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Abstract: An n symbol source which has a Huffman code with codelength vector
Ln = (1, 2, 3, · · · , n − 2, n − 1, n − 1) is called an anti-uniform source. In this paper, it
is shown that for this class of sources, the optimal fix-free code and symmetric fix-free code

is C∗n = (0, 11, 101, 1001, · · · , 1
n−2︷ ︸︸ ︷

0 · · · 0 1).
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1. Introduction

One of the basic problems in the context of source coding is to assign a code Cn = (c1, c2, · · · , cn)
with codelength vector Ln = (`1, `2, · · · , `n) to a memoryless source with probability vector
Pn = (p1, p2, · · · , pn). Decoding requirements often constrain us to choose a code Cn from a specific
class of codes, such as prefix-free codes, fix-free codes or symmetric fix-free codes. With a prefix-free
code, no codeword is the prefix of another codeword. This property ensures that decoding in the
forward direction can be done without any delay (instantaneously). Alternatively, with a fix-free code
no codeword is the prefix or suffix of any other codeword [1,2]. Therefore, decoding of a fix-free code
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in both the forward and backward directions can be done without any delay. The ability to decode
a fix-free code in both directions makes them more robust to transmission errors and faster decoding
can be achieved compared to prefix-free codes. As a result, fix-free codes are used in video standards
such as H.263+ and MPEG-4 [3]. A symmetric fix-free code is a fix-free code whose codewords are
symmetric. In general, decoder implementation for a fix-free code requires more memory compared
to that for a prefix-free code. Although the decoder for a symmetric fix-free code is the same as for a
fix-free code [4], symmetric codes have greater redundancy in general.

Let S(Ln) =
∑n

i=1 2
−`i denote the Kraft sum of the codelength vector Ln. A well-known necessary

and sufficient condition for the existence of a prefix-free code with codelength vector Ln is the Kraft
inequality, i.e., S(Ln) ≤ 1 [5]. However, this inequality is only a necessary condition on the existence of
a fix-free code. Some sufficient conditions on the existence of a fix-free code were introduced in [6–11].

The optimal code for a specific class of codes is defined as the code with the minimum average
codelength, i.e.,

∑n
i=1 pi`i among all codes in that class. The optimal prefix-free code can easily be

obtained using the Huffman algorithm [12]. Recently, two methods for finding the optimal fix-free code
have been developed. One is based on the A∗ algorithm [13], while the other is based on the concept of
dominant sequences [14]. Compared to the Huffman algorithm, these methods are very complex.

A source with n symbols having Huffman code with codelength vector Ln = (1, 2, 3, · · · , n− 2, n−
1, n − 1) is called an anti-uniform source [15,16]. Such sources have been shown to correspond to
particular probability distributions. For example, it was shown in [17] and [18], respectively, that the
normalized tail of the Poisson distribution and the geometric distribution with success probability greater
than some critical value are anti-uniform sources. It was demonstrated in [15,16] that a source with
probability vector Pn = (p1, p2, · · · , pn) where p1 ≥ p2 ≥ · · · ≥ pn, is anti-uniform if and only if

n∑
j=i+2

pj ≤ pi for 1 ≤ i ≤ n− 3. (1)

As mentioned above, finding an optimal fix-free or symmetric fix-free code is complex. Thus, in
this paper optimal fix-free and symmetric fix-free codes are determined for anti-uniform sources. In
particular, it is proven that

C∗n = (0, 11, 101, 1001, · · · , 1
n−2︷ ︸︸ ︷

0 · · · 0 1),

is an optimal fix-free code for this class of sources. Since C∗n is symmetric, this code is also an
optimal symmetric fix-free code. Although for an anti-uniform source, the difference between the
average codelength of the optimal prefix-free code and C∗n is small (it is exactly equal to pn), it is
not straightforward to prove that C∗n is the optimal fix-free code. In [19], the optimality of C∗n among
symmetric fix-free codes for a family of exponential probability distributions, which is an anti-uniform
source, was discussed.

In [20], another class of fix-free codes called weakly symmetric fix-free codes was examined. A
fix-free code is weakly-symmetric if the reverse of each codeword is also a codeword. In fact, every
symmetric fix-free code is a weakly symmetric fix-free code, and every weakly symmetric fix-free code
is a fix-free code. Thus, since the optimal code among fix-free codes and symmetric fix-free codes for
anti-uniform sources is C∗n, this code is also optimal for weakly symmetric fix-free codes.
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The remainder of this paper is organized as follows. In Section 2, a sketch of the proofs of the main
theorems, i.e., Theorems 1 and 3, is provided, followed by the main results of the paper. Then detailed
proofs of these results are given in Section 3.

2. A Sketch of the Proofs

Since a fix-free code is also a prefix-free code, the Kraft sum of an optimal fix-free code is not greater
than 1. Therefore, the Kraft sum of this code is either equal to 1 or smaller than 1.

Proposition 1. If (
`∗1, · · · , `∗n−1, `∗n

)
= arg min

Ln:S(Ln)≤1

n∑
i=1

pi`i,

then we have (
`∗1, · · · , `∗n−1, `∗n + 1

)
= arg min

Ln:S(Ln)<1

n∑
i=1

pi`i .

It can be inferred from Proposition 1 that if the Kraft sum of an optimal fix-free code is smaller than 1,
then the average codelength of this code is not better than the codelength vector

(
`∗1, · · · , `∗n−1, `∗n + 1

)
.

The optimal prefix-free code for an anti-uniform source has codelength vector (1, 2, · · · , n− 1, n− 1).
Therefore, the optimal codelength vector with Kraft sum smaller than 1 for an anti-uniform source is the
codelength vector (1, 2, · · · , n−1, n). Further, the codelength vector of C∗n is (1, 2, · · · , n−1, n). Thus,
if the Kraft sum of the optimal fix-free code for an anti-uniform source is smaller than 1, then the code
C∗n is optimal.

Proposition 2. There is no symmetric fix-free code with Kraft sum 1 for n > 2.

According to Proposition 2, the Kraft sum for an optimal symmetric fix-free code is smaller than 1.
Thus, Propositions 1 and 2 prove the following theorem.

Theorem 1. The optimal symmetric fix-free code for an anti-uniform source Pn is the code C∗n.

There exist fix-free codes with Kraft sum 1, for example (00, 01, 10, 11) and
(01, 000, 100, 110, 111, 0010, 0011, 1010, 1011) [21]. Therefore, proving that the code C∗n is the
optimal fix-free code for anti-uniform sources requires that the average codelength for this code be
better than every possible codelength for a fix-free code. To achieve this, we use the following theorem
which was proven in [21].

Theorem 2. [21] Let Ln = (`1, · · · , `n), Mi(Ln) = |{j|`j = i}| for 1 ≤ i ≤ max1≤j≤n `j and
Hi = 2i − 1

i

∑i
j=1 2

(i,j) where (i, j) denotes the greatest common divisor of i and j. If S(Ln) = 1,
Mi(Ln) > Hi for some i and |{`1, · · · , `n}| > 1, then no fix-free code exists with codelength vector Ln.

According to the definition of Hi, we have that H1 = 0 and H2 = 1. Therefore from Theorem 2, for
Ln with Kraft sum 1 and

M1(Ln) > 0 and Ln 6= (1, 1),
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or
M2(Ln) > 1 and Ln 6= (2, 2, 2, 2),

there is no fix-free code.

Definition 1. For a given n, let

Ln = {Ln|S(Ln) = 1,M1(Ln) = 0 and M2(Ln) ≤ 1}.

From Theorem 2, if the Kraft sum of the optimal fix-free code is equal to 1, then the average
codelength for this code is not smaller than that of the optimal codelength vector among those in Ln

for n > 4. It can easily be verified that |Ln| = 0 for n < 7. For anti-uniform sources, the following
proposition characterizes the optimal codelength vector in Ln for n ≥ 7.

Proposition 3. Let Pn = (p1, · · · , pn−1, pn) be the probability vector of an anti-uniform source with
p1 ≥ · · · ≥ pn−1 ≥ pn. Then we have

arg min
Ln∈Ln

n∑
i=1

pi`i =


(2, 3, 3, 3, 3, 3, 3), if n = 7

(2, 3, 3, 3, 3, 3, 4, 5, 6, · · · , n− 6, n− 5, n− 4, n− 4) , if n > 7

The last step requires that the average codelength of C∗n is better than that of the given codelength
vector in Proposition 3. This is given in the proof of the following theorem.

Theorem 3. The optimal fix-free code for an anti-uniform source Pn is C∗n for n > 4.

Note that Theorem 3 is not true for n = 4. For example, for P4 = (1
3
, 1
3
, 1
6
, 1
6
) which is the probability

vector of an anti-uniform source, the average codelength of the fix-free code (00, 01, 10, 11) is better
than that of C∗4 .

3. Proofs of the Results in Section 2

Proof of Proposition 1: Let Ln = (`1, · · · , `n−1, `n) with `1 ≤ · · · ≤ `n−1 ≤ `n and 1 > S(Ln).
Thus, we have 2`n > 2`nS(Ln) =

∑n
i=1 2

`n−`i , and consequently

2`n ≥ 1 +
n∑

i=1

2`n−`i .

Therefore, we can write

1 ≥
n∑

i=1

2−`i+2−`n

=
n−1∑
i=1

2−`i+2−(`n−1). (2)

Let L′n =
(
`′1, · · · , `′n−1, `′n

)
such that `′i = `i for 1 ≤ i ≤ n− 1 and `′n = `n− 1. From (2), we have that

S(L′n) ≤ 1. According to the definition of
(
`∗1, · · · , `∗n−1, `∗n

)
, we can write

n∑
i=1

pi`
∗
i ≤

n∑
i=1

pi`
′
i,
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and consequently

n−1∑
i=1

pi`
∗
i + (`∗n + 1) pn =

n∑
i=1

pi`
∗
i + pn

≤
n∑

i=1

pi`
′
i + pn

=
n∑

i=1

pi`i.

This shows that the average codelength of
(
`∗1, · · · , `∗n−1, `∗n + 1

)
is better than any other codelength

vector, say Ln, with Kraft sum smaller than 1.
Proof of Proposition 2: Suppose that the Kraft sum of Ln, which is the codelength vector of the code
Cn, is equal to 1. Let codeword c = x1x2 · · ·x`−10 (resp. c = x1x2 · · ·x`−11) with length ` (` > 1), be
the longest codeword of Cn. Since the Kraft sum of Ln is equal to 1, the codeword c′ = x1x2 · · ·x`−11

(resp. c′ = x1x2 · · ·x`−10) belongs to Cn. However, both c and c′ cannot be symmetric because x1 = 0

and x1 = 1 cannot both be true. Thus, Cn is not a symmetric fix-free code.
The following lemma will be used in the proof of Proposition 3.

Lemma 1. For n ≥ 7, let Pn = (p1, · · · , pn−1, pn) with p1 ≥ · · · ≥ pn−1 ≥ pn and

P ′n−1 = (p′1, · · · , p′n−2, p′n−1) = (p1, · · · , pn−2, pn−1 + pn) . (3)

Further, suppose that

L∗n =
(
`∗1, · · · , `∗n−1, `∗n

)
= arg min

Ln∈Ln

n∑
i=1

pi`i,

and for n > 7

L′n−1 =
(
`′1, · · · , `′n−2, `′n−1

)
= arg min

Ln−1∈Ln−1

n−1∑
i=1

p′i`i. (4)

Then we have

(
`∗1, · · · , `∗n−2, `∗n−1, `∗n

)
=


(2, 3, 3, 3, 3, 3, 3), if n = 7

(
`′1, · · · , `′n−2, `′n−1 + 1, `′n−1 + 1

)
, if n > 7

(5)

Proof. It can easily be verified that L7 consists of all permutations of 2, 3, 3, 3, 3, 3, 3. Thus, p1 ≥ · · · ≥
p6 ≥ p7 completes the proof for n = 7. To prove the lemma for n > 7, we consider two cases: (1)
`∗n = 3, and (2) `∗n > 3. First, note that `∗n = max1≤i≤n `i, because p1 ≥ · · · ≥ pn−1 ≥ pn.

(1) `∗n = 3: It can easily be shown that (3, 3, 3, 3, 3, 3, 3, 3) is the only codelength vector in ∪n>7Ln with
maximum codelength which is a not greater than 3. Therefore, to prove the lemma in this case it is
enough to show that (`′1, · · · , `′7) = (3, 3, 3, 3, 3, 3, 2). According to the first argument in this proof,
the codelength vector (`′1, · · · , `′7) is a permutation of 2, 3, 3, 3, 3, 3, 3. Thus, proving that p7 + p8

is maximum over all probabilities in P ′7, i.e., p7 + p8 ≥ p1, completes the proof for this case. If
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p7 + p8 < p1, then the average codelength of (`′′1, · · · , `′′8) = (2, 3, 3, 3, 3, 3, 4, 4), is better than that
of (`∗1, · · · , `∗8) = (3, 3, 3, 3, 3, 3, 3, 3), because

8∑
i=1

pi`
∗
i = 3p1 + 3(1− p1)

(a)
> 2p1 + 3(1− p1) + p7 + p8

=
8∑

i=1

pi`
′′
i ,

where (a) follows from p7 + p8 < p1. Thus, the codelength vector (3, 3, 3, 3, 3, 3, 3) is not optimal,
which is a contradiction. Therefore, p7 + p8 ≥ p1 and the proof for this case is complete.

(2) `∗n > 3: The proof for this case is similar to the proof of the Huffman algorithm. Let Ln =

(`1, · · · , `n) ∈ Ln, i.e., S(Ln) = 1, M1(Ln) = 0 and M2(Ln) ≤ 1, with `1 ≤ · · · ≤ `n and
3 < `n, and let L′′n−1 = (`′′1, · · · , `′′n−1) = (`1, · · · , `n−2, `n−1 − 1). It can easily be shown that
S(Ln) = 1 implies that `n = `n−1. Since `n = `n−1, we have S(L′′n−1) = S(Ln), and consequently
S(L′′n−1) = 1. Further, since `n = max1≤i≤n `i and `n > 3, M1(Ln) = 0 and M2(Ln) ≤ 1 imply
that M1(L

′′
n−1) = 0 and M2(L

′′
n−1) ≤ 1, which gives L′′n−1 ∈ Ln−1, and we can write

n∑
i=1

pi`
∗
i = min

Ln∈Ln

n∑
i=1

pi`i

(a)
=

[
min
Ln∈Ln

n−2∑
i=1

pi`i + (pn−1 + pn)(`n−1 − 1)
]
+ pn−1 + pn

(b)
=

[
min

L′′n−1∈Ln−1

n−1∑
i=1

p′i`
′′
i

]
+ pn−1 + pn

(c)
=

n−1∑
i=1

p′i`
′
i + pn−1 + pn,

where (a) follows from `∗n = `∗n−1, (b) follows from the definition of L′′n−1 and (3), and (c) follows
from (4). Therefore, for n > 7, since the average codelength of the given codelength vector in (5) is
equal to

∑n−1
i=1 p′i`

′
i + pn−1 + pn, this codelength vector is optimal and the proof is complete.

Proof of Proposition 3. The proposition is proved by induction on n. According to Lemma 1, the base
of induction, i.e., n = 7, is true. Assume that the proposition is true for all anti-uniform sources with
n−1 symbols. Let Pn = (p1, · · · , pn) be the probability vector of an anti-uniform source. Also, suppose
that P ′n−1 = (p′1, · · · , p′n−2, p′n−1) = (p1, · · · , pn−2, pn−1 + pn). From (1), it is obvious that P ′n−1 is the
probability vector of an anti-uniform source and p′1 ≥ p′2 ≥ · · · ≥ p′n−3 ≥ p′n−2, p

′
n−1. Since we have

`′n−1 = `′n, where (`′1, · · · , `′n−2, `′n−1) = argminLn−1∈Ln−1

∑n−1
i=1 p′i`i, from the induction assumption

we can write

(`′1, · · · , `′n−2, `′n−1) =


(2, 3, 3, 3, 3, 3, 3), if n− 1 = 7

(2, 3, 3, 3, 3, 3, 4, 5, · · · , n− 5, n− 5) , if n− 1 > 7

.
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Therefore, we have `′n−1 = n− 5, and Lemma 1 completes the proof.

Proof of Theorem 3. We have that |L5| = |L6| = 0. Therefore, for n = 5, 6 the proof is complete.
The proof for n = 7 is the same as the proof for n > 7, and so is omitted. Now suppose
that n > 7. In the following, it is proven that the average codelength vector of (`′1, . . . , `

′
n) =

(2, 3, 3, 3, 3, 3, 4, 5, 6, · · · , n− 4, n− 4) is greater than or equal to that of C∗n, i.e.,
∑n

i=1 ipi, which
completes the proof.

n∑
i=1

pi`
′
i = 2p1 + 3 (p2 + p3 + p4 + p5 + p6) +

n−1∑
i=7

(i− 3)pi + (n− 4)pn

=
n∑

i=1

ipi + p1 + p2 − p4 − 2p5 − 3p6 − 3
n∑

i=7

pi − pn

=
n∑

i=1

ipi + (p1 − p3 − p4 − pn) +

(
p2 −

n∑
i=4

pi

)
+

(
p3 −

n∑
i=5

pi

)
+

(
p4 −

n∑
i=6

pi

)
(a)

≥
n∑

i=1

ipi,

where (a) follows from the fact that Pn is the probability vector of an anti-uniform source, i.e., pi ≥∑n
j=i+2 pj for n− 3 ≥ i ≥ 1.
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