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Abstract: In this discussion, we indicate possibilities for (homological and
non-homological) linearization of basic notions of the probability theory and also for
replacing the real numbers as values of probabilities by objects of suitable combinatorial
categories.
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The success of the probability theory decisively, albeit often invisibly, depends on symmetries of
systems this theory applies to. For instance:

• The symmetry group of a single round of gambling with three dice has order 288 = 6×6×8: it is a
semidirect product of the permutation group S3 of order 6 and the symmetry group of the 3d cube,
that is, in turn, is a semidirect product of S3 and {±1}3.

• The Bernoulli spaces (gp, p1−p)Z, 0 < p < 1, of (g, p)-sequences indexed by integers z ∈ Z =
{⋯,−2,−1,0,1,2,⋯} are acted upon by a semidirect product of the infinite permutation group

S∞=Z ⊃ Z = {⋯,−2,−1,0,1,2,⋯}

and the (compact) group {±1}Z = { g ↔ p}Z, with the role of the latter being essential even for
p ≠ 1

2 where the probability measure is not preserved.

• The system of identical point-particles ●i in the Euclidean 3-space R3, that are indexed by a
countable set I ∋ i, is acted upon by the isometry group of R3 times the infinite permutation group
S∞=I .
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• Buffon’s probabilistic needle formula for π = 3.141592653589793⋯ relies on the invariance of the
Haar measure on the circle.

I. What happens if the symmetry is enhanced, e.g., from the permutation group S∞=I to the group
GLF(∞) of liner transformations of the vector space FI (formally) spanned by symbols [i], i ∈ I ,
regarded as (linearly independent) vectors over a filed F?

II. What could you do if your system is inherently heterogeneous, such as a folding polypeptide chain
or a natural language, for instance?

Hilbertisation/unitarisation/quantization of set categories brought along a development of several
magnificent non-commutative probability theories, e.g., of those under the headings of von-Neumann
algebras, von Neumann entropy [1,2], free probabilities [3].

By comparison, the achievements of the non-unitary linearisation of probability theory are
modest—just a few amusing observations.

Example 1. Linearized Loomis-Whitney-Shannon-Shearer Submultiplicativity Inequality [4,5].
Let Φ = Φ(x1, x2, x3, x4) be a 4-linear function (form) over some field (where the variables xi run over

some vector spaces Xi). Then the ranks of the following four bilinear forms Φ(x1, x2⊗x3⊗x4),Φ(x1⊗
x2, x3 ⊗ x4),Φ(x1 ⊗ x3, x2 ⊗ x4) and Φ(x1 ⊗ x4, x2 ⊗ x3) satisfy

(rank[1,234])2 ≤ rank[12,34] ⋅ rank[13,24] ⋅ rank[14,23].

Example 2. Homology Measures [6].
Homologies H∗(X) = ⊕iHi(X) of topological spaces X and natural subgroups in H∗ are graded

Abelian groups: their ranks are properly represented not by individual numbers ri, but by Poincaré
polynomials PX(t) = ∑i ri ⋅ ti.

The polynomial valued set function U ↦ PU , U ⊂ X , has some measure/entropy-like properties that
become more pronounced for the ideal valued function that assigns the kernels

KerX∖U ⊂H∗(X;A)

of the inclusion/restriction cohomology homomorphisms for the complements X ∖ U ⊂ X for subsets
U ⊂X ,

U ↦ µ∗(U) =def KerX∖U =def Ker[H∗(X;A)→H∗(X ∖U ;A)],

for some Abelian (cohomology coefficient) group A.

The basic properties of this µ∗ (stated slightly differently in topology textbooks) have an attractive
measure theoretic flavour. Namely,
µ∗(U) is additive for the sum-of-subsets in the groupH∗(X;A) and, ifA is a commutative ring, then

µ∗ is super-multiplicative for the the ⌣-product of ideals:

µ∗(U1 ∪U2) = µ∗(Ui)+µ∗(U2)
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for disjoint open subsets U1 and U2 in A, and

µ∗(U1 ∩U2) ⊃ µ∗(U1) ⌣ µ∗(U2)

for all open U1, U2 ⊂ A.
Next, given a linear subspace Θ ⊂H∗(X;A), let

µΘ(U) = Θ ∩KerX∖U

and, assuming A is (the additive group of) a field, denote the rank of µΘ(U) over this field by ∣µΘ(U)∣ =
∣µΘ(U)∣A.

Linearized Matsumoto-Tokushige Separation Inequality in the N -torus.

Let U1, U2 ⊂ TN be non-intersecting (closed or open) subsets and let

Θ1 =Hn1(TN ;A), and Θ2 =Hn2(TN ;A)

for ni ≤ N/2, i = 1,2, and some field A. Then

∣µΘ1(U1)∣ ⋅ ∣µΘ2(U2)∣ ≤ c ⋅ ∣Θ1∣ ⋅ ∣Θ2∣

for c = n1n2/N2 and where, observe, ∣Θi = ∧niA∣ = (N
ni
).

If we think of the torus TN as a physical system ofN uncoupled linear oscillators then the “measures”
µ∗(U) and/or µΘ(U) may be interpreted as

“the numbers of persistent degrees of freedom” of this system that are observable from U .

Probabilistic/entropic interpretation of homology, which is kind of “dual” to “homological
interpretation of entropy-like invariants” by Bennequin [7], and also by Drummond-Cole et al. [8,9],
is also possible for “coupled systems” [10] where particularly attractive ones are systems of moving
disjoint balls in space where the configuration spaces of these systems support rich homology structures
that are induced from the classifying spaces of (subgroups of) infinite symmetric groups S∞=I [11], that
is expanded/corrected in [12].

A mathematical study of “loose structures” such as what you find in biology and linguistics needs
generalisations that would allow a use of relaxed, rather than enhanced, symmetries.

For instance, just to warm up, one may start by elaborating on the category theoretic definition of the
entropy suggested “In a Search for a Structure, Part 1: On Entropy” [13], where the entropy of a finite
probability space P = {pi}, pi > 0, ∑i pi = 1, comes as the class [P ]Gro of P in the Grothendieck group
Gro(P) of the topological category P of finite probability spaces P and probability/measure preserving
maps P → Q with a properly defined topological structure in P .

Since the group Gro(P) is isomorphic to the multiplicative group of positive real numbers [13]—this
is a reformulation of the Bernoulli law of large numbers – the Grothendieck class [P ]Gro can be identified
with exp ent(P ).

In general, such a Grothendieck-style entropy would be not a number valued function of any kind, but
(not quite) a functor from an elaborate combinatorial (not quite) category, e.g., comprised of fragments
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of a natural language with some (not always composable) “morphisms/arrows” between them, to some
“simple category” e.g., the category of weighted trees.

The so modified probability/entropy theory is badly needed for designing algorithms that would
model what we call (ego)learning described in “ Ergostructures, Ergodic and the Universal Learning
Problem” [14] and in “ Understanding Languages and Making Dictionaries” [15], (in preparation) but I
have not progressed much in pursuing this direction yet.
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