying

UBM |jB0M〉 = |jBjM 〉, where |0M〉 is the initial state of the apparatus and {|jM〉} an orthogonal basis

of M , such that:

ρ′
AB = TrM ρ′

ABM , ρ′
ABM = (IA ⊗ UBM )(ρAB ⊗ |0M〉〈0M |)(IA ⊗ U †

BM ) (16)

Since S(ρAB) = S(ρAB⊗|0M 〉〈0M |) = S(ρ′
ABM), it is seen that Equation (14) is the difference between

the entropy of the subsystemAB and that of the total systemABM after the measurement, and according

to Equation (7), such a difference can be positive only if there is entanglement between AB and M .

Thus, a positive I(A|B) indicates that entanglement between AB and M is generated by any complete

local measurement MB . On the other hand, if I(A|B) = 0, then ρAB is of the form of (5) and for a

measurement in the basis {|jB〉}, ρ′
ABM =

∑

j pjρA/j ⊗ |jBjM〉〈jBjM | is clearly separable, so that no
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entanglement is generated by this measurement. It can be shown [18] that Equation (14) coincides

in fact with the minimum distillable entanglement between AB and M generated by the complete

local measurement on B. A similar interpretation for the quantum discord in terms of the minimum

partial distillable entanglement can also be obtained [18]. Other operational interpretations can be

found in [26,34,36–39].

2.4. Generalized Information Deficit

It is possible in principle to extend Equation (14) to more general entropic forms, since in contrast

with the quantum discord (10), its positivity is not related to specific properties of the von Neumann

entropy S(ρ), as shown below. We consider here generalized entropies of the form [75]:

Sf (ρ) = Tr f(ρ) (17)

where Tr f(ρ) =
∑

i f(pi), with pi the eigenvalues of ρ and f(p) a smooth strictly concave real function

defined for p ∈ [0, 1] and satisfying f(0) = f(1) = 0. These entropies fulfill the same basic properties

as the von Neumann entropy, with the exception of additivity: we have Sf(ρ) ≥ 0, with Sf(ρ) = 0

iff ρ is a pure state (ρ2 = ρ), while all Sf (ρ) are maximum for the maximally mixed state ρ = I/d,

where d = Tr I is the Hilbert space dimension of the system. Moreover, they are strictly concave, i.e.,

Sf (
∑

α pαρα) ≥
∑

α pαSf(ρα), for pα > 0,
∑

α pα = 1, with equality iff all ρα are coincident. The von

Neumann entropy is obviously recovered for f(ρ) = −ρ log ρ.

Concavity of Sf(ρ) implies the fundamental majorization property:

ρ′ ≺ ρ ⇒ Sf (ρ
′) ≥ Sf (ρ) (18)

where ρ′ ≺ ρ indicates that ρ′ is majorized by ρ [71,76,77] (also denoted as ρ′ more mixed than ρ):

ρ′ ≺ ρ ⇔
i
∑

j=1

p′j ≤
i
∑

j=1

pj , i = 1, . . . , d− 1 (19)

where pj , p
′
j denote the eigenvalues of ρ and ρ′ sorted in decreasing order (equality in (19) obviously

holds for i = d). If the dimensions of ρ and ρ′ differ, Equation (18) still holds (for f(0) = 0) after

completing with zeros the smallest set of eigenvalues. Conversely, while the reverse of Equation (18)

does not necessarily hold, indicating that majorization provides a more strict concept of mixedness or

disorder than that defined by a single choice of entropy, it does hold if Sf (ρ
′) ≥ Sf (ρ) ∀ f of the previous

form [69,70]:

Sf(ρ
′) ≥ Sf(ρ) ∀ Sf ⇒ ρ′ ≺ ρ (20)

Equation (18) remains actually valid for more general entropic forms (like increasing functions F (Sf)

of Sf or, in general, Schur concave functions [76,77]), but Equation (20) indicates that the forms (17)

are already sufficient to capture majorization. Among the various properties implied by majorization,

we mention that for states with the same dimension, ρ ≺ ρ′ iff ρ′ is a convex mixture of unitary

transformations of ρ [71,76,77], i.e., iff ρ′ =
∑

α pαUαρU
†
α, with Uα unitary and pα ≥ 0.

Now, for any projective measurement (local or non-local) performed on the system A + B, it can be

easily shown that Sf(ρ
′
AB) ≥ Sf(ρAB) ∀ Sf , i.e.,

ρ′
AB ≺ ρAB (21)
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The reason is that the post measurement state ρ′
AB conserves just the diagonal elements p′ν = 〈ν ′|ρAB|ν ′〉

of ρAB in a certain orthonormal basis {|ν ′〉} determined by the projectors, and hence, Sf(ρ
′
AB) =

∑

ν f(p
′
ν) =

∑

ν f(
∑

µ |〈µ|ν ′〉|2pµ) ≥
∑

µ,ν |〈µ|ν ′〉|2f(pµ) = Sf(ρAB), where pµ and |µ〉 denote here

the eigenvalues and eigenvectors of ρAB. This relation is not restricted to rank one projectors (just choose

an orthonormal basis {|ν ′〉} where ρ′
AB is diagonal), so that it holds for local projective measurements.

Equation (21) remains actually valid for any measurement satisfying
∑

j MjM
†
j = IAB, i.e., which

leaves the maximally-mixed state IAB/dAB unchanged [20].

Note also that the strict concavity of Sf implies Sf(ρ
′
AB) = Sf (ρAB) iff ρ′

AB = ρAB, as is apparent

from the previous demonstration. In fact, if the off diagonal elements of ρAB in the measured basis are

sufficiently small, a second order expansion of Sf(ρAB) leads to [20]:

Sf(ρ
′
AB)− Sf(ρAB) ≈

∑

µ<ν

f ′(p′µ)− f ′(p′ν)

p′ν − p′µ
|〈ν ′|ρAB|µ′〉|2 (22)

where the fraction is always positive due to the strict concavity of f (and should be replaced by

its limit −f ′′(p′µ) if p′ν → p′µ). Equation (22) is essentially the square of a weighted norm of the

off-diagonal elements of ρAB in the measured basis (i.e., of those lost in the measurement) and is

therefore non-negative, vanishing (if f ′′(p) < 0 ∀ p ∈ (0, 1)) only if all off-diagonal elements are zero.

We may then define the quantity [20,21]:

If (A|B) = Min
MB

Sf (ρ
′
AB)− Sf (ρAB) (23)

where the minimization is again over all complete local measurements on B. Equation (23) is

non-negative, due to Equation (21), and vanishes iff ρ′
AB = ρAB, i.e., iff ρAB is already of the

classically-correlated form of (4) or (5). It therefore vanishes only for the states with zero quantum

discord. It obviously also remains invariant under local unitary operations.

In the case of pure states, it can be shown [20] that the minimum of Equation (23) is always attained

for a measurement in the basis {|kB〉} determined by the Schmidt decomposition (1), i.e., in the basis

formed by the eigenstates of ρB, which leads to:

If(A|B) = Sf (ρA) = Sf (ρB) =

ns
∑

k=1

f(pk) , (ρAB pure) (24)

It therefore reduces to the generalized entanglement entropy Sf(ρA) = Sf(ρB) of the pure state.

The entanglement entropy can then be identified with the minimum information loss due to a local

measurement [20]. It is apparent that for pure states, If(A|B) = If(B|A), a property which does not

hold in the general case.

In the case of the von Neumann entropy, If(A|B) becomes the standard information deficit (14),

and Equation (24) implies that for pure states, it will coincide with the standard (von Neumann)

entanglement entropy, like the quantum discord. Nevertheless, an important difference arises in the

minimizing measurement, since that for the latter becomes undetermined in the case of pure states

(it can be any measurement based on rank one projectors [72,73]), whereas all If (A|B), including

I(A|B), require a measurement in the basis {|kB〉}, which is fully undetermined only in the case of

maximally-mixed marginals.
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Like the standard information deficit, If(A|B) is also an indicator of the minimum entanglement

between the system and the measurement apparatus M generated by a complete local measurement.

The von Neumann entropic criterion for separability (7) can actually be extended to any Sf [69,70]:

ρAB separable ⇒ Sf(ρA) ≤ Sf (ρAB) , Sf(ρB) ≤ Sf (ρAB) . (25)

The validity of Equation (25) for all Sf is stronger than the von Neumann-based criterion (23) [69,70] and

equivalent to the disorder criterion of separability [68] (ρAB separable ⇒ ρAB ≺ ρA(B)). By the same

arguments given below, Equation (16), it follows that a positive If(A|B), i.e., Sf(ρ
′
AB) > Sf (ρAB) =

Sf (ρ
′
ABM), is indicating the existence of entanglement between AB and M after any complete local

projective measurement on B.

2.5. Minimizing Measurement

Equation (24) reflects a universal property exhibited by the local measurement minimizing If(A|B)

for pure states: it is the same for all Sf . Such a measurement, i.e., a measurement in the basis {|kB〉}
determined by the Schmidt decomposition of the pure state, is also optimum, for all Sf , for the mixture

of the pure state with the maximally-mixed state [20],

ρAB = q|ΨAB〉〈ΨAB|+ (1− q)IAB/dAB , q ∈ [0, 1] (26)

These states exhibit then an unambiguous least disturbing local measurement, in the sense that it

minimizes all If(A|B) and leads to a “least mixed” post-measurement state:

ρ′
AB = q

ns
∑

k=1

pk|kA〉〈kA| ⊗ |kB〉〈kB|+ (1− q)IAB/dAB

which majorizes any other post-measurement state emerging after a local measurement. This property

does not hold for an arbitrary initial state ρAB.

In the general case, the projective measurement MB = {|jB〉〈jB|} minimizing If(A|B) may depend

on the choice of entropy Sf . It can be shown that it must satisfy the necessary stationary condition [21]:

TrA[f
′(ρ′

AB), ρAB] = 0 (27)

where f ′ denotes the derivative of f and ρ′
AB is the post-measurement state (9). Equation (27) implies,

explicitly,
∑

i[f
′(p′ij)〈ijj|ρAB|ijk〉 − f ′(p′ik)〈ikj|ρAB|ikk〉] = 0, where p′ij = 〈ijj|ρAB|ijj〉 and |ijj〉 =

|iA/j〉|jB〉, with |ij/A〉 the eigenstates of ρA/j . The minimizing measurement basis will not coincide

in general with the eigenstates of ρB , even though this holds for certain states, like pure states and

the mixtures (26). Equation (27) shows that the eigenstates of ρB will be stationary for any state ρAB

where the non-zero off-diagonal elements are of the form 〈ij|ρAB|kl〉 with i 6= k and j 6= l, where

|ij〉 ≡ |iA〉|jB〉 and |iA〉, |jB〉 are the eigenstates of ρA and ρB respectively [21].

In the case of the quantum discord and for MB restricted to complete local projective measurements,

Equation (27) is to be replaced by (here f ′(ρ) = − log ρ) [21]:

TrA[f
′(ρ′

AB), ρAB]− [f ′(ρ′
AB), ρB] = 0 (28)
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More explicit expressions can be obtained for a two-qubit system, where we may write a general state

as:

ρAB = 1
4
(IAB + rA · σA + rB · σB + σ

t
AJσB) (29)

where σA = σ ⊗ I , σB = I ⊗ σ, with σ
t = (σx,σy,σz) the Pauli operators, and IAB = I ⊗ I the

identity. Since Trσµ = 0 and Trσµσν = 2δµν for µ, ν = x, y, z, we have (〈O〉 ≡ Tr ρAB O):

rA(B) = 〈σA(B)〉, J = 〈σAσ
t
B〉 (30)

A complete projective measurement on B corresponds to a spin measurement along the direction of a

unit vector k, represented by projectors P±k = 1
2
(I ± k · σ). After this measurement, Equation (29)

becomes:

ρ′
AB = 1

4
[I + rA · σA + (rB · k)k · σB + (σt

AJk)k · σB] (31)

Equation (27) leads then to the explicit equation [21]:

α1rB + α2J
t
rA + α3J

tJk = λk , (32)

where (α1,α2,α3) =
1
4

∑

µ,ν=±1 f
′(p′µν)(ν,

µν
|rA+Jk| ,

µ
|rA+Jk|), p

′
µν = 1

4
(1 + νrB · k + µ|rA + νJk|) are

the eigenvalues of ρ′
AB, with µ, ν = ±1, and λ is a proportionality factor. In the case of the quantum

discord, Equation (28) leads to a similar equation, with f(p) → −p log p and α1 → α1 − 1
2
log p′−/p

′
+,

where p′± = 1
2
(1 + rB · k) are the eigenvalues of ρ′

B [21].

2.6. Particular Cases

One of the advantages of the generalized information deficit (23) is the possibility of using simple

entropic forms, which can be more easily evaluated (and measured) than the von Neumann entropy. For

instance, if f(ρ) = 2(ρ− ρ2), Equation (17) becomes the so-called linear entropy:

S2(ρ) = 2(1− Tr ρ2) (33)

which follows from the linear approximation lnρ ≈ ρ − I in the von Neumann entropy, but

is actually a quadratic function of ρ, i.e., a linear function of the purity P (ρ) = Tr ρ2. It is

the simplest entropic form, and its evaluation does not require the knowledge of the eigenvalues

of ρ (see Equation (39) below). Moreover, purity and, hence, S2(ρ), can be experimentally determined

without a full-state tomography [78–80]. Equation (33) is actually the q = 2 case of the Tsallis

entropies [81,82], obtained for f(ρ) = ρ−ρq

1−21−q :

Sq(ρ) =
1− Tr ρq

1− 21−q
, q > 0 (34)

Equation (34) approaches the von Neumann entropy S(ρ) for q → 1, being strictly concave for q > 0.

We have normalized (33) and (34), such that Sq(ρ) = 1 for a maximally-mixed two-qubit state.

In the case (33), it is first seen that for post-measurements states ρ′
AB:

S2(ρ
′
AB)− S2(ρAB) = 2Tr (ρ2

AB − ρ′2
AB) = 2||ρ′

AB − ρAB||2 (35)



Entropy 2015, 17 1644

where ||O||2 = TrO†O. Hence, the local projective measurement minimizing S2(A|B), which is

that maximizing the post-measurement purity P (ρ′
AB), leads to the post-measurement state with the

minimum Hilbert–Schmidt distance to the original state. The associated deficit:

I2(A|B) = Min
MB

S2(ρ
′
AB)− S2(ρAB) (36)

coincides, apart from a constant factor, with the geometric discord [15,19,20]. For pure states, I2(A|B)

will then coincide with the linear marginal entropies:

I2(A|B) = S2(ρA) = S2(ρB) = 2(1−
ns
∑

k=1

p2k) (37)

In two qubit systems, Equation (37) is just the squared concurrence [65,66] of the pure state ρAB.

While as a measure, the geometric discord fails to satisfy some additional properties fulfilled by

the quantum discord or the information deficit [83], it offers the enormous advantage of a simple

analytic evaluation in qudit-qubit systems [19,21,84], as discussed below, also admitting through the

purity a more direct experimental access. Moreover, Equation (22) shows that if ρAB is close to the

maximally-mixed state IAB/dAB, all If(A|B) will become proportional to I2(A|B) [20], as in this case
f ′(p′µ)−f ′(p′ν)

p′ν−p′µ
≈ −f ′′( 1

dAB
) is nearly constant. In fact, all Sf (ρ) are linearly related to S2(ρ) in this

limit [72,73].

Any state of a general system A+B can be written in the form of (29), replacing the Pauli operators

by a complete set of orthogonal operators σ in A and B satisfying Trσµ = 0, Trσµσν = dA(B)δµν :

ρAB = 1
dAdB

(IAB + rA · σA + rB · σB + σ
t
AJσB) (38)

where rA(B) and J (now a dA × dB matrix) are again given by Equation (30). The S2 entropy can then

be readily evaluated as:

S2(ρAB) = 2[1− 1
dAdB

(1 + |rA|2 + |rB|2 + ||J ||2)] (39)

where ||J ||2 = TrJ tJ . If B is now a qubit, the state after a spin measurement along direction k on B

will have the form of (31) with 1
4
→ 1

2dA
. We then obtain, using Equation (39),

S2(ρ
′
AB) = 2− 1

dA
(|rA|2 + k

tM2k) (40)

where M2 = rBr
t
B+J tJ is a 3×3 positive semidefinite symmetric matrix. Hence, I2(k) = S2(ρ

′
AB)−

S2(ρAB) =
1
dA
(TrM2 − k

tM2k). Its minimum I2(A|B) can then be evaluated analytically as [19,21]:

I2(A|B) = Min
k

I2(k) =
1
dA
(TrM2 − λ1) (41)

where λ1 is the largest eigenvalue of M2, the minimizing spin measurement being along the direction

of the corresponding eigenvector. Equation (41) is valid for an arbitrary qudit-qubit state ρAB. Let us

notice that the stationary condition (27) or (32) reduces, for the linear entropy, precisely to the eigenvalue

equation M2k = λk, as in this case f ′(ρ′
AB) ∝ ρ′

AB, and hence, α1 = rB · k, α2 = 0 and α3 = 1 [21].

This indicates that the stationary measurements are those along the direction of the eigenvectors of M2.
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For arbitrary q > 0, we may similarly define the quantities (in what follows cq = 1− 21−q):

Iq(A|B) = Min
MB

Sq(ρ
′
AB)− Sq(ρAB) = Min

MB

c−1
q Tr (ρq

AB − ρ′q
AB) , (42)

IRq (A|B) = Min
MB

SR
q (ρ

′
AB)− SR

q (ρAB) = Min
MB

1

1− q
log

Tr ρ′q
AB

Tr ρq
AB

(43)

=
1

1− q
log

[

1− cqIq(A|B)

1− cqSq(ρAB)

]

(44)

where:

SR
q (ρ) =

1

1− q
log Tr ρq =

1

1− q
log[1− cqSq(ρ)] , q > 0 (45)

are the Renyi entropies [71], which are just increasing functions of the Tsallis entropies (34) (and also

approach the von Neumann entropy for q → 1). Equations (42)–(43) are again non-negative, vanishing

iff ρAB is of the form of (4) or (5), and approach the von Neumann information deficit (14) for q → 1.

Equation (44) is again just an increasing function of Iq(A|B) (for fixed ρAB) and does not depend on

the addition of an uncorrelated ancilla C to A (ρAB → ρC ⊗ ρAB), as Tr ρq
C cancels out. An analytic

expression for I3(A|B) valid for any two-qubit state can also be obtained [21].

3. Application: Quantum Correlations of Spin Pairs in XY Chains

3.1. Model and General Expressions

We consider a spin 1/2 system with XYZ couplings of arbitrary range, immersed in a transverse

magnetic field B along the z axis. The Hamiltonian reads:

H = B
∑

i

siz − 1
2

∑

µ=x,y,z

∑

i 6=j

J ij
µ siµsjµ (46)

where siµ are the (dimensionless) components of the local spin at site i and J ij
µ the coupling strengths.

The Hamiltonian (46) commutes with the Sz spin parity operator Pz, irrespective of the coupling

range, anisotropy, dimension or geometry of the system [55–57],

[H,Pz] = 0, Pz = exp[iπ
∑

i

(siz + 1/2)] =
∏

i

(−σiz) (47)

where σiz = 2siz. The non-degenerate eigenstates of H will then have a definite Sz parity Pz = ±1.

Consequently, the reduced density matrix of an arbitrary spin pair i, j in any non-degenerate eigenstate

|Ψν〉, ρij = Tr (i,j) |Ψν〉〈Ψν |, will then commute with the Sz parity operator of the pair P ij
z = σizσjz:

[ρij , P
ij
z ] = 0. In the standard basis {|00〉, |01〉, |10〉, |11〉}, ρij will therefore be an X-type state of

the form:

ρij =











a+ 0 0 β

0 c+ α 0

0 ᾱ c− 0

β̄ 0 0 a−











(48)
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where the coefficients are all real (since H is real in the full standard basis) and given by

(si± = six ± isiy):

a± = 1
4
± 1

2
〈siz + sjz〉+ 〈sizsjz〉 , (49)

c± = 1
4
± 1

2
〈siz − sjz〉 − 〈sizsjz〉 , (βα) = 〈si−sj∓〉 (50)

with a+ + c+ + c− + a− = 1. This corresponds to rA and rB along z in (29) (rA(B) = a+ + c+(−) −
c−(+)−a−), with J diagonal, i.e., Jµν = 4〈siµsjν〉 = δµνjµ, with jx

y
= 2(α±β), jz = a++a−−c+−c−.

The positivity of ρij implies |α| ≤ √
c+c−, |β| ≤ √

a+a−, with a±, c± non-negative. The single spin

density matrix is:

ρi = Trj ρij =

(

a+ + c+ 0

0 a− + c−

)

(51)

Both ρij and ρi will obviously be typically mixed due to the entanglement with the rest of the chain.

In what follows, we will consider translational invariant systems, such that 〈siz〉 is site independent,

i.e., 〈siz〉 = 〈sjz〉 ∀ i, j, implying c± = c = 1−a+−a−
2

. In this situation, ρij = ρji and D(A|B) =

D(B|A) = D, If(A|B) = If(B|A) = If ∀ Sf .

The entanglement of the pair can be measured by the entanglement of formation (6), which for two

qubit states, can be evaluated as: [65,66]

E = −
∑

ν=±
qν log qν , q± = 1

2
(1±

√
1− C2) (52)

where C is the concurrence [65,66]. For the states (48) with c± = c, the concurrence of the pair is given

by:

Cij = 2Max[|β| − c, |α| − √
a+a−, 0] (53)

The pair entanglement is of the parallel type (as in the Bell states
|00〉±|11〉√

2
) if the first entry in (53) is

positive and antiparallel (as in
|01〉±|10〉√

2
) if the second entry is positive [54] (just one of them can be

positive).

On the other hand, the quantum discord of the pair can be readily evaluated with the expressions (48)

and (31) (see [44] for details). The ensuing minimization over the spin measurement direction k (we

will consider here just projective measurements) will normally lead to the direction corresponding to

maximum correlation, according to the general arguments of [72,73]. In the XY chains, which will be

considered, i.e., J ij
z = 0, with |J ij

y | < J ij
x and J ij

x > 0, the quantum discord for the states (48) will

always prefer a measurement along the x axis, irrespective of the field intensity [44].

The information deficit (14) can be evaluated in a similar way. In contrast with the quantum

discord, the optimizing measurement direction will be affected by the field intensity, exhibiting a smooth

transition from the x to the z direction as the field increases for the systems considered, as discussed

below. The angle γ between k and the z axis can be determined from Equation (32), which leads

explicitly to:

cos γ =
α1rB + α2jzrA
α3(j2x − j2z )

(54)

when γ 6= 0 [21], which is a transcendental equation (as the αi depend on γ).
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The quadratic information deficit (36) can, however, be analytically evaluated with Equation (41).

Here, M2 is already diagonal, M2µν = δµν(δµzr
2
B + jµ). Assuming |jx| ≥ |jy|, as will occur in the cases

considered, we obtain:

I2 =
1
2
Min[j2y + j2x, j

2
y + r2B + j2z ] = 4Min[α2 + β2,

a2++a2
−

4
+ c2−(a+−a−)c+(α−β)2

2
] (55)

with the minimizing measurement direction k along the z (x) axis if the first (second) entry is minimum:

k =

{

ez , j2x < r2B + j2z
ex , j2x > r2B + j2z

(56)

This entails that as the field B increases from zero, a sharp x → z transition in the minimizing

measurement direction will take place for I2, reflecting the change in the largest eigenvalue of the matrix

M2. This transition becomes softened in the von Neumann information deficit (14), where k will evolve

smoothly from the x to the z axis within a narrow field interval located in the vicinity of the I2 transition.

A measurement transition also occurs for other values of q in the quantities (42)–(43) (see [21] for an

example).

3.2. Results

In Figures 1 and 2, we show results for the exact ground state of a finite chain with n spins coupled

through cyclic (n + 1 ≡ 1) first neighbor anisotropic XY couplings (J ij
z = 0, J ij

µ = δj,i±1Jµ for

µ = x, y), for which the reduced pair states (48) will depend just on the separation L = |i− j| between

the spins of the pair. The exact values of the elements of the density matrix (48) can be obtained, for

any size n or separation L, through the Jordan–Wigner fermionization of the model [85] and its analytic

parity-dependent diagonalization [55,86,87] (see the Appendix).

We will set Jx > 0, with |Jy| ≤ Jx. This involves no loss of generality as the sign of Jx can be

changed by a local rotation of angle π around the z axis at even sites (assuming n even in cyclic chains),

which will not affect the value of the correlation measures, and the x axis can be chosen along the

direction of maximum coupling.

Figure 1 depicts the behavior with increasing field B of the one-way information deficits I1 ≡ I

Equation (14)) and I2 (Equations (36)–(55)) of spin pairs in the exact definite parity ground state for the

anisotropic case Jy = Jx/2, together with that of the quantum discord (14) and the concurrence (53).

It is first seen that I1, I2 and D exhibit a similar qualitative behavior, acquiring appreciable finite

values for any separation L in the interval |B| < Bc = (Jx + Jy)/2, in marked contrast with the

concurrence, which is appreciable just for first and second neighbors (except for the immediate vicinity

of the factorizing field; see below). The Sz parity symmetry is essential for this result. In fact,

all measures converge to a finite common value, independent of the separation L, at the factorizing

field [49,50,53,55–60]:

Bs =
√

JyJx (57)

existing for 0 < Jy < Jx, where the system possesses a pair of degenerate completely separable exact

ground states [49,50,55–57] given by |Θ〉 = |θ, . . . , θ〉 and | − Θ〉 = Pz|Θ〉 = | − θ, . . . ,−θ〉, where

|θ〉 = e−iθsy | ↓〉 is the single spin state forming an angle θ with the −z direction and cos θ = Bs/Jx =
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√

Jy/Jx. Actually, in the finite case, this field coincides with the last parity transition of the exact (and

hence, of definite parity) ground state [55], such that the latter approaches, as side limits at B = Bs, the

definite parity combinations [55–57]:

|Θ±〉 =
|Θ〉 ± | −Θ〉

√

2(1± 〈−Θ|Θ〉)
(58)

Here, |Θ+〉 (|Θ−〉) is the ground state limit for B → B+
s (B → B−

s ). Discarding the overlap

〈−Θ|Θ〉 = cosn θ, which is negligible if n and θ are not too small (cosn θ ≈ e−nθ2/2 for small θ),

Equation (58) leads to a common reduced state for any pair i, j, given by [44,55]:

ρθ =
1
2
(|θ〉〈θ| ⊗ |θ〉〈θ|+ | − θ〉〈−θ| ⊗ | − θ〉〈−θ|) (59)

This is a separable mixed state, and therefore, it leads to a zero concurrence for any pair, as seen in

Figure 1 (where results at Bs correspond to the side limits (58)). However, it is not of the

classically-correlated form of (4) or (5) if 〈−θ|θ〉 = cos θ 6= 0 or 1, i.e., if | ± θ〉 are non-orthogonal and

distinct, leading then to a common appreciable value of D, I1, I2 and, in fact, all If . We also notice that

the same reduced state (59) is obtained from the mixture 1
2
(|Θ〉〈Θ|+ | −Θ〉〈−Θ|), which represents the

low temperature limit of the thermal state ρ ∝ exp[−H/kT ] at B = Bs.
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Figure 1. (a,c) The one-way information deficits I2, Equation (36) (a) and I1,

Equation (14) (c) as a function of the scaled magnetic field B/Jx, for spin pairs with

separation L = 1, 2, . . . , n/2 in the exact ground state of a cyclic chain of n = 40 spins with

first neighbor anisotropic XY couplings (χ = Jy/Jx = 1/2). (b,d) The quantum discord D,

Equation (10) (b) and the concurrence C, Equation (53) (d) for the same pairs. The results

for different separations coincide exactly at the factorization field Bs =
√

JyJx ≈ 0.71Jx.
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Figure 2. The same quantities of Figure 1 for n = 10 spins. In this case, the parity transitions

of the ground state lead to small, but appreciable discontinuities in all quantities, with the

last transition (indicated by the vertical dotted line) taking place at the factorizing field Bs.

For this size, the concurrence also presents small, but finite side limits at Bs.

It is then possible to obtain straightforward analytic expressions for the side limits of D [44], I2 and I1

at the factorizing field through the state (59), which leads to a± = 1
4
(1±cos θ)2 and α = β = c = 1

4
sin2 θ

in (48), with cos2 θ = Jy/Jx. That for I2 is particularly clean and given by:

I2(Bs) =

{

(1−χ)2

2
, χ ≥ 1/3

χ(1+χ)
2

, χ ≤ 1/3
where χ = Jy/Jx (60)

with the minimizing measurement at Bs being along z if χ > 1/3 and along x if χ < 1/3. Equation (60)

applies for all separations L.

For small chains, the results are similar, but the effects of the parity transitions of the ground state

(it undergoes n/2 parity transitions as the field increases from zero, the last one at B = Bs [55])

are now appreciable trough the finite discontinuities exhibited by I2, I1 and D, as seen in Figure 2.

At the factorizing field, these discontinuities arise from the overlap 〈−Θ|Θ〉, which now cannot

be strictly neglected. This leads to an additional term ∝ ± cosn−2 θ(|θ〉〈−θ| ⊗ |θ〉〈−θ| + h.c.) in

Equation (59), which originates slightly distinct side limits of D [44] and also I2 and I1 at Bs. Moreover,

it also leads to small, but finite and distinct common side limits of the concurrence at B = Bs [55–57],

which was known to reach full range in its vicinity [54]. All of these side limits are, nevertheless, still

independent of the pair separation L. In the case of I2, they are given, for χ & 1/3, by:

I2(B
±
s ) =

(1− χ)2

2

1 + χn−2

(1± χn/2)2
(61)
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which corrects the upper line in Equation (60) for finite n (or χ → 1), and + (−) corresponds to

the right (left) side limit. The side limits of the concurrence are C(B±
s ) = χn/2−1(1−χ)

1±χn/2 , as obtained

from (53) [55–57].

The behavior of the quantum discord for longer range ferromagnetic-type couplings is qualitatively

similar [44]. Moreover, a factorizing field still exists for longer range couplings with a constant

anisotropy χ = J ij
y /J

ij
x [56,57], in which case the reduced pair state at Bs is again given by

Equation (59) with cos θ =
√
χ, and Equations (60)–(61) remain then valid.

In Figure 3, we compare the behavior of I2, I1 and D for first neighbors in the chains of

Figures 1 and 2, with that of the associated entanglement monotone, i.e., the squared concurrence C2 for

I2 and the entanglement of formation E for I1 and D, such that both quantities coincide for pure states.

It is seen that for strong fields, differences are very small, in agreement with the weak entanglement of

the pair with the rest of the chain in this regime (ρi,i+1 is almost pure). The strong differences arise

for B < Bc and especially in the vicinity of the factorizing field, due to the arguments exposed above.

For |B| < Bc, the reduced pair state becomes appreciably mixed in the definite parity ground states,

including the states (58) at the factorizing field, due to the entanglement with the rest of the chain.

Significant differences between If (and D) with the corresponding entanglement monotone become

then feasible.
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Figure 3. Plot of I2 (top), I1 (center) and D (bottom) together with the associated

entanglement monotones for a first neighbor pair (L = 1) in the ground state of the chains

of Figures 1 and 2.
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It is also seen that I2 is in this case an upper bound of C2 for all fields, whereas I1 is not an upper

bound of E for low fields, while D is not an upper bound, even for strong fields, indicating the lack of

an order relationship between D and E, even in this regime. In the case of I2, it is easy to show from

Equations (53) and (55) that for X states, it is always an upper bound of C2 when the minimizing

measurement is along z [21]. In, fact, for strong fields |B| ≫ Jx, a perturbative expansion [20]

for the present chain leads to C ≈ 2(η − η2), I2 ≈ 4η2, I1 ≈ η2(log e − log η2) and D ≈
η2(log e− log η2 − 2), where:

η =
Jx − Jy

8B

Hence, in this limit, I2 − C2 = O(η3) and I1 − E = O(−η3 log η2), both positive, whereas D − E ≈
O(−η2) becomes negative.

3.3. Minimizing Measurement

Although I1, I2 and D show a similar qualitative behavior, both measures I1 and I2 exhibit a more

pronounced maximum, in comparison to that of the quantum discord, as appreciated in Figures 1–3.

This reflects the transition in the orientation of their local minimizing spin measurements as the field

increases, which, as mentioned above, is not present in the quantum discord. The latter prefers in the

present system a measurement along the x axis, even for large fields and for any separation between

the spins, following the strongest correlation [72,73]. As seen in Figure 4 and as previously stated, I2

exhibits instead a sharp transition from a direction parallel to the x axis (γ = π/2) to a direction parallel

to the z axis (γ = 0), i.e., parallel to the field. This transition takes place, in the case shown in Figure 1,

for all separations L at B ≈ 0.65Jx. In the case of the information deficit I1, the transition becomes

smooth, as the angle γ takes all of the intermediate values between zero and π/2 (as determined by

Equation (54)) for all separations in a narrow field interval centered at the I2 critical field, as also seen

in Figure 4.

L=1,...,20 HI2L

D

L=1HI1L

L=20

Χ =0.5

N = 40

0 0.5 1
0

Π

2

Π

4

B�Jx

Γ

Figure 4. The angle γ determining the direction of the minimizing local spin measurement

for D, I1 and I2, as a function of the scaled transverse magnetic field, for a chain of n = 40

spins with Jy = Jx/2. Results for all separations L of the pair are shown.

The value of the field where the transition in the optimizing local measurement for I2 occurs depends

on the anisotropy, but only slightly on the separation L, except in the XX limit (Jy → Jx), as can be
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seen in the left panel of Figure 5. The same holds for the field interval where the “transition” (actually

the evolution from π/2 to zero of the measurement angle γ) in I1 takes place (Figure 5b). In the case

of I2, if χ = 1/3, the measurement transition for all separations L occur exactly at the factorizing field

Bs =
√
χJx, as follows from Equation (60).

The measurement transition reflects essentially the qualitative change experienced by the reduced

state of the pair for increasing fields. Away from the XX limit, the dominant eigenstate of ρij (that with

the largest eigenvalue) for not too low fields is the entangled state |Ψ+〉 = u|↓↓〉 + v|↑↑〉 with v/u =
β

ε+
√

ε2+β2
and ε = a−−a+

2
. Above the measurement transition field (i.e., when the optimum measurement

is parallel to the field), v/u becomes small (. 0.25), indicating that the pair is approximately aligned

with the field. Instead, below the transition field, v/u increases, approaching one for B → 0 (where

|Ψ+〉 becomes a parallel Bell state), and the least disturbing measurement is along x. For very low fields,

the dominant eigenstate may shift to the antiparallel Bell state |Ψ−〉 = |↑↓〉+|↓↑〉√
2

arising from the central

block of (48), and in this case, the measurement along x is still preferred. On the other hand, in the XX

limit, β = 0 in (48), and the dominant eigenstate is either |Ψ−〉 at low fields or |Ψ+〉 = | ↓↓〉 for strong

fields; and the measurement transition of I2 indicates essentially the field where the sharp transition in

the dominant eigenstate (from maximally entangled to separable) takes place [51]. Such a measurement

transition for increasing fields persists even at finite temperatures [51].
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Figure 5. (a) The field where the transition in the minimizing measurement of I2 takes

place, as a function of the anisotropy χ = Jy/Jx. A direction along the x (z) axis is preferred

below (above) the transition field. The factorizing field Bs is also shown. All transition fields

coincide with the factorizing field if χ = 1/3, Equation (60). (b) The fields delimiting the

interval where the smoothed transition in the minimizing measurement of the von Neumann

information deficit I1 takes place.

4. Conclusions

We have examined the behavior of the quantum discord and the standard and quadratic one-way

information deficit of spin pairs in the exact definite parity ground state of a finite anisotropic cyclic XY

spin 1/2 chain in a transverse field. We have first provided a brief overview of the quantum discord, the

standard von Neumann-based one-way information deficit and the generalized information deficit, which



Entropy 2015, 17 1653

contains the standard, as well as the quadratic deficit as particular cases and which can be interpreted as

a measure of the minimum entanglement generated between the system and the measurement apparatus

after a complete local projective measurement. The first important result is that the behavior of all of

these measures is quite distinct from that of the pair entanglement for fields below the critical field,

acquiring finite appreciable values for all separations of the spins of the pair. Moreover, they reach (as

side limits) a common (independent of the separation) finite value at the factorizing field, which in a

finite chain, is the field where the last ground state parity transition takes place. These finite limits can be

evaluated analytically. The entanglement of pairs also reaches full range in its vicinity, although its value

is much smaller and vanishes at this field, except for very small samples. Parity effects are of crucial

importance for the proper description of these measures in finite systems below the critical field.

The second important result is that the behavior of the optimizing local spin measurement of both the

standard and generalized information deficit is quite distinct from that optimizing the quantum discord,

exhibiting a transition in the direction of the spin measurement, from that of maximum correlation to that

parallel to the field. The details of this transition depend on the choice of entropy (it is sharp for I2 and

smooth for I1). The quantum discord prefers instead that of maximum correlation, even for strong fields.

Hence, the quantum discord, which is based on the minimization of a conditional entropy, “detects”

in this way this direction [72,73], while the information deficits, based on the minimization of a total

entropy, are more sensible to changes in the structure of the reduced state of the pair.

A final comment is that the generalized formalism permits the use of simple entropic forms involving

just low powers of the density matrix, leading to measures of the form of (42) or (43), which can be more

easily evaluated and optimized and which are also more easily accessible from the experimental side.

A. Appendix

We briefly discuss here the exact solution of the finite cyclic XY chain with first neighbor couplings,

which requires one to take into account exactly the parity effects [55,85–87]. The Jordan–Wigner

transformation [85] allows one to rewrite the Hamiltonian (46) in the XY case (J ij
z = 0) for J ij

µ =

Jµδi,j±1, µ = x, y, and for each value ±1 of the Sz parity Pz, as a quadratic form in fermion creation and

annihilation operators c†i , ci defined by c†i = si+ exp[−iπ
∑i−1

j=1 sj+sj−], with the reverse transformation

given by si+ = c†i exp[iπ
∑i−1

j=1 c
†
jcj ]. This leads to:

H± =
n
∑

i=1

B(c†ici − 1
2
)− 1

2
η±i (J+c

†
ici+1 + J−c

†
ic

†
i+1 + h.c.)

=
∑

k∈K±

λk(a
†
kak − 1

2
) (62)

where J± = 1
2
(Jx ± Jy) and n + 1 ≡ 1, η−i = 1, η+i = 1 − 2δin [85]. In (62), K+ = {1

2
, . . . , n − 1

2
},

K− = {0, . . . , n− 1} and:

λk =
√

(B − J+ cosωk)2 + J2
− sin2 ωk , ωk = 2πk/n (63)
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The last form of (62) is obtained through a parity-dependent discrete Fourier transform c†j =
eiπ/4
√
n

∑

k∈K±

e−iωkjc′†k , followed by a BCS-type Bogoliubov transformation c′†k = uka
†
k + vkan−k, c′n−k =

ukan−k − vka
†
k to quasiparticle fermionic operators ak, a†k, with (

u2
k

v2k
) = 1

2
[1± (B − J+ cosωk)/λk].

For B ≥ 0, we may set λk ≥ 0 for k 6= 0 and λ0 = J+ − B, in which case, the quasiparticle vacuum

of H± has the right parity, and the lowest energy is E± = −1
2

∑

k∈K±
λk. At the factorizing field (57),

λk = J+ − Bs cosωk and E± = −nJ+/2 [55].

The reduced state of a spin pair in the exact ground state can then be obtained from the basic

contractions 〈a†kak′〉 = 0, 〈a†ka
†
k′〉 = 0, leading to 〈c′†kc′k′〉 = v2kδkk′ , 〈c′†kc′

†
k′〉 = ukvkδk,−k′ and

(L = i− j):

〈c†icj〉± =
1

n

∑

k∈K±

e−iωkLv2k = fL + 1
2
δij , 〈c†ic†j〉± =

1

n

∑

k∈K±

e−iωkLukvk = gL

The application of Wick’s theorem then leads to [44,85]:

〈siz〉 = f0, 〈sizsjz〉 = f 2
0 − f 2

L + g2L

〈si−sj∓〉 = 1
4
[det(A+

L)∓ det(A−
L)]

where (A±
L) are L × L matrices of elements (A±

L)ij = 2(fi−j±1 + gi−j±1). These results, valid for any

finite n, were checked through direct diagonalization for small n.
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