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Abstract: We prove the correspondence between the information geometry of a signal filter
and a Kähler manifold. The information geometry of a minimum-phase linear system with
a finite complex cepstrum norm is a Kähler manifold. The square of the complex cepstrum
norm of the signal filter corresponds to the Kähler potential. The Hermitian structure of the
Kähler manifold is explicitly emergent if and only if the impulse response function of the
highest degree in z is constant in model parameters. The Kählerian information geometry
takes advantage of more efficient calculation steps for the metric tensor and the Ricci tensor.
Moreover, α-generalization on the geometric tensors is linear in α. It is also robust to
find Bayesian predictive priors, such as superharmonic priors, because Laplace–Beltrami
operators on Kähler manifolds are in much simpler forms than those of the non-Kähler
manifolds. Several time series models are studied in the Kählerian information geometry.

Keywords: Kähler manifold; information geometry; cepstrum; time series model; Bayesian
prediction; superharmonic prior

1. Introduction

Since the introduction of Riemannian geometry to statistics [1,2], information geometry has been
developed along various directions. The statistical curvature as the differential-geometric analogue of
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information loss and sufficiency was proposed by Efron [3]. The α-duality of information geometry was
found by Amari [4]. Not being limited to statistical inference, information geometry has become popular
in many different fields, such as information-theoretic generalization of the expectation-maximization
algorithm [5], hidden Markov models [6], interest rate modeling [7], phase transition [8,9] and string
theory [10]. More applications can be found in the literature [11] and the references therein.

In particular, time series analysis and signal processing are well-known applications of information
geometry. Ravishanker et al. [12] found the information geometry of autoregressive moving
average (ARMA) models in the coordinate system of poles and zeros. It was also extended to
fractionally-integrated ARMA (ARFIMA) models [13]. The information geometry of autoregressive
(AR) models in the reflection coefficient coordinates was also reported by Barbaresco [14]. In the
information-theoretic framework, Bayesian predictive priors outperforming the Jeffreys prior were
derived for the AR models by Komaki [15].

Kähler manifolds are interesting topics in differential geometry. On a Kähler manifold, the metric
tensor and the Levi–Civita connection are straightforwardly calculated from the Kähler potential, and
the Ricci tensor is obtained from the determinant of the metric tensor. Moreover, its holonomy group
is related to the unitary group. Because of these properties, many implications of Kähler manifolds
are found in mathematics and theoretical physics. In addition to these fields, information geometry
is one of those fields where the Kähler manifolds are intriguing. After the symplectic structure in
information geometry and its connection to statistics were discovered [16], Barbaresco [14] notably
introduced Kähler manifolds to information geometry for time series models and also generalized
the differential-geometric approach with mathematical structures, such as Koszul geometry [17,18].
Additionally, Zhang and Li [19] found symplectic and Kähler structures in divergence functions.

In this paper, we prove that the information geometry of a signal filter with a finite complex cepstrum
norm is a Kähler manifold. The Kähler potential of the geometry is the square of the Hardy norm of the
logarithmic transfer function of a linear system. The Hermitian structure of the manifold is explicitly
seen in the metric tensor under certain conditions on the transfer functions of linear models and filters.
The calculation of geometric objects and the search for Bayesian predictive priors are simplified by
exploiting the properties of Kähler geometry. Additionally, α-correction terms on the geometric objects
exhibit α-linearity. This paper is structured as follows. In the next section, we shortly review information
geometry for signal processing and derive basic lemmas in terms of the spectral density function and
transfer function. In Section 3, main theorems for Kählerian information manifolds are proven and the
consequences of the theorems are provided. The implications of Kähler geometry to time series models
are reported in Section 4. We conclude the paper in Section 5.

2. Information Geometry for Signal Processing

2.1. Spectral Density Representation in the Frequency Domain

We model an output signal y(w) as a linear system with a transfer function h(w; ξ) of model
parameters ξ = (ξ1, ξ2, · · · , ξn):

y(w) = h(w; ξ)x(w)
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where x(w) is an input signal in frequency domainw. Complex inputs, outputs and model parameters are
considered in this paper. The properties of a given signal filter are characterized by the transfer function
h(w; ξ) and the model parameters ξ.

In signal processing, one of the most important quantities is the spectral density function. The spectral
density function S(w; ξ) is defined as the absolute square of the transfer function:

S(w; ξ) = |h(w; ξ)|2. (1)

The spectral density function describes the way that energy in the frequency domain is distributed by
a given signal filter. In terms of signal amplitude, the spectral density function encodes an amplitude
response to a monochromatic input eiw. For example, the spectral density function of the all-pass filter is
constant in the frequency domain, because the filter passes all inputs to outputs up to the phase difference
regardless of frequency. The high-pass filters only allow the signals in the high-frequency domain.
Meanwhile, the low-pass filters only permit low-frequency inputs. The properties of other well-known
filters are also described by their specific spectral density functions.

The spectral density function is also important in information geometry, because the
information-geometric objects of the signal processing geometry are derived from the spectral density
function [20,21]. Among the geometric objects, the length and distance concepts are most fundamental
in geometry. One of the most important distance measures in information geometry is the α-divergence,
also known as Chernoff’s α-divergence, that is the only divergence which is both an f -divergence and
a Bregman divergence [22]. The α-divergence between two spectral density functions S1 and S2 is
defined as

D(α)(S1||S2) =

{
1

2πα2

∫ π
−π

{(
S2

S1

)α
− 1− α log S2

S1

}
dw (α 6= 0)

1
4π

∫ π
−π

(
logS2 − logS1

)2
dw (α = 0)

and the divergence conventionally measures the distance from S1 to S2. The α-divergence, except for
α = 0, is a pseudo-distance, because it is not symmetric under exchange between S1 and S2. In spite
of the asymmetry, the α-divergence is frequently used for measuring differences between two linear
models or two filters. Some α-divergences are more popular than others, because those divergences
have been already known in information theory and statistics. For example, the (−1)-divergence is the
Kullback–Leibler divergence. The 0-divergence is well known as the square of the Hellinger distance
in statistics. The Hellinger distance is locally asymptotically equivalent to the information distance and
globally tightly bounded by the information distance [23].

The metric tensor of a statistical manifold, also known as the Fisher information matrix, is derived
from the α-divergence. In order to define the information geometry of a linear system, the conditions on
a signal filter are found in Amari and Nagaoka [21]: stability, minimum phase and

1

2π

∫ π

−π
| logS(w; ξ)|2dw <∞

which imposes that the unweighted power cepstrum norm [24,25] is finite. According to the
literature [20,21], the metric tensor of the linear system geometry is given by

gµν(ξ) =
1

2π

∫ π

−π
(∂µ logS)(∂ν logS)dw (2)
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where the partial derivatives are taken with respect to the model parameters ξ, i.e., ∂µ = ∂
∂ξµ

. Since the
dimension of the manifold is n, the metric tensor is an n× n matrix.

Other information-geometric objects are also determined by the spectral density function. The
α-connection, which encodes the change of a vector being parallel-transported along a curve, is
expressed with

Γ(α)
µν,ρ(ξ) =

1

2π

∫ π

−π
(∂µ∂ν logS − α(∂µ logS)(∂ν logS))(∂ρ logS)dw (3)

where α is a real number. Notice that the α-connection is not a tensor. The α-connection is related to
the Levi–Civita connection, Γµν,ρ(ξ), also known as the metric connection. The relation is given by the
following equations:

Γ(α)
µν,ρ(ξ) = Γµν,ρ(ξ)− α

2
Tµν,ρ(ξ) (4)

Tµν,ρ(ξ) =
1

π

∫ π

−π
(∂µ logS)(∂ν logS)(∂ρ logS)dw (5)

where the tensor T is symmetric under the exchange of the indices. The Levi–Civita connection
corresponds to the α = 0 case.

These information-geometric objects have interesting properties with the reciprocality of spectral
density functions. The spectral density function of an inverse system is the reciprocal spectral density
function of the original system. The geometric properties of the inverse system are described by the
α-dual description. The following lemma shows the correspondence between the reciprocality of the
spectral density function and the α-duality.

Lemma 1. The information geometry of an inverse system is the α-dual geometry to the information
geometry of the original system.

Proof. The metric tensor is invariant under the reciprocality of spectral density functions, i.e., plugging
S−1 into Equation (2) provides the identical metric tensor.

Meanwhile, the α-connection is not invariant under the reciprocality and exhibits a more interesting
property. The α-connection from the reciprocal spectral density function is given by

Γ(α)
µν,ρ(S

−1; ξ) =
1

2π

∫ π

−π
(∂µ∂ν logS + α(∂µ logS)(∂ν logS))(∂ρ logS)dw

= Γ(−α)
µν,ρ (S; ξ)

and the above equation shows that the α-connection induced by the reciprocal spectral density function
corresponds to the (−α)-connection of the original geometry.

Similar to the α-connection, the α-divergence is equipped with the same property. The α-divergence
between two reciprocal spectral density functions is straightforwardly found from the definition of the
α-divergence, and it is represented by the (−α)-divergence between the two spectral density functions:

D(α)(S−1
1 ||S−1

2 ) = D(−α)(S1||S2).

Using the inverse systems, we can construct the α-dual description of signal processing models in
information geometry. The multiplicative inverse of a spectral density function corresponds to the
α-duality of the geometry.
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Lemma 1 indicates that given a linear system geometry, there is no way to discern whether the metric
tensor is derived from the filters with S or S−1. Additionally, the model S−1 is (−α)-flat if and only
if S is α-flat. The 0-connection is self-dual under the reciprocality. A consequence of Lemma 1 is the
following multiplication rule:

D(α)(S1||S−1
2 ) =

1

2πα2

∫ π

−π

{
(S1S2)−α − 1 + α log (S1S2)

}
dw

= D(−α)(S0||S1S2) = D(α)(S1S2||S0)

where S0 is the unit spectral density function of the all-pass filter. Plugging S1 = S0 and S2 = S, we
have D(0)(S0||S−1) = D(0)(S0||S) = D(0)(S||S0).

We observe that the bilateral transfer functions log |h(eiw; ξ)|2 ∈ L2 (T) are isomorphically embedded
in the space R⊕ zH2 (D).

Lemma 2. Let log |h(eiw; ξ)|2 ∈ L2 (T). Then, there is an analytic function f ∈ exp (H2 (D)), such that∣∣h(eiw; ξ)
∣∣2 =

∣∣f(eiw; ξ)
∣∣2

and ∥∥∥log
∣∣h(eiw; ξ)

∣∣2 − log |h(1; ξ)|2
∥∥∥
L2(T)

=
∥∥∥log

∣∣f(eiw; ξ)
∣∣2 − log |f(1; ξ)|2

∥∥∥
H2(D)

.

This has the interpretation that the information manifold of log |h(eiw; ξ)|2 ∈ L2 is isometric to the
Hardy–Hilbert space.

Proof. log h(eiw; ξ) is represented by the Fourier series:

log
∣∣h(eiw; ξ)

∣∣2 =
∞∑

r=−∞

are
irw

and since log |h(eiw; ξ)|2 is real, we have a−r = ār, and in particular, a0 is real. We define the conjugate
series by the coefficients ãr, so that ar + iãr = 0 for r < 0 and ãr for r > 0; so that ã

(
eiθ
)

is real valued,
we choose ã0 = 0. This implies

ãr =

{
−1

i
ar (r < 0)

1
i
ar (r > 0)

and if {ar} ∈ lp for 1 ≤ p ≤ ∞, then {ãr} ∈ lp, in particular,∑
r 6=0

|ar|2 =
∑
r 6=0

|ãr|2 . (6)

The analytic function f (z) = exp (a0 + a (z) + iã (z)) has

log
∣∣h(eiw; ξ)

∣∣2 = log
∣∣f(eiw; ξ)

∣∣2
and

‖ log f(z; ξ)− log f (1; ξ) ‖2
H2 =

∥∥∥log
∣∣h(eiw; ξ)

∣∣2 − log |h(1; ξ)|2
∥∥∥2

L2(T)
<∞

and because f ∈ exp (zH2 (D)), f (and f−1) is outer, we may write

h(eiw; ξ) = u(eiw; ξ)f(eiw; ξ)

where log u(eiw; ξ) ∈ L2 is pure imaginary, that is, |u(eiw; ξ)| = 1.
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This has the interpretation that h has a well-defined outer factor, and the information geometry of h
depends only on h. In the case that the power series coefficients ak (ξ) are continuous, smooth, analytic,
etc., then the embedding is likewise smooth.

2.2. Transfer Function Representation in the z Domain

By using transfer functions, it is also possible to reproduce all of the previous results with the spectral
density function. With Fourier transformation and Z-transformation, z = eiw, a transfer function h(z; ξ)

is expressed with a series expansion of z,

h(z; ξ) =
∞∑

r=−∞

hr(ξ)z−r (7)

where hr(ξ) is an impulse response function. It is a bilateral (or two-sided) transfer function expression,
which has both positive and negative degrees in z, including the zero-th degree. In the causal response
case that hr(ξ) = 0 for all negative r, the transfer function is unilateral. In many applications, the main
concern is the causality of linear filters, which is represented by unilateral transfer functions. In this
paper, we start with bilateral transfer functions as generalization and then will focus on causal filters.

In the complex z-domain, all formulae for the information-geometric objects are identical to the
expressions in the frequency domain, except for the change of the integral measure:

1

2π

∫ π

−π
G(eiw; ξ)dw → 1

2πi

∮
|z|=1

G(z; ξ)
dz

z

for an arbitrary integrand G. Since the evaluation of the integration is obtained from the line integral
along the unit circle on the complex plane, it is easy to calculate the above integration with the aid of the
residue theorem. According to the residue theorem, the poles only inside the unit circle contribute to the
value of the integration. If G(z; ξ) is analytic on the unit disk, the constant term in z of G(z; ξ) is the
value of the integration. For more details, see Cima et al. [26] and the references therein.

One advantage of using Z-transformation is that a transfer function can be understood in the
framework of functional analysis. A transfer function defined on the complex plane is expanded by the
orthonormal basis z−r for integers r with impulse response functions as the coefficients. In functional
analysis, it is possible to define the inner product between two complex functions F and G in the Hilbert
space:

〈F,G〉 =
1

2πi

∮
|z|=1

F (z)G(z)
dz

z
.

By using this inner product, the condition for the stationarity,
∑∞

r=0 |hr|2 < ∞, is written as the Hardy
norm (H2-norm) in complex functional analysis,

‖h(z; ξ)‖2
H2 = 〈h(z; ξ), h(z; ξ)〉 =

∞∑
r=0

|hr|2 <∞.

Since the functional space with a finite Hardy norm is called the Hardy–Hilbert space H2, the unilateral
transfer functions satisfying the stationarity condition live on the H2-space. A transfer function of a
stationary system is a function in the L2-space if the transfer function is in the bilateral form.
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The conditions on the transfer function of a signal filter are also necessary for defining the
information geometry of a linear system in terms of the transfer function. Similar to the spectral
density representation, the conditions on the linear filters are stability and minimum phase. In addition to
these conditions, we also need the following condition on the finite H2-norm of the logarithmic transfer
function,

1

2πi

∮
|z|=1

| log h(z; ξ)|2dz
z
<∞

and for the above condition, it is also known that the unweighted complex cepstrum norm [25,27] is finite.
From now on, signal filters in this paper are the linear systems satisfying the above norm conditions. This
is a necessary condition for a finite power cepstrum norm.

It is natural to complexify the coordinate system as being used in the complex differential geometry.
In holomorphic and anti-holomorphic coordinates, the metric tensor of a linear system geometry is
represented by

gµν =
1

2πi

∮
|z|=1

∂µ
(

log h(z; ξ) + log h̄(z̄; ξ̄)
)
∂ν
(

log h(z; ξ) + log h̄(z̄; ξ̄)
)dz
z

where both µ and ν run over all holomorphic and anti-holomorphic coordinates, i.e., µ, ν =

1, 2, · · · , n, 1̄, 2̄, · · · , n̄.
The components of the metric tensor are categorized into two classes: one with pure indices from

holomorphic coordinates and anti-holomorphic coordinates, and another with the mixed indices. The
metric tensor components in these categories are given by

gij(ξ) =
1

2πi

∮
|z|=1

∂i log h(z; ξ)∂j log h(z; ξ)
dz

z
(8)

gij̄(ξ) =
1

2πi

∮
|z|=1

∂i log h(z; ξ)∂j̄ log h̄(z̄; ξ̄)
dz

z
(9)

where gīj̄ = (gij)
∗ and gīj = (gij̄)

∗, and the indices i and j run from one to n. It is also possible to
express the α-connection and the α-divergence in terms of the transfer function by using Equation (1),
the relation between the transfer function and the spectral density function.

It is noteworthy that the information geometry of a linear system is invariant under the multiplicative
factor of z in the transfer function, because the metric tensor is not changed by the factorization. The
invariance is also true for the geometry induced by the spectral density function.

Lemma 3. The information geometry of a signal filter is invariant under the multiplicative factor of z.

Proof. Any transfer function can be factored zR out in the form of

h(z; ξ) = zRh̃(z; ξ)

where R is an integer and h̃ is the factored-out transfer function. In the spectral density function
representation, the contribution of the factorization is |z|2R, and it is a unity in the line integration.
It imposes that the metric tensor, the α-connection and the α-divergence are independent of the
factorization.
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When a transfer function is considered, the same conclusion is obtained. Since the contribution
from the factorization parts, log zR, is canceled by the partial derivatives in the metric tensor and the
α-connection expression, the geometry is invariant under the factorization. It is also easy to show that
α-divergence is also not changed by the factorization. Another explanation is that the terms of ∂ih/h in
the metric tensor and the α-connection are invariant under zR-scaling.

Based on Lemma 3, it is possible to obtain the unilateral transfer function from a transfer function
with a finite upper bound in degrees of z. In particular, this factorization invariance of the geometry is
useful in the case that the transfer function has a finite number of terms in the non-causal direction of the
bilateral transfer function. If the highest degree in z of the transfer function is finite, the transfer function
is factored out as

h(z; ξ) = zR(h−R + h−(R−1)z
−1 + · · · )

= zRh̃(z; ξ)

where R is the maximum degree in z of the transfer function and h̃ is a unilateral transfer function.
A bilateral transfer function can be expressed with the multiplication of a unilateral transfer function

f(z; ξ) and an analytic function a(z; ξ) on the disk:

h(z; ξ) = f(z; ξ)a(z; ξ)

= (f0 + f1z
−1 + f2z

−2 + · · · )(a0 + a1z
1 + a2z

2 + · · · )

where fr and ar are functions of ξ. For a causal filter, all ai’s are zero, except for a0. This decomposition
also includes the case of Lemma 3 by setting ai = 0 for i < R and aR = 1. However, it is natural
to take f0 and a0 as non-zero functions of ξ. This is because powers of z could be factored out for
non-zero coefficient terms with the maximum degree in f(z; ξ) and the minimum degree in a(z; ξ), and
the transfer function is reducible to

h(z; ξ) = zRh̃(z; ξ)

where h̃(z; ξ) has non-zero f̃0 and ã0 and R is an integer, which is the sum of the degrees in z with
the first non-zero coefficient terms from f(z; ξ) and a(z; ξ), respectively. By Lemma 3, the information
geometry of the linear system with the transfer function h(z; ξ) is the same as the geometry induced by
the factored-out transfer function h̃(z; ξ).

The relation between f(z; ξ), a(z; ξ) and h(z; ξ) is described by the following Toeplitz system:
h0 h1 h2 . . .

h−1 h0 h1 . . .

h−2 h−1 h0 . . .
...

...
... . . .

 =


f0 f1 f2 . . .

0 f0 f1 . . .

0 0 f0 . . .
...

...
... . . .



a0 0 0 . . .

a1 a0 0 . . .

a2 a1 a0 . . .
...

...
... . . .

 .

For a given h(z; ξ), fr is determined by the coefficients of a(z; ξ), i.e., if we choose a(z; ξ), f(z; ξ)

is conformable to the choice under the above Toeplitz system. The following lemma is noteworthy for
further discussions. It is the generalization of Lemma 3.

Lemma 4. The information geometry of a signal filter is invariant under the choice of a(z; ξ).
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Proof. It is obvious that the information geometry of a linear system is only decided by the transfer
function h(z; ξ). Whatever a(z; ξ) is chosen, the transfer function is the same, because f(z; ξ) is
conformable to the Toeplitz system.

For further generalization, the transfer function is extended to the consideration of the Blaschke
product b(z), which corresponds to the all-pass filter in signal processing. The transfer function can
be decomposed into the following form:

h(z; ξ) = f(z; ξ)a(z; ξ)b(z)

where the Blaschke product b(z) is given by

b(z) =
∏
s

b(z, zs) =
∏
s

|zs|
zs

zs − z
1− z̄sz

and every zs is on the unit disk. Although the Blaschke product can be written in z−1 instead of z, our
conclusion is not changed, and we choose z for our convention. When zs = 0, the Blaschke product
is given by b(z, zs) = z. Regardless of zs, the Blaschke product is analytic on the unit disk. Since
the Taylor expansion of the Blaschke product provides positive order terms in z, it is also possible to
incorporate the Blaschke product into a(z; ξ). However, the Blaschke product is separately considered
in the paper.

The logarithmic transfer function of a linear system is represented in terms of f, a and b:

log h(z; ξ) = log (f0a0) + log (1 +
∞∑
r=1

fr
f0

z−r) + log (1 +
∞∑
r=1

ar
a0

zr) + log b(z)

= φ0 +
∑
s

log |zs|+
∞∑
r=1

φr(ξ)z−r +
∞∑
r=1

αr(ξ)zr +
∞∑
r=1

βrz
r

where φ0 = log (f0a0) and φr, αr are the r-th coefficients of the logarithmic expansions. φr and αr are
functions of ξ unless all fr/f0 and ar/a0 are constant. Meanwhile, βr = 1

r

∑
s
|zs|2r−1

zrs
is a constant in ξ.

It is also straightforward to show that the information geometry is independent of the Blaschke
product.

Lemma 5. The information geometry of a signal filter is independent of the Blaschke product.

Proof. It is obvious that the Blaschke product is independent of the coordinate system ξ. Plugging the
above series into the expression of the metric tensor in complex coordinates, Equations (8) and (9), the
metric tensor components are expressed in terms of φr and αr:

gij = ∂iφ0∂jφ0 +
∞∑
r=1

∂iφr∂jαr +
∞∑
r=1

∂iαr∂jφr

gij̄ =
∞∑
r=0

∂iφr∂j̄φ̄r +
∞∑
r=1

∂iαr∂j̄ᾱr

and it is noteworthy that the metric tensor components are independent of the βr terms, which are
related to the Blaschke product, because those are not functions of ξ. This is why the z-convention
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for the Blaschke product is not important. It is straightforward to repeat the same calculation for
the α-connection. Based on these, the information geometry of a linear system is independent of the
Blaschke product.

According to Lemma 4, the geometry is invariant under the degree of freedom in choosing a(z; ξ).
By using the invariance of the geometry, it is possible to fix the degree of freedom as ar/a0 constant.
With the choice of the degree of freedom, the metric tensor components of the information manifold are
given by

gij = ∂iφ0∂jφ0 (10)

gij̄ =
∞∑
r=0

∂iφr∂j̄φ̄r (11)

and it is easy to verify that the metric tensor components are only dependent on φr and φ̄r. In other
words, the metric tensor is dependent only on the unilateral part of the transfer function and a constant
term in z of the analytic part.

By Lemma 3, any transfer function with the upper-bounded degree in z is reducible to a unilateral
transfer function with a constant term. For this class of transfer functions, a similar expression for
the metric tensor can be obtained. First of all, the logarithmic transfer function is given in the series
expansion:

log h(z; ξ) = log zR + log h−R + log (1 +
∞∑
r=1

h−R+r

h−R
z−r)

= log zR +
∞∑
r=0

ηrz
−r

where R is the highest degree in z. The coefficients ηr are also known as the complex cepstrum [27],
and η0 = log h−R. After the series expansion of this logarithmic transfer function is plugged into the
formulae of the metric tensor components, Equations (8) and (9), the metric tensor components are
obtained as

gij = ∂iη0∂jη0 (12)

gij̄ =
∞∑
r=0

∂iηr∂j̄ η̄r (13)

and these expressions for the metric tensor components are similar to Equations (10) and (11) with the
exchange of φr ↔ ηr.

As an extension of Lemma 5, it is possible to generalize it to the inner-outer factorization of the
H2-functions. A function in the H2-space can be expressed as the product of outer and inner functions
by the Beurling factorization [28]. The generalization with the Beurling factorization is given by the
following lemma.

Lemma 6. The information geometry of a signal filter is independent of the inner function.
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Proof. A transfer function h(z; ξ) in the H2-space can be decomposed by the inner-outer factorization:

h(z; ξ) = O(z; ξ)I(z; ξ)

where O(z; ξ) is an outer function and I(z; ξ) is an inner function. The α-divergence is expressed with
S(z; ξ) = |h(z; ξ)|2 = |O(z; ξ)I(z; ξ)|2 = |O(z; ξ)|2 on the unit circle, because the inner function has
the unit modulus on the unit circle. Since the α-divergence is represented only with the outer function,
other geometric objects, such as the metric tensor and the α-connection, are also independent of the inner
function.

3. Kähler Manifold for Signal Processing

An advantage of the transfer function representation in the complex z-domain is that it is easy to test
whether or not the information geometry of a given signal processing filter is a Kähler manifold. As
mentioned before, choosing the coefficients in a(z; ξ) is considered as fixing the degrees of freedom
in calculation without changing any geometry. By setting a(z; ξ)/a0(ξ) a constant function in ξ, the
description of a statistical model becomes much simpler, and the emergence of Kähler manifolds can
be easily verified. Since causal filters are our main concerns in practice, we concentrate on unilateral
transfer functions. Although we will work with causal filters, the results in this section are also valid for
the cases of bilateral transfer functions.

Theorem 1. For a signal filter with a finite complex cepstrum norm, the information geometry of the
signal filter is a Kähler manifold.

Proof. The information manifold of a signal filter is described by the metric tensor g with the
components of the expressions, Equation (10) and Equation (11). Any complex manifold admits a
Hermitian manifold by introducing a new metric tensor ĝ [29]:

ĝp(X, Y ) =
1

2

(
gp(X, Y ) + gp(JpX, JpY )

)
where X, Y are tangent vectors at point p on the manifold and J is the almost complex structure, such
that

Jp
∂

∂ξi
= i

∂

∂ξi
, Jp

∂

∂ξ̄i
= −i ∂

∂ξ̄i
.

With the new metric tensor ĝ, it is straightforward to verify that the information manifold is equipped
with the Hermitian structure:

ĝij = ĝ(∂i, ∂j) = 0

ĝij̄ = ĝ(∂i, ∂j̄) = gij̄.

Based on the above metric tensor expressions, it is obvious that the information geometry of a linear
system is a Hermitian manifold.

The Kähler two-form Ω of the manifold is given by

Ω = iĝij̄dξ
i ∧ dξ̄j
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where ∧ is the wedge product. By plugging Equation (11) into Ω, it is easy to check that the Kähler
two-form is closed by satisfying ∂kĝij̄ = ∂iĝkj̄ and ∂k̄ĝij̄ = ∂j̄ ĝik̄.

Since Kähler manifolds are defined as the Hermitian manifolds with the closed Kähler two-forms, the
information geometry of a signal filter is a Kähler manifold.

An information manifold for a linear system with purely real parameters is a submanifold of a
Kählerian information manifold where the metric tensor has the isometry of exchanging holomorphic-
and anti-holomorphic coordinates. In addition to that, a given linear system can be described by two
manifolds: one is Kähler, and another is non-Kähler. Although the dimension is doubled, working with
Kähler manifolds has many advantages, which will be reiterated later.

In Theorem 1, the Hermitian condition is clearly seen after introducing the new metric tensor ĝ. It is
also possible to find a condition for which the metric tensor g shows the explicit Hermitian structure. To
impose the explicit Hermitian condition, the following theorem is worthwhile to mention.

Theorem 2. In the Kählerian information geometry of a signal filter, the Hermitian structure is explicit
in the metric tensor if and only if φ0 (or f0a0) is a constant in ξ. Similarly, for the transfer function
of which the highest degree in z is finite, the Hermitian condition is directly found if and only if the
coefficient of the highest degree in z of the logarithmic transfer function is a constant in ξ.

Proof. Let us prove the first statement.
(⇒) If the geometry is Kähler, it should be the Hermitian manifold satisfying

gij = ∂iφ0∂jφ0 = 0

for all i and j. This equation exhibits that f0a0 is a constant in ξ, because φ0 = log (f0a0).
(⇐) If φ0 (or f0a0) is a constant in ξ, the metric tensor is found from Equations (10) and (11),

gij = 0

gij̄ =
∞∑
r=0

∂iφr∂j̄φ̄r (14)

and these metric tensor conditions impose that the geometry is the Hermitian manifold. It is noteworthy
that the non-vanishing metric tensor components are expressed only with φr and φ̄r, which are functions
of the impulse response functions fr in f(z; ξ), the unilateral part of the transfer function. For the
manifold to be a Kähler manifold, the Kähler two-form Ω needs to be a closed two-form. The condition
for the closed Kähler two-form Ω is that ∂kgij̄ = ∂igkj̄ and ∂k̄gij̄ = ∂j̄gik̄. It is easy to verify that the
metric tensor components, Equation (14), satisfy the conditions for the closed Kähler two-form. The
Hermitian manifold with the closed Kähler two-form is a Kähler manifold.

The proof for the second statement is straightforward, because it is similar to the proof of the first
one by exchanging φr ↔ ηr. Let us assume that the highest degree in z is R. According to Lemma 3, it
is possible to reduce a bilateral transfer function with finite terms along the non-causal direction to the
unilateral transfer function by using the factorization of zR. After that, we need to replace η0 with φ0 in
the proof. The two theorems are equivalent.
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Theorem 2 can be applied to submanifolds of the information manifolds. For example, a submanifold
of a linear system is a Kähler manifold if and only if φ0 (or f0a0) is constant on the submanifold, i.e., φ0

is a function of the coordinates orthogonal to the submanifold.
On a Kähler manifold, the metric tensor is derived from the following equation:

gij̄ = ∂i∂j̄K (15)

where K is the Kähler potential. There exists the degree of freedom in Kähler potential up to the
holomorphic and anti-holomorphic function: K(ξ, ξ̄) = K′(ζ, ζ̄) + φ(ζ) + ψ(ζ̄). However, geometry is
derived from the same relation: gij̄ = ∂i∂j̄K. By using Equation (15), the information on the geometry
can be extracted from the Kähler potential. It is necessary to find the Kähler potential for the signal
processing geometry. The following corollary shows how to get the Kähler potential for the Kählerian
information manifold.

Corollary 1. For a given Kählerian information geometry, the Kähler potential of the geometry is the
square of the Hardy norm of the logarithmic transfer function. In other words, the Kähler potential is
the square of the complex cepstrum norm of a signal filer.

Proof. Given a transfer function h(z; ξ), the non-trivial components of the metric tensor for a signal
processing model are given by Equation (9). By using integration by parts, the metric tensor component
is represented by

gij̄ =
1

2πi

∮
|z|=1

{
∂i

(
log h(z; ξ)∂j̄ log h̄(ξ̄; ξ̄)

)
− log h(z; ξ)∂i∂j̄ log h̄(ξ̄; ξ̄)

}
dz

z

where the latter term goes to zero by holomorphicity. When we integrate by parts with respect to the
anti-holomorphic derivative once again, the metric tensor is expressed with

gij̄ =
1

2πi

∮
|z|=1

{
∂i∂j̄

(
log h(z; ξ) log h̄(ξ̄; ξ̄)

)
− ∂i

(
∂j̄ log h(z; ξ) log h̄(ξ̄; ξ̄)

)}dz
z

and the latter term is also zero, because h(z; ξ) is a holomorphic function.
Finally, the metric tensor is obtained as

gij̄ = ∂i∂j̄

(
1

2πi

∮
|z|=1

(
log h(z; ξ)

)(
log h(z; ξ)

)∗dz
z

)
and by the definition of the Kähler potential, Equation (15), the Kähler potential of the linear system
geometry is given by

K =
1

2πi

∮
|z|=1

(
log h(z; ξ)

)(
log h(z; ξ)

)∗dz
z

up to a holomorphic function and an anti-holomorphic function. The right-handed side of the above
equation is known as the square of the Hardy norm for the logarithmic transfer function. It is
straightforward to derive the relation between the Kähler potential and the square of the Hardy norm
of the logarithmic transfer function:

K =
1

2πi

∮
|z|=1

(
log h(z; ξ)

)(
log h(z; ξ)

)∗dz
z

= ‖ log h(z; ξ)‖2
H2 . (16)

Additionally, the Hardy norm of the logarithmic transfer function is also known as the complex cepstrum
norm of a linear system [25,27].
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For a given linear system, the Kähler potential of the geometry is given by φr, αr and the complex
conjugates of φr, αr:

K =
∞∑
r=0

(φrφ̄r + αrᾱr).

However, the geometry is not dependent on α and ᾱ, because those are not the functions of the model
parameters ξ under fixing the degree of the freedom. By using Equation (14), the Kähler potential is
expressed with

K =
∞∑
r=0

φrφ̄r

and it is noticeable that the Kähler potential only depends on φr and φ̄r, which come from the unilateral
part of the transfer function decomposition. It is possible to obtain a similar expression for the finite
highest upper-degree case by changing φr to ηr.

Since we assume that the complex cepstrum norm is finite, a transfer function h(z; ξ) in the H2-space
also lives in the Hardy space of

K = ‖ log h(z; ξ)‖2
H2 <∞.

This implies that the transfer function lives not only in H2, but also in exp (H2), equivalently log h in
the H2-space.

From Equation (15), the metric tensor is derived from the Kähler potential. Additionally, the metric
tensor is also calculated from the α-divergence. These facts indicate that there exists a connection
between the Kähler potential and the α-divergence.

Corollary 2. The Kähler potential is a constant term in α, up to purely holomorphic or purely
anti-holomorphic functions, of the α-divergence between a signal processing filter and the all-pass filter
of a unit transfer function.

Proof. After replacing the spectral density function with the transfer function, the 0-divergence between
a signal filter and the all-pass filter with a unit transfer function is given by

D(0)(1||h) =
1

2πi

∮
|z|=1

1

2
(log h+ log h̄)2dz

z

= K +
1

2πi

∮
|z|=1

1

2

(
(log h)2 + (log h̄)2

)dz
z

= K + F (ξ) + F̄ (ξ̄)

where F (ξ) = 1
2
φ2

0 = 1
2
(log (f0a0))2. For a bilateral transfer function, F (ξ) = 1

2
(φ0 +

∑
log |zs|)2 +∑

r=1 φr(αr + βr).
For non-zero α, the α-divergence between a signal and the white noise is also obtained as

D(α)(1||h) =
1

2πiα2

∮
|z|=1

{
hα − 1− α(log h+ log h̄)

}dz
z

=
1

2πi

∮
|z|=1

(1

2
(log h+ log h̄)2 +

∞∑
n=1

1

(n+ 2)!
αn(log h+ log h̄)n+2

)dz
z

= D(0)(1||h) +O(α)

= K + F (ξ) + F̄ (ξ̄) +O(α).
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When f0a0 is unity, a constant term in α of the α-divergence is the Kähler potential. This shows the
relation between the α-divergence and the Kähler potential.

The α-connection on a Kähler manifold is expressed with the transfer function by using Equation (1)
and Equation (3). It is also cross-checked from the α-divergence in the transfer function representation.

Corollary 3. The α-connection components of the Kählerian information geometry are found as

Γ
(α)

ij,k̄
=

1

2πi

∮
|z|=1

(
∂i∂j log h(z; ξ)− α∂i log h(z; ξ)∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)∗dz
z

Γ
(α)
ij,k =

1

2πi

∮
|z|=1

(
∂i∂j log h(z; ξ)− α∂i log h(z; ξ)∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)dz
z

Γ
(α)

ij̄,k
=

1

2πi

∮
|z|=1

−α
(
∂i log h(z; ξ)

)(
∂j log h(z; ξ)

)∗(
∂k log h(z; ξ)

)dz
z

Γ
(α)

ij̄,k̄
=

1

2πi

∮
|z|=1

−α
(
∂i log h(z; ξ)

)(
∂j̄ log h(z; ξ)

)∗(
∂k log h(z; ξ)

)∗dz
z

and the non-trivial components of the symmetric tensor T are given by

Tij,k̄ =
1

πi

∮
|z|=1

(
∂i log h(z; ξ))(∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)∗dz
z

(17)

Tij,k =
1

πi

∮
|z|=1

(
∂i log h(z; ξ))(∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)dz
z
.

In particular, the non-vanishing 0-connection components are expressed with

Γ
(0)

ij,k̄
= (Γ

(0)

īj̄,k
)∗ =

1

2πi

∮
|z|=1

(
∂i∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)∗dz
z

and the 0-connection is directly derived from the Kähler potential:

Γ
(0)

ij,k̄
= ∂i∂j∂k̄K. (18)

Additionally, the α-connection and the (−α)-connection are dual to each other.

Proof. After plugging Equation (1) into Equation (3), the derivation of the α-connection is
straightforward by considering holomorphic and anti-holomorphic derivatives in the expression. The
same procedure is applied to the derivation of the symmetric tensor T .

The 0-connection is also directly derived from the Kähler potential. The proof is as follows:

Γ
(0)

ij,k̄
=

1

2πi

∮
|z|=1

(
∂i∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)∗dz
z

= ∂i∂j∂k̄

( 1

2πi

∮
|z|=1

(
log h(z; ξ)

)(
log h(z; ξ)

)∗dz
z

)
= ∂i∂j∂k̄

(
|| log h(z; ξ)||2H2

)
= ∂i∂j∂k̄K.

To prove the α-duality, we need to test the following relation:

∂µgνρ = Γ(α)
µν,ρ + Γ(−α)

µρ,ν
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where the Greek letters run from 1, · · · , n, 1̄, · · · , n̄. After tedious calculation, it is obvious that the
above equation is satisfied regardless of combinations of the indices. Therefore, the α-duality also exists
on the Kählerian information manifolds.

The 0-connection and the symmetric tensor T are expressed in terms of φr and φ̄r,

Γ
(0)

ij,k̄
=
∞∑
r=0

∂i∂jφr∂k̄φ̄r

Γ
(0)
ij,k = ∂i∂jφ0∂kφ0

Tij,k̄ = 2
∞∑

r,s=0

∂iφr∂jφs∂k̄φ̄r+s

Tij,k = 2∂iφ0∂jφ0∂kφ0.

With the degree of freedom that φ0 is a constant in the model parameters ξ, the non-trivial components of
the 0-connection and the symmetric tensor T are Γ

(0)

ij,k̄
and Tij,k̄, respectively. In this degree of freedom,

the Hermitian condition on the metric tensor is obviously emergent, and it is also beneficial to check the
α-duality condition for non-vanishing components:

∂kgij̄ = Γ
(α)

ki,j̄
+ Γ

(−α)

kj̄,i

∂k̄gij̄ = Γ
(α)

k̄i,j̄
+ Γ

(−α)

k̄j̄,i
.

We can cross-check these formulae for the geometric objects of the linear system geometry with the
well-known results on a Kähler manifold. First of all, the fact that the 0-connection is the Levi–Civita
connection can be verified as follows:

Γ(0)k
ij = gkm̄Γ

(0)
ij,m̄ = gkm̄∂i∂j∂m̄K = gkm̄∂igjm̄ = ∂i(log gmn̄)kj = Γkij

where the last equality comes from the expression for the Levi–Civita connection on a Kähler manifold.
This is well-matched to the Levi–Civita connection on a Kähler manifold.

In Riemannian geometry, the Riemann curvature tensor, corresponding to the 0-curvature tensor, is
given by

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ

where the Greek letters can be any holomorphic and anti-holomorphic indices. Similar to a Hermitian
manifold, the non-vanishing components of the 0-curvature tensor on a Kähler manifold are Rρ

σµ̄j and its
complex conjugate, i.e., the components with three holomorphic indices and one anti-holomorphic index
(and the complex conjugate component). The non-trivial components of the Riemann curvature tensor
are represented by

R(0)l
kīj = ∂īΓ

l
jk − ∂jΓlīk + ΓlīmΓmjk − ΓljmΓmīk

= ∂īΓ
l
jk = ∂ī(g

lm̄∂j∂l∂m̄K) =
(
R(0) l̄

k̄ij̄

)∗
because the 0-connection components with the mixed indices are vanishing.



Entropy 2015, 17 1597

Taking index contraction on holomorphic upper and lower indices in the Riemann curvature tensor,
the 0-Ricci tensor is found as

R
(0)

ij̄
= R(0)k

kij̄ = −R(0)k
kj̄i

= −∂j̄∂i(log gmn̄)kk = −∂j̄∂itr(log gmn̄)

= −∂j̄∂i log G (19)

where G is the determinant of the metric tensor. This result is consistent with the expression of the Ricci
tensor on a Kähler manifold. It is also straightforward to obtain the 0-scalar curvature by contracting the
indices in the 0-Ricci tensor:

R(0) = gij̄R
(0)

ij̄
= −1

2
∆ log G

where ∆ is the Laplace–Beltrami operator on the Kähler manifold.
The α-generalization of the curvature tensor, the Ricci tensor and the scalar curvature is based on the

α-connection, Equation (4). The α-curvature tensor is given by

R(α)l
kīj = ∂īΓ

(α)l
jk = ∂ī

(
Γ(0)l

jk −
α

2
glm̄Tjk,m̄

)
= R(0)l

kīj −
α

2
∂ī

(
glm̄Tjk,m̄

)
.

The α-Ricci tensor and the α-scalar curvature are obtained as

R
(α)

ij̄
= R(α)k

kij̄ = −R(α)k
kj̄i

= −∂j̄
(

Γ(0)k
ik −

α

2
gkl̄Tik,l̄

)
= R

(0)

ij̄
+
α

2
∂j̄T

k
ik

R(α) = R(0) +
α

2
gij̄∂j̄T

ρ
iρ.

It is noteworthy that the α-curvature tensor, the α-Ricci tensor and the α-scalar curvature on a Kähler
manifold have the linear corrections in α comparing with the quadratic corrections in α on non-Kähler
manifolds. A submanifold of a Kähler manifold is also a Kähler manifold. When a submanifold of
dimension m exists, the transfer function of a linear system can be decomposed into two parts:

h(z; ξ) = h‖(z; ξ1, · · · , ξm)h⊥(z; ξm+1, · · · , ξn)

where h‖ is the transfer function on the submanifold and h⊥ is the transfer function orthogonal to the
submanifold. When it is plugged into Equation (16), the Kähler potential of the geometry is decomposed
into three terms as follows:

K =
1

2πi

∮
|z|=1

(log h‖ + log h⊥)(log h‖ + log h⊥)∗
dz

z

=
1

2πi

∮
|z|=1

log h‖ log h̄‖
dz

z
+

1

2πi

∮
|z|=1

log h⊥ log h̄⊥
dz

z
+

1

2πi

∮
|z|=1

log h‖ log h̄⊥
dz

z
+ (c.c.)

= K‖ +K⊥ +K×
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whereK‖ contains the coordinates from the submanifold,K× is for the cross-terms andK⊥ is orthogonal
to the submanifold.

It is obvious that each part in the decomposition of the Kähler potential provides the metric tensors
for submanifolds,

gMN̄ = ∂M∂N̄K‖
gMn̄ = ∂M∂n̄K×
gmn̄ = ∂m∂n̄K⊥

where an uppercase index is for the coordinates on the submanifold and a lowercase index is for the
coordinates orthogonal to the submanifold. As we already know, the induced metric tensor for the
submanifold is derived from K‖, the Kähler potential of the submanifold. Based on this decomposition,
it is also possible to use K as the Kähler potential of the submanifold, because it endows the same
metric with K‖. However, the Riemann curvature tensor and the Ricci tensors include the mixing terms
from embedding in the ambient manifold, because the inverse metric tensor contains the orthogonal
coordinates by the Schur complement. In statistical inference, connections, tensors and scalar curvature
play important roles. If those corrections are negligible, dimensional reduction to the submanifolds is
meaningful from the viewpoints not only of Kähler geometry, but also of statistical inference.

The benefits of introducing a Kähler manifold as an information manifold are as follows. First of all,
on a Käher manifold, the calculation of geometric objects, such as the metric tensor, the α-connection
and the Ricci tensor, is simplified by using the Kähler potential. For example, the 0-connection on a
non-Kähler manifold is given by

Γ
(0)
ij,k =

1

2
(∂igkj + ∂jgik − ∂kgij)

demanding three-times more calculation steps than the Kähler case, Equation (18). Additionally,
the Ricci tensor on a Kähler manifold is directly derived from the determinant of the metric tensor.
Meanwhile, the Ricci tensor on a non-Kähler manifold needs more procedures. In the beginning, the
connection should be calculated from the metric tensor. Additionally, then, the Riemann curvature is
obtained after taking the derivatives on the connection and considering quadratic terms of the connection.
Finally, the Ricci tensor on the non-Kähler manifold is found by the index contraction on the curvature
tensor indices.

Secondly, α-corrections on the Riemann curvature tensor, the Ricci tensor and the scalar curvature on
the Kähler manifold are linear in α. Meanwhile, there exist the quadratic α-corrections in non-Kähler
cases. The α-linearity makes it much easier to understand the properties of α-family.

Moreover, submanifolds in Kähler geometry are also Kähler manifolds. When a statistical model is
reducible to its lower-dimensional models, the information geometry of the reduced statistical model is a
submanifold of the geometry. If the ambient manifold is Kähler, the dimensional reduction also provides
a Kähler manifold as the information geometry of the reduced model, and the submanifold is equipped
with all of the properties of the Kähler manifold.

Lastly, finding the superharmonic priors suggested by Komaki [15] is more straightforward in the
Kähler setup, because the Laplace–Beltrami operator on a Kähler manifold is of the more simplified form
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compared to that in non-Kähler cases. For a differentiable function ψ, the Laplace–Beltrami operator on
a Kähler manifold is given by

∆ψ = 2gij̄∂i∂j̄ψ (20)

comparing with the Laplace–Beltrami operator on a non-Kähler manifold:

∆ψ =
1√
G
∂i
(√
Ggij∂jψ

)
(21)

where G is the determinant of the metric tensor. On a Kähler manifold, the partial derivatives only act on
the superharmonic prior functions. Meanwhile, the contributions from the derivatives acting on G and
gij should be considered in the non-Kähler cases. This computational redundancy is not on the Kähler
manifold.

4. Example: AR, MA and ARMA Models

In the previous section, we show that the information geometry of a signal filter is a Kähler manifold.
From the viewpoint of signal processing, time series models can be interpreted as a signal filter that
transforms a randomized input x(z) to an output y(z). The geometry of a time series model can also
be found by using the results in the previous section. In particular, we cover the AR, the MA and the
ARMA models as examples.

First of all, the transfer functions of these time series models need to be identified. The transfer
functions of the AR, the MA and the ARMA models with model parameters ξ = (σ, ξ1, · · · , ξn) are
represented by

h(z; ξ) =
σ2

2π

n∏
i=1

(1− ξiz−1)ci

where ci = −1 if ξi is an AR pole and ci = 1 if ξi is an MA root.
The ARMA models can be considered as the fraction of two AR models or two MA models. By

Lemma 1, the correspondence between the α-duality and the reciprocality of transfer functions is also
valid for the ARMA(p, q) models. For example, the ARMA(p, q) model with α-connection is α-dual
to the ARMA(q, p) model with the (−α)-connection under the reciprocality of the transfer function.
Simply speaking, the AR model and the MA model are exchangeable by Lemma 1. The correspondence
is given as follows:

ARMA(p, q)↔ ARMA(q, p)

poles↔ zeros

zeros↔ poles

σ/
√

2π ↔
√

2π/σ

α↔ −α
Γ(α) ↔ Γ(−α)

D(α)(h(0)||h)↔ D(−α)(h(0)||h)

where h(0) is the unit transfer function of an all-pass filter.
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4.1. Kählerian Information Geometry of ARMA(p, q) Models

The ARMA(p, q) model is the (p+q+1)-dimensional model with ξ = (σ, ξ1, · · · , ξp+q), and the time
series model is characterized by its transfer function:

h(z; ξ) =
σ2

2π

(1− ξp+1z−1)(1− ξp+2z−1) · · · (1− ξp+qz−1)

(1− ξ1z−1)(1− ξ2z−1) · · · (1− ξpz−1)

where σ is the gain and ξi is a pole with the condition of |ξi| < 1. The logarithmic transfer function of
the ARMA(p, q) model is given by

log h(z; ξ) = log
σ2

2π
+

p+q∑
i=1

ci log (1− ξiz−1)

and it is easy to verify that f0a0 = σ2/2π.
According to Theorem 1, the information geometry of the ARMA model is a Kähler manifold because

of stability, minimum phase and the finite complex cepstrum norm of the ARMA filter. By using
Theorem 2, the Hermitian condition on the metric tensor is explicitly checked on the submanifold
of the ARMA model, where σ is a constant. In addition to that, this submanifold is also a Kähler
manifold, because a submanifold of a Kähler manifold is also Kähler. Since it is possible to gauge σ by
normalizing the amplitude of an input signal, the σ-coordinate can be considered as the denormalization
coordinate [21]. Similar to the non-complexified ARMA models [12], g0i for all non-zero i vanish by
direct calculation using Equation (2). Considering these facts, we work only with the submanifolds of a
constant gain.

As mentioned, the Käher potential is crucial for the Kähler manifolds and defined as the square of the
Hardy norm of the logarithmic transfer function, equivalently the square of the complex cepstrum norm,
Equation (16). For the ARMA(p, q) model, the Kähler potential is given by

K =
∞∑
r=1

1

r2

∣∣∣ p+q∑
i=1

ci(ξ
i)r
∣∣∣2

Since the metric tensor is simply derived from taking the partial derivatives on the Kähler potential,
Equation (15), the metric tensor of the ARMA(p, q) model is represented as

gij̄ =
cicj

1− ξiξ̄j
.

where other fully holomorphic- and fully anti-holomorphic-indexed components are all zero. It is easily
verified that if ci and cj are both from the AR or the MA models, ci and cj exhibit the same signature,
which imposes that the AR(p)- and the MA(q)-submanifolds of the ARMA(p, q) model have the same
metric tensors with the AR(p) and the MA(q) models, respectively. If two indices are from the different
models, there exists only the sign difference in the metric tensor. The metric tensor of the geometry is of
a similar form as the metric tensor in Ravishanker’s work on the ARMA geometry [12].

By considering the Schur complement, the inverse metric tensor can be deduced from the inverse
metric tensor of the AR(p+q) model. The inverse metric tensor of the geometry is represented by

gij̄ = cicj
(1− ξiξ̄j)

∏
k 6=i(1− ξkξ̄j)

∏
k 6=j(1− ξiξ̄k)∏

k 6=i(ξ
k − ξi)

∏
k 6=j(ξ̄

k − ξ̄j)
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and the only difference with the AR case is the signature cicj in the AR-MA mixed components. With
the sign difference in the metric tensor components with the AR-MA mixed indices, the determinant of
the metric tensor can be calculated with the aid of the Schur complement. The determinant of the metric
tensor is found as

G = det gij̄ =

∏
1≤j<k≤n |ξk − ξj|2∏

j,k(1− ξj ξ̄k)
.

The 0-connection and the symmetric tensor T for the Kähler-ARMA model can be found from
the results in the previous section. The non-trivial 0-connection components are calculated from
Equation (18):

Γ
(0)

ij,k̄
=

cjckδij ξ̄
k

(1− ξj ξ̄k)2

and the non-zero components of the symmetric tensor T are given by Equation (17):

Tij,k̄ =
2cicjckξ̄

k

(1− ξiξ̄k)(1− ξj ξ̄k)
.

Based on the above expressions, the α-connection is easily obtained from Equation (4).
The 0-Ricci tensor of the ARMA geometry is represented by Equation (19):

R
(0)

ij̄
= − 1

(1− ξiξ̄j)2

and it is noteworthy that the Ricci tensor is not dependent on ci. The 0-scalar curvature is calculated
from the 0-Ricci tensor by index contraction:

R(0) = −
∑
i,j

cicj
∏

k 6=i(1− ξkξ̄j)
∏

k 6=j(1− ξiξ̄k)
(1− ξiξ̄j)

∏
k 6=i(ξ

k − ξi)
∏

k 6=j(ξ̄
k − ξ̄j)

where ci, cj are from the inverse metric tensor of the ARMA model.
It is straightforward to derive the α-generalization of the Riemann curvature tensor, the Ricci tensor

and the scalar curvature by using the results in Section 3.

4.2. Superharmonic Priors for Kähler-ARMA(p, q) Models

As mentioned before, the Laplace–Beltrami operator on a Kähler manifold is of a much simpler form
than that on a non-Kähler manifold. The simplified Laplace–Beltrami operator of the geometry makes
finding superharmonic priors easier. Although it is also valid in any arbitrary dimension, let us confine
ourselves to the ARMA(1,1) model as a simplification. For the ARMA(1, 1) model, the metric tensor is
expressed with

gij̄ =
( 1

1−|ξ1|2 − 1
1−ξ1ξ̄2

− 1
1−ξ2ξ̄1

1
1−|ξ2|2

)
.

It is trivial to show that ψ1 = (1− |ξ1|2) + (1− |ξ2|2) and ψ2 = (1− |ξ1|2)(1− |ξ2|2) are superharmonic
prior functions.
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In order to compare with the literature on superharmonic priors for the non-Kählerian AR
models [30,31], let us consider the Kähler-AR(p) models. For p = 2, the metric tensor is given by

gij̄ =
( 1

1−|ξ1|2
1

1−ξ1ξ̄2
1

1−ξ2ξ̄1
1

1−|ξ2|2

)
.

With the Laplace–Beltrami operator on a Kähler manifold, it is obvious that (1 − |ξk|2) for
k = 1, · · · , p is a superharmonic function in arbitrary p-dimensional AR geometry. The proof for
superharmonicity is as follows:

∆(1− |ξk|2) = 2gij̄∂i∂j̄(1− |ξk|2)

= −2gij̄δi,kδj,k = −2gkk̄ < 0

because the diagonal components of the inverse metric tensor are all positive. By additivity, the sum of
these prior functions,

∑n
k=1(1−|ξk|2), are also superharmonic. Obviously, ψ1 = (1−|ξ1|2)+(1−|ξ2|2)

is a superharmonic prior function in the two-dimensional case.
Another superharmonic prior function for the AR(2) model is ψ2 = (1 − |ξ1|2)(1 − |ξ2|2). The

Laplace–Beltrami operator acting on ψ2 is represented by(∆ψ2

ψ2

)
= −2(2− ξ1ξ̄2 − ξ2ξ̄1)

|ξ1 − ξ2|2

and it is simply verified that
(

∆ψ2

ψ2

)
< 0, because 2 − ξ1ξ̄2 − ξ2ξ̄1 > 0. In addition to that, since ψ2 is

positive, ψ2 = (1− |ξ1|2)(1− |ξ2|2) is a superharmonic prior function.
Additionally, it is found that ψ3 = (1− ξ1ξ̄2)(1− ξ2ξ̄1)(1− |ξ1|2)(1− |ξ2|2) is also a superharmonic

prior function. The Laplace–Beltrami operator acting on this prior function gives

(
∆ψ3

ψ3

) = − 6

G
|ξ1 − ξ2|2

(1− ξ1ξ̄2)(1− ξ2ξ̄1)(1− |ξ1|2)(1− |ξ2|2)
= −6

and it is straightforward that ψ3 is superharmonic, because ψ3 is positive. This prior function is similar to
the prior function found in the literature [30,31]. If the prior function is represented in the complexified
coordinates, the prior function is (1 − |ξ1|2), because the two coordinates in his paper are complex
conjugate to each other.

To obtain superharmonic priors, the superharmonic prior functions found above are multiplied by the
Jeffreys prior, which is the volume form of the information manifold. After that, the superharmonic
priors outperform the Jeffreys prior [15].

5. Conclusion

In this paper, we prove that the information geometry of a signal filter with a finite complex cepstrum
norm is a Kähler manifold. The conditions on the transfer function of the filter make the Hermitian
structure explicit. The first condition on the transfer function for the Kählerian information manifold is
whether or not multiplication between the zero-th degree terms in z of the unilateral part and the analytic
part in the transfer function decomposition is a constant. The second condition is whether or not the
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coefficient of the highest degree in z is a constant in the model parameters. These two conditions are
equivalent to each other for some transfer functions.

It is also found that the square of the Hardy norm of a logarithmic transfer function is the Kähler
potential of the information geometry. It is also known as the unweighted complex cepstrum norm of a
linear system. Using the Kähler potential, it is easy to derive the geometric objects, such as the metric
tensor, the α-connection and the Ricci tensor. Additionally, the Kähler potential is a constant term in α
of the α-divergence, i.e., it is related to the 0-divergence.

The Kählerian information geometry for signal processing is not only mathematically interesting, but
also computationally practical. Contrary to non-Kähler manifolds where tedious and lengthy calculation
is needed in order to obtain the tensors, it is relatively easier to calculate the metric tensor, the connection
and the Ricci tensor on a Kähler manifold. Taking derivatives on the Kähler potential provides the metric
tensor and the connection on a Kähler manifold. The Ricci tensor is obtained from the determinant of
the metric tensor. Moreover, α-generalization on the curvature tensor, the Ricci tensor and the scalar
curvature is linear in α. Meanwhile, there exist the non-linear corrections in the non-Kähler cases.
Additionally, since the Laplace–Beltrami operator in Kähler geometry is of the simpler form, it is more
straightforward to find superharmonic priors.

The information geometries of the AR, the MA and the ARMA models, the most well-known time
series models, are the Kähler manifolds. The metric tensors, the connections and the divergences of
the linear system geometries are derived from the the Kähler potentials with simplified calculation. In
addition to that, the superharmonic priors for those models are found with much less computational
efforts.
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