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Abstract: We examine the possibility of justifying the principle of maximum relative
entropy (MRE) considered as an updating rule by looking at the value of learning theorem
established in classical decision theory. This theorem captures an intuitive requirement for
learning: learning should lead to new degrees of belief that are expected to be helpful and
never harmful in making decisions. We call this requirement the value of learning. We
consider the extent to which learning rules by MRE could satisfy this requirement and so
could be a rational means for pursuing practical goals. First, by representing MRE updating
as a conditioning model, we show that MRE satisfies the value of learning in cases where
learning prompts a complete redistribution of one’s degrees of belief over a partition of
propositions. Second, we show that the value of learning may not be generally satisfied
by MRE updates in cases of updating on a change in one’s conditional degrees of belief. We
explain that this is so because, contrary to what the value of learning requires, one’s prior
degrees of belief might not be equal to the expectation of one’s posterior degrees of belief.
This, in turn, points towards a more general moral: that the justification of MRE updating in
terms of the value of learning may be sensitive to the context of a given learning experience.
Moreover, this lends support to the idea that MRE is not a universal nor mechanical updating
rule, but rather a rule whose application and justification may be context-sensitive.
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1. Introduction

Let the probability functions P and P ′ represent, respectively, an agent’s prior and posterior
degrees-of-belief functions over an algebra of propositions F generated by a set of possible worlds
W . A rule for changing the agent’s prior degrees-of-belief function P over F in light of new
evidence (hereafter, an updating rule) aims to provide an answer to the following problem: given
P and some constraint χ imposed on P ′, which P ′ should the agent choose from the set of her
posterior degrees-of-belief functions that satisfy χ? A given constraint χ imposed on P ′ is supposed
to represent a learning experience, and we associate with every learning experience a set Pχ of posterior
degrees-of-belief functions singled out by χ, i.e., Pχ = {P ′ : P ′ satisfies χ}. We take it that Pχ is a
closed convex set, i.e., it is determined by a constraint χ, such that if P ′1 and P ′2 satisfy χ, then also, any
convex combination of them, λP ′1 + (1 − λ)P ′2 with λ ∈ [0, 1], will satisfy χ. This type of constraint is
called affine.

An updating rule that is subject to considerable discussion among philosophers is the principle of
maximum relative entropy (MRE), also known as the rule of minimizing cross-entropy, the principle of
minimum discrimination information or Kullback–Leibler divergence. It says that, given P , the partition
{Si} of minimal elements in F and some constraint χ on P ′, the agent should choose P ′, so as to satisfy
χ, while minimizing the relative entropy with respect to P as measured by the following function:

RE(P, P ′) =
∑
i

P ′(Si)log
P ′(Si)

P (Si)

That is, by MRE, an updater should adopt as her posterior degrees-of-belief function, from those defined
over F and satisfying χ, the one that is RE-closest to her prior degrees-of-belief function defined over
F . RE; thus, it can be seen as measuring the “distance” between P and the possible P ′’s that satisfy χ.
Additionally, RE = 0 just in case P = P ′. Of course, RE is not a distance measure in the mathematical
sense, for it is not symmetric.

Much of the controversy surrounding MRE concerns its status. At least four main views on this
issue can be distinguished. According to the first view [1], MRE is a generally valid rule of updating
one’s degrees of belief from which the two well-known conditionalization rules, to wit, Bayes’s rule and
Jeffrey’s rule, derive their normative force. The second view denies the very idea of MRE’s universal
validity. Within this camp, some [2–4] argue that in certain situations, it conflicts with Bayes’s rule;
others [5,6] argue that it leads to counterintuitive consequences in the Judy Benjamin case, which is
a case of updating on a conditional proposition; and some [7,8] argue, quite generally, that MRE is
just one of many updating rules and, as such, is applicable in the right circumstances. In the third
view [9], MRE can be regarded, under certain conditions, as a special case of Bayes’s rule. Finally, in
the fourth view [10], MRE is not a rule for updating one’s degrees of belief, but rather a rule for statistical
supposing. These views have their merits, although none have achieved widespread acceptance.

However, there is yet another foundational question concerning MRE, a question that might be posed
independently of the aforementioned concern. This is the question of whether, and if so, how, MRE
can be justified as a method of updating one’s degrees of belief. Surprisingly, there have been relatively
few attempts to answer this question. The most notable among them are Shore and Johnson’s [11,12]
justification by consistency and Grünwald’s [13] minimax decision-theoretic justification. In contrast,
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there are several existing justifications of the two most prominent updating rules, to wit, Bayes’s rule and
Jeffrey’s rule. Bayes’s rule is justified on the grounds that it is both a pragmatically and epistemically
rational way of updating. The pragmatic rationality of this rule is established by a diachronic Dutch
book argument, which shows that if you update your degrees of beliefs other than by Bayes’s rule, then
you are susceptible to a collection of bets ensuring a negative net pay-off, come what may. Various
accuracy-based arguments show that Bayes’ rule is also epistemically rational. In particular, they
show that Bayesian updating minimizes the expected inaccuracy [14]. Similarly, various Dutch book
arguments support Jeffrey’s rule, establishing its pragmatic rationality.

The aim of this paper is to examine the possibility of justifying MRE updating by linking it to the
value of learning theorem introduced to the philosophical literature by Savage [15] and Good [16]. The
value of learning theorem may be viewed as capturing an intuitive requirement of rationality for learning.
The requirement says that learning should lead to new degrees of belief that are expected to be helpful
and never harmful in making decisions. Call this requirement the value of learning. The notion of
rationality that it alludes to is essentially pragmatic: we consider whether an opinion shift ruled by MRE
is rational for an agent who always chooses that act that maximizes her expected utility. However, as
recently argued in [17], we can also think of the value of learning as a necessary requirement for one’s
opinion shift to count as genuine learning. Of course, in this view, there might be other features of
genuine learning that are not captured by the value of learning. Therefore, it might not be a sufficient
condition. Importantly, it has been shown that the value of learning holds for both Bayes’s rule [16] and
Jeffrey’s rule [18].

We show that updating by MRE satisfies the value of learning in cases where the constraint reporting
one’s learning experience concerns a complete redistribution of one’s degrees of belief over a partition of
propositions. Our strategy will be to exploit a link between a particular generalized model of Bayesian
conditioning and updating by MRE on a partition of propositions. The generalized model of conditioning
allows us to assign second-order degrees of belief to propositions about first-order ones and to condition
the former on propositions concerning the latter. If we interpret the second-order degrees of belief as
one’s priors and the first-order ones as one’s posteriors, then we can condition prior degrees of belief on
propositions about the posterior ones. In this set-up, we can represent, under certain conditions, updating
by MRE on a partition as a form of conditioning on a proposition specifying posterior degrees of belief
for each member of that partition. However, there are other types of constraints to which MRE updating
can be applied. In particular, these might involve a constraint to the effect that one should assign a
conditional posterior degree of belief for some proposition, given another proposition. We show that
whether or not MRE updating leads to the value of learning theorem in response to such a constraint
crucially depends on how broadly the constraint is described. If this constraint can be described
effectively as a complete redistribution of one’s degrees of belief over a partition of propositions, the
value of learning theorem holds. However, if it cannot be so formulated, then the value of learning
theorem cannot be established. We explain why this is so: contrary to what the value of learning theorem
requires, in such cases, the MRE updater’s prior degrees of belief are not equal to the expectation of her
possible posterior degrees of belief.

There is yet another angle from which we might look at the main result of this paper. It is often
said that MRE is an updating rule that prescribes modesty or minimal revision for the agent’s opinion



Entropy 2015, 17 1149

shifts. As characterized in [5] (p. 376), MRE is “the rule that one should not jump to unwarranted
conclusions, or add capricious assumptions, when accommodating one’s belief state to the deliverances
of experience”. Minimizing RE under some constraints imposed on posterior degrees of belief is a way,
but by no means the only way, to make the idea of modesty more precise: the agent adopts the posterior
degree-of-belief function that meets the constraints reporting her learning experience and is RE-closest
to her prior degree-of-belief function. Under this procedure, the existence of a uniquely maximally
modest P ′ satisfying a given constraint is guaranteed, since Pχ is a closed convex set. However, why
should we value such modest opinion shifts? Of course, modesty might itself be a virtue that does
not require further justification. Be that as it may, modesty might also be viewed as a rational tool for
pursuing other goals. What this paper shows is that it is not always true that revising degrees of belief
by dint of MRE leads to modest new degrees of belief that are expected to be helpful and never harmful
for one’s decisions.

2. The Value of Learning and Bayes’s Rule

It is rather uncontroversial to say that a change in one’s degrees of belief may bring consequences
for one’s decisions. Suppose that you have to decide now whether to act on the basis of your current
information or to perform a cost-free experiment to obtain further information, update your degrees of
belief and then act. For example, you have to decide whether to submit your paper to a journal now or
to pursue some line of research, update your degrees of belief about the content of your paper and then
decide whether to submit it. What should you do?

There is a striking result in decision theory, due originally to Ramsey and revived by Savage [15] and
Good [16], that gives an answer to the aforementioned concern. Informally put, the theorem states that
the prior expectation of making an informed decision is at least as great as the expected utility of making
an uninformed decision and is strictly greater if it is not the case that the maximum expected utility of an
act is the same for all possible experimental results (or equivalently, if at least one of the experimental
results could alter the choice of one’s actions). This theorem is known in the literature as the value of
learning or the value of knowledge theorem.

In its original form, the theorem has been proven in the context of Bayes’s rule of conditioning. As
shown by Good, Bayes’s rule implies the value of learning theorem. To present Good’s argument, let us
introduce the following assumptions:

• Let A = {A1, ..., Am} be a finite set of actions and S = {S1, ..., Sn} a finite set of states of
the world.
• For each combination of Ai and Sj , we introduce a utility function U(Ai ∧ Sj).
• Let E = {E1, ..., Ek} be a finite partition of experimental outcomes.
• Assume that the agent is an expected utility maximizer, that is she chooses the act Ai that

maximizes her expected utility given by:∑
j

P (Sj)U(Ai ∧ Sj),

where P (Sj) is the agent’s prior degree of belief in Sj .
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• The agent’s learning experience is reported by the constraint χ saying that one should assign
posterior degree of belief one to some Ek. Then, the associated set of posterior degrees-of-belief
functions is Pχ = {P ′ : P ′(Ek) = 1}. Bayes’s rule prescribes you to choose from that set the
posterior degrees-of-belief function P ′ that satisfies the constraint and is defined as follows:

(Bayes’s rule) For all j,
P ′(Sj) = P (Sj|Ek),

provided that P (Ek) > 0.

That is, your posterior degree of belief in Sj equals your prior degree of belief in Sj conditional
on Ek.
• The experiment is costless.

For simplicity’s sake, we consider only finite sets of states. The value of learning theorem carries over
to infinite sets of states if the degrees-of-belief function is countably additive.

Suppose that the agent is faced with the following decision problem. She has to decide whether to
act now or to wait until the experiment is performed, update her degrees of belief by Bayes’s rule and
then act. Since the agent is an expected utility maximizer, the present value of her deciding now, without
performing the experiment, is:

max
i

∑
j

P (Sj)U(Ai ∧ Sj) = max
i

∑
k

∑
j

P (Sj|Ek)P (Ek)U(Ai ∧ Sj)

= max
i

∑
k

∑
j

P (Ek|Sj)P (Sj)

P (Ek)
P (Ek)U(Ai ∧ Sj)

= max
i

∑
k

∑
j

P (Sj)P (Ek|Sj)U(Ai ∧ Sj),

(1)

which is the expected value of act Ai with the highest expected utility.
The present value of making an informed decision is given as follows. Suppose that E is the true

member of E . Then, the posterior value of making a decision informed by E is the value of act Ai with
the highest expected utility with respect to the conditional degree of belief P (Sj|E):

max
i

∑
j

P (Sj|E)U(Ai ∧ Sj). (2)

Given (2), the present value of making a decision conditional on E is calculated by:∑
k

P (Ek) max
i

∑
j

P (Sj|Ek)U(Ai ∧ Sj) =
∑
k

max
i

∑
j

P (Sj)P (Ek|Sj)U(Ai ∧ Sj), (3)

which is the prior expectation of the posterior value of making an informed decision.
Note that Equations (1) and (3) differ only in the order of the maxi and the

∑
k operations.

Additionally, by Jensen’s inequality, for any real-valued and convex function f(k, i) of k and i,∑
k maxi f(k, i) ≥ maxi

∑
k f(k, i), with strict inequality if it is not the case that maxi f(k, i) is the

same for all k. Hence, it follows that Equation (3) is at least as great as Equation (1), with strict
inequality if it is not the case that the act Ai maximizes the expected utility irrespective of which of
the Ek’s hold true.
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The value of learning theorem carries an important philosophical message for someone who evaluates
learning and updating rules in terms of their potential consequences for decisions. The message is that,
from the perspective of maximizing expected utility, a change in one’s degrees of belief could make
one’s decisions better and never worse. That is, acquiring information by way of an update is expected
to be helpful and never harmful. Of course, this result does not hold unconditionally. It rests on a few
substantial assumptions. First of all, it is set up in the framework of Savage’s decision theory in which
states of the world and acts are stochastically independent in the sense that choosing an act does not give
you information about which state of the world is true. Likewise, one’s decision whether to perform
an experiment is stochastically irrelevant to the states of the world. Notice, however, that updating on
experimental outcomes may alter your degrees of belief about the states. Second, the states, acts and
utilities are the same before and after updating your degrees of belief. Third, it is assumed that you are
an expected utility maximizer before and after updating.

It is important to recognize that the agent assesses the value of making an informed decision from her
current perspective, without knowing which of the experimental outcomes is true. To assess this value,
she takes the expectation of Equation (2) with respect to the unknown Ek. This, in turn, shows how her
prior degrees of belief must be related to her possible posterior degrees of belief. Since she knows that
she will update by Bayes’s rule, it follows that for each j, her prior degree of belief in Sj must be equal
to the expectation of her conditional prior degrees of belief, the P (Sj|Ek)’s; that is:

P (Sj) =
∑
k

P (Ek)P (Sj|Ek), (4)

where the sum extends over all k, such that P (Ek) > 0. This is an elementary observation. However,
what happens if Bayes’s rule is not assumed? In the next section, we will suggest a more general answer
to the question of how the agent’s prior degrees-of-belief function should be related to her possible
posterior degrees-of-belief functions for the value of learning to be satisfied. This answer involves
focusing on Skyrms’s condition M.

3. Condition M and the Value of Learning

Does the value of learning imply a particular way in which one’s prior and one’s possible posterior
degrees of belief are related? In this section, we give an affirmative answer to this question by exploring
Skyrms’s condition M. We will present this condition within the framework of an unstructured and
opaque degrees-of-belief change called by Skyrms [19,20] black-box learning. It is unstructured in the
sense that we do not know how the agent updates her degrees of belief (i.e., what rule she adopts as her
updating policy) and what the constraint that prompts the shift in her degrees of belief is. The only thing
we know is the effect of her learning experience on her posterior degrees of belief.

Black-box learning is a generalized model of learning. According to it, an epistemic agent starts
with a prior degrees-of-belief function, passes through a black-box learning experience and ends up with
a posterior degrees-of-belief function. Thus, the agent only knows the input (prior degree-of-belief
function) and the output (posterior degrees-of-belief function). Here, the learning process is not
transparent: the agent cannot go into the black-box and see what is inside. In particular, she cannot say
whether she learned a proposition with certainty or redistributed her degrees of belief over a partition
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of propositions. That is, she cannot specify a constraint that prompts the shift in her degrees of belief.
Likewise, she cannot specify a rule of updating that would deal with her learning episode. For example,
she does not expect that she would learn a proposition as a result of her interaction with the environment,
yet she might think about this experience and revise her opinion on the basis of her thoughts. More
precisely, black-box learning may be described as follows. Let an agent’s degrees-of-belief space be
a triple (W,F , P ), where W is a set of worlds that the agent considers possible, the elements in F
are propositions about which the agent has an opinion and P is the agent’s degree-of-belief function.
Suppose that the agent is in a learning situation where she expects her degrees-of-belief function over
F to change from P to one of the posterior degrees-of-belief functions in the set {P ′}, resulting from
her interaction with the environment. Since her learning is described only by the effect on her possible
posterior degrees-of-belief functions, we can enlarge her degrees-of-belief space by adding the posterior
degrees-of-belief function as a random variable. As a result, the agent might have second-order degrees
of belief over propositions about the first-order ones. The first-order degrees of belief are her possible
posterior degrees of belief. By doing so, we get a higher-order probability structure in the sense proposed
in [21]. Such a structure may be represented by (W,F , P, P ′), where F is an algebra of propositions,
subsets from W , P is one’s prior degree-of-belief function over F and P ′ is a measurable function
defined as P ′ : F × [0, 1] → F . Let the proposition about one’s posterior degrees of belief be denoted
by XP ′ . The proposition says that the posterior degree-of-belief function over F is given by P ′.

Could a black-box learner satisfy the value of learning? Recall that the black-box learner has no
updating rule at his disposal and no constraint that prompts his degrees-of-belief shift. One might, thus,
be suspicious as to whether black-box learning could be even justified. After all, we deal with a situation
where one expects one’s degrees of belief will change as a result of an interaction with the environment
without being confident that the change will be prompted by something learned. Additionally, a
black-box learning situation does not exclude the possibility that reasons other than learning might
prompt one’s degrees of belief change. In particular, one might expect that one’s degrees of belief
will change by taking a drug that makes one confident that one can fly, by memory loss or by being
brainwashed. Skyrms [19] shows convincingly that a sufficient condition for one’s degrees-of-belief
change in black-box learning to satisfy the value of learning is the following:

(M) An agent’s prior degrees-of-belief function ought to be such that, for all j and for any
possible posterior degrees-of-belief function P ′:

P (Sj|XP ′) = P ′(Sj),

providing that P (XP ′) > 0.

That is, condition M requires one’s prior degree of belief in Sj conditional on the proposition about Sj’s
posterior degree of belief to be equal to that posterior degree of belief. In [19], M stands for Martingale.
A similar principle, known as reflection, has been defended in [22].
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Skyrms’ reasoning goes as follows. The agent’s present value of deciding now is the maximum of her
prior expectation of posterior expected utility. In symbols,

max
i

∑
j

P (Sj)U(Ai ∧ Sj) = max
i

∑
P ′

∑
j

P (Sj|XP ′)P (XP ′)U(Ai ∧ Sj)

= max
i

∑
P ′

∑
j

P ′(Sj)P (XP ′)U(Ai ∧ Sj).
(5)

The posterior value of making a decision informed by XP ′ is given by:

max
i

∑
j

P (Sj|XP ′)U(Ai ∧ Sj) = max
i

∑
j

P ′(Sj)U(Ai ∧ Sj). (6)

Given Equation (6), we can calculate the present value of making an informed decision as one’s prior
expectation of the value given by Equation (6). That is,∑

P ′

P (XP ′) max
i

∑
j

P ′(Sj)U(Ai ∧ Sj). (7)

Now, as shown by Skyrms, it is a consequence of Jensen’s inequality that the value given by Equation (7)
is at least as great as the value given by Equation (5). Thus, condition M satisfies the value of learning.

What happens if condition M fails? Skyrms [20] shows that if the black-box learner fails to satisfy
condition M, then the expected utility of her informed decision could be lower than the expected utility of
her uninformed decision. Thus, condition M is both sufficient and necessary for the value of learning to
hold. Similarly, Huttegger [17] argues that condition M and the value of learning are in fact equivalent.
Assuming Skyrms’s result, Huttegger shows quite generally that if updating one’s degrees of belief
satisfies the value of learning, then condition M must hold. Thus, condition M is all we need for the
value of learning to hold. To explain the necessity of condition M, suppose that P (Sj|XP ′) = 1

3
and

P ′(Sj) = 2
3
. Hence, you violate condition M. Consider a bet on Sj conditional on the proposition that

P ′(Sj) = 2
3
; it costs you $5 and pays you $5 if both Sj and the proposition that P ′(Sj) = 2

3
are true.

Since you violate condition M, you are vulnerable to a Dutch book, i.e., a set of bets that guarantee you
a net loss, come what may. You have to decide now whether to accept this bet or to update your degrees
of belief in Sj and then decide. Since your decision to reject this bet now has greater expected utility
than your decision to act later and possibly to risk acceptance of this bet, the value of learning theorem
fails to hold.

Now, if condition M alone is all that is required for the value of learning to hold, we can determine,
by focusing solely on that condition, the way in which one’s prior and posterior degrees of belief should
be related for one’s opinion shift to satisfy the value of learning. Additionally, since we deal with a
black-box learning situation, this way of relating priors and posteriors must be independent of which
updating rule the agent endorses as her updating policy.

It is an immediate consequence of condition M that one’s prior degrees of belief are the expectation
of one’s anticipated posterior degrees of belief, i.e., for all j:

P (Sj) =
∑
P ′

P ′(Sj)P (XP ′). (8)

In other words, the agent’s prior degree of belief in Sj is a convex combination of her possible posterior
degrees of belief in Sj . Given that Equation (8) is a consequence of condition M, if Equation (8)
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fails to hold, then condition M cannot be satisfied, and hence, the value of learning theorem cannot
be established. Note that Equation (8) does not tell us how the agent arrives at her posterior degrees
of belief. After all, Equation (8) characterizes a black-box learner. The basic idea behind Equation (8)
is that no matter how the agent arrives at her posterior degrees of belief, her prior degrees of belief are
required to be the expectation of her posterior ones.

It is not hard to observe that a Bayesian conditionalizer satisfies Equation (8). If you know that you
will update by dint of Bayes’s rule, your prior degrees of belief are the expectation of your anticipated
posterior ones that are given by the conditional prior degrees of belief. Of course, the important question
here is: in what sense one’s conditional degrees of belief, the P (Sj|Ek)’s, capture one’s anticipated
degrees of belief that figure in Equation (8). Two interesting answers to this question are given in the
literature. First, as pointed out in [23], one might believe with degree one that one will update by Bayes’s
rule on Ek. Then, one’s anticipated future degrees of belief are just the P (Sj|Ek)’s. Second, following
Easwaran [24], one might view the P (Sj|Ek)’s as “plans” to update one’s degrees of belief after learning
which member of E is true. Then, the agent’s anticipated future degrees of belief are simply her degrees
of belief that she plans to have. In my view, both of these answers are plausible ways to find a bridge
between one’s conditional degrees of belief and one’s anticipated future degrees of belief.

In what follows, we show that updating by MRE on a constraint prompting a complete redistribution
of degrees of belief over a partition of propositions agrees with a Bayesian model of learning from
experience that satisfies Equation (8). This, in turn, leads straightforwardly to the value of learning
theorem for MRE. However, we also show that MRE updates on a constraint prompting a change in
one’s conditional degrees of belief might not lead to the value of learning theorem. We explain that this
is because such MRE updates might not coincide with a model of learning that satisfies Equation (8).

4. The Value of Learning and MRE

In general, MRE updating can be applied to a learning situation reported by an affine constraint on
posterior degrees of belief. An affine constraint can always be formulated as saying that one’s expectation
of a random variable, computed relative to one’s posterior degrees-of-belief function, has a given value.
Examples of such constraint include: (i) a constraint to the effect that she should assign posterior degrees
of belief to a partition of propositions without conferring certainty on any of them; or (ii) a constraint
to the effect that she should assign a conditional posterior degree of belief for some proposition, given
another proposition. For example, to see how Constraint (i) can be expressed as one’s expectation of a
random variable, suppose that X is a F-measurable random variable, i.e., a function from W to the real
numbers R. Suppose that the elements of a partition {E1, ..., Ek} of W are represented as 0,1-valued
random variables or indicator functions. The indicator function of Ei, denoted by IEi

(w), can be
understood as the truth value of Ei at world w, that is, IEi

(w) = 1 if w ∈ Ei, and IEi
(w) = 0 otherwise.

Since posterior degrees of belief over the members of that partition are equal to the posterior expectations
of the indicator functions, (i) may be reformulated as a constraint to the effect that the expectations of
these indicator functions, computed with respect to the posterior degrees-of-belief function, get some
values in R. In this section, we show that an MRE update in response to Constraint (i) leads to the value
of learning theorem.
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To this end, we first introduce the following well-known result. Suppose that the agent’s learning
experience is reported by the following constraint. Let E = {E1, ..., Ek} be a partition of W , and let
q1, ..., qk ∈ R+ be such that q1 + ... + qk = 1. Then, χ is a constraint to the effect that upon learning
experience, the agent redistributes her degrees of belief over {E1, ..., Ek}, such that P ′(Ei) = qi,
for i = 1, ..., k. The agent’s set of posterior degrees of belief that satisfy this constraint is given by
Pχ = {P ′ : P ′(Ei) = qi, i = 1, ..., k}, which is a closed and convex set. Given that the agent updates
her degrees of belief by MRE, she chooses from the set Pχ her posterior degrees-of-belief function that
minimizes the distance measured by RE. There is a result showing that if the constraints on posterior
degrees of belief concern a whole partition of propositions, RE is uniquely minimized just in case
the agent’s posterior degrees-of-belief function comes by Jeffrey’s rule on the partition {E1, ..., Ek}
(see [1,25]). That is, P ′ should be such that, for all j:

P ′(Sj) =
∑
i

P (Sj|Ei)qi (9)

That is, P ′ is a weighted average of the agent’s prior conditional degrees of belief for Sj given Ei, for
all i, where the weights are the values of posterior degrees of belief for the Ei’s. This result may be
summarized by the following proposition:

Proposition 1. Suppose that Pχ = {P ′ : P ′(Ei) = qi, i = 1, ..., k}. Then, RE(P, P ′′) ≥
RE(P, P (·|Ei)qi) for all P ′′ ∈ Pχ, with equality, just in case P ′′ = P (·|Ei)qi.

As shown by Jeffrey [26], the agent’s posterior degree-of-belief function is equal to the one given by
Formula (9) if and only if the following condition holds:

(Rigidity) For all j and all i,
P ′(Sj|Ei) = P (Sj|Ei).

Rigidity says that the agent’s conditional degrees of belief given members of {E1, ..., Ek} remain intact
as she shifts her degrees of belief from P to P ′. Since MRE updating on a whole partition {E1, ..., Ek}
is also rigid, there is no surprise that it coincides with Jeffrey’s rule. We may look at Rigidity in the case
of MRE updating as follows: under RE-minimization, for each member E of {E1, ..., Ek}, the ratios of
one’s posterior degrees of belief to one’s prior degrees of belief about propositions that imply E do not
change, i.e., if Si and Sj , i 6= j, imply E, then P ′(Sj)

P ′(Si)
=

P (Sj)

P (Si)
.

With this result in hand, we can introduce a way to represent MRE updating in response to Constraint
(i) as Bayesian conditioning in an enlarged degrees-of-belief space. This move is mobilized by a general
result, due to Diaconis and Zabell [25], when a shift from P to P ′ in the original smaller space agrees
with Bayesian conditioning in some bigger space. A related result, though somewhat different in detail,
is defended by Grünwald and Halpern [27]. For a two-element partition of propositions, a similar result
is given in [28]. Roughly, the idea is as follows. Suppose that the agent shifts from P to P ′ by MRE
updating on a partition of propositions. Given the agent’s learning experience reported by a complete
redistribution of her degrees of belief over that partition, we can enlarge the original space by adding the
proposition that describes the agent’s learning experience and the proposition that describes its absence.
The proposition that describes the agent’s learning experience is about the values that her posterior
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degrees-of-belief function assigns to each member of the partition. Then, under certain conditions, we
can show that the MRE update in the original smaller space agrees with Bayesian conditioning in the
bigger space.

More precisely, to enlarge the agent’s degrees-of-belief space, we add to the algebra F a proposition
Xqi for each member i of the partition E . Thus, we require that the underlying space (W,F) is sufficiently
rich. In fact, each element of W specifies a value for qi, which, in turn, may be regarded as a random
variable. Xqi says that the agent’s posterior degree of belief assigned to the i-th member of E equals
qi. This proposition may be understood as a set of worlds from W at which the posterior degree of
belief in Ei equals qi. Denote the algebra extended by adding such propositions by F∗. The agent’s
prior degree-of-belief function P over F∗ may be viewed as a second-order degree-of-belief function,
since it assigns degrees of belief to her degrees of belief that are assigned to the propositions in the
smaller original algebra F . Propositions about which the agent has an opinion and that belong to the
extended algebra are the propositions that describe her learning experience reported by Constraint (i), to
wit, a learning experience that prompts a complete redistribution over the partition E . Such propositions
specify the agent’s degrees of belief for every member of the partition E . They may be understood as
conjunctions, the

∧k
i=1Xqi’s, of theXqi’s. For convenience, denote such a conjunction byD. Now, if the

agent learns such a proposition with certainty, she can Bayes condition in the enlarged algebra. In fact,
when she conditions in the enlarged algebra, she assigns second-order degrees of belief to propositions
about her first-order ones. Denote such Bayesian conditioning in the enlarged algebra by BC∗. It can be
put as follows:

(BC∗) For all j and any D ⊆ W ,

P ′(Sj) = P (Sj|D),

provided that P (D) > 0.

The following theorem states that under certain conditions, updating by MRE on a partition E is
representable as BC∗.

Theorem 1. Suppose that the agent’s prior degrees-of-belief function P obeys the following
two conditions:

(1) For all i, P (Ei|D) = qi, provided that P (D) > 0.
(2) For all j and all i, P (Sj|Ei ∧D) = P (Sj|Ei), provided that P (Ei ∧D) > 0.

Then, for all j, P (Sj|D) =
∑

i P (Sj|Ei)qi.

Proof. Suppose that P satisfies Conditions (1) and (2), D ⊆ W and Ei ⊆ W for all i. Then,

P (Sj|D) =
∑
i

P (Sj|Ei ∧D)P (Ei|D)

=
∑
i

P (Sj|Ei ∧D)qi (by condition (1))

=
∑
i

P (Sj|Ei)qi (by condition (2)),

as required.
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In fact, the theorem says that Bayesian conditioning in the enlarged algebra of propositions is in
agreement with updating by MRE on a whole partition of propositions that belongs to some subalgebra
of the enlarged one. This agreement rests on two conditions, originally introduced in Skyrms [29].
Condition (1) is an application of condition M, whereas Condition (2) is a kind of probabilistic
independence called by Skyrms sufficiency. Both conditions have an intuitive appealing. Condition (1)
says that the agent’s prior degree of belief in Ei, conditional on the proposition specifying posterior
degrees of belief over the members of E , should be equal to the posterior degree of belief in Ei. This
condition can be understood as saying that learning described by D is legitimate or justified. For
example, it indicates that such a learning is not a result of memory loss. Sufficiency tells us that Sj is
conditionally independent of D given each member of E . Intuitively, if the agent knows which member
of E is true, then her knowledge about degrees of belief assigned to each member of that partition
should have no bearing on her degree of belief in A. However, we should not regard these conditions
as universally correct. Clearly, Condition (1) does not hold in epistemically “pathological” situations.
Just consider the example of Ulysses and the sirens. Before hearing the siren’s song, Ulysses has a high
degree of belief that sailing among the rocks is dangerous. However, he is also sure that after hearing the
sirens, he would cease to believe (wrongly as he now thinks) that sailing among the rocks is dangerous.
If he were to obey Condition (1), he would have to cease to believe now that sailing among the rocks
is dangerous. However, he now believes that this is not so, and so, Condition (1) is violated. Likewise,
sufficiency does not hold in situations where Sj is a proposition Xqi . Then, since D implies Xqi , it is
Ei, not D, that is irrelevant to Sj . However, whenever these two conditions hold, which seems to be
fairly common, Bayesian conditioning in an enlarged degrees-of-belief space yields the same result as
the MRE shift over a whole partition in the original smaller degrees-of-belief space.

Where does this result leave us vis-à-vis the question of whether a MRE shift on a whole partition
satisfies the value of learning? To address this question, we first need to face a potential difficulty.
Recall that in Good’s argument, the experiment is represented by a finite partition of propositions, whose
members are measurable subsets in W . However, the outputs of learning experiences represented by
Constraint (i) are the values of posterior degrees of belief, not propositions. If this is so, how could the
MRE updater assign degrees of belief to them? Furthermore, how could she determine the values of
informed and uninformed decisions? By virtue of the representation introduced above, this difficulty
can be mitigated by acknowledging that such values of posterior degrees of belief can be expressible
as proposition D, which is a measurable subset in W . That is, from the point of view of the enlarged
degrees-of-belief space, what we learn from the experiment reported by Constraint (i) is a proposition
about the values of posterior degrees of belief over the members of a partition. Now, by moving to an
enlarged degrees-of-belief space, we can think of a cost-free experiment as r possible results prompting
r possible redistribution of the agent’s degrees of belief over E . Denote the m-th redistribution of the
kind by the proposition Dm.

Now, it is easy to observe that by virtue of the representation captured in Theorem 1, the MRE updater
on E satisfies condition M, and thus, the value of learning theorem can be established. Since she can be
represented as a Bayesian conditionalizer in the enlarged degree-of-belief space, in which the Dm’s are
measurable subsets, her prior degree of belief for each state of the world S will be the expectation of
her posterior degrees of belief in each S. These posteriors are given by the conditional prior degrees of
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belief, the P (A|Dm)’s, defined in the enlarged degrees-of-belief space. More precisely, a demonstration
that such an MRE update satisfies the value of learning may proceed as follows. The present value of
making an uninformed decision is:

max
i

∑
j

P (Sj)U(Ai ∧ Sj) = max
i

∑
m

∑
j

P (Sj|Dm)P (Dm)U(Ai ∧ Sj)

= max
i

∑
m

∑
j

P (Dm|Sj)P (Sj)

P (Dm)
P (Dm)U(Ai ∧ Sj)

= max
i

∑
m

∑
j

P (Sj)P (Dm|Sj)U(Ai ∧ Sj).

(10)

The posterior value of making a decision informed by Dm is given by:

max
i

∑
j

P (Sj|Dm)U(Ai ∧ Sj). (11)

Given Equation (11), the present value of making a decision conditional on Dm is calculated by:∑
m

P (Dm) max
i

∑
j

P (Sj|Dm)U(Ai ∧ Sj)

=
∑
m

P (Dm) max
i

∑
j

P (Dm|Sj)P (Sj)

P (Dm)

=
∑
m

max
i

∑
j

P (Sj)P (Dm|Sj)U(Ai ∧ Sj),

(12)

which is the prior expectation of the posterior value of making an informed decision. Now, it is easy to
notice that on the same mathematical grounds as in Good’s argument, the value given by Equation (12)
is at least as great as the value given by Equation (10). Hence, MRE updating on E represented as BC∗

is expected to be helpful and never harmful to one’s decisions.

5. When the Value of Learning May Not Hold for MRE Updating

In this section, we examine the question of whether MRE updating in response to Constraint (ii) leads
to the value of learning theorem. As will be apparent, the answer to this question is: it depends on
how broadly one’s learning experience reported by Constraint (ii) is described. More specifically, we
show that whether the value of learning can be established in this case may be dependent on whether or
not the contextual information, not reported by Constraint (ii), is taken into account in addition to the
explicit information. We illustrate this point by means of the Judy Benjamin problem. If only the explicit
information is taken into account in this case, then the value of learning theorem may not hold. By taking
the contextual information into account, the constraint is made “complete” in the sense explicated below,
and the value of learning theorem holds.

In general, consider a learning experience in which the agent learns the following conditional
information “If A, then the odds for B are σ/(1 − σ) : 1”, for σ ∈ [0, 1]. This information may
prompt a change in the agent’s conditional prior degrees of belief. That is, after learning this conditional
information, her conditional prior degree of belief, P (B|A), changes to her conditional posterior degree
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of belief, P ′(B|A), which should be set equal to σ. With this constraint, we associate a closed and
convex set of posterior degrees-of-belief functions Pχ = {P ′ : P ′(B|A) = σ}. In order to answer the
question of whether a shift from P to P ′, which belongs to this set and minimizes RE, leads to the value
of learning theorem, we examine whether such a shift satisfies condition M.

For concreteness, we focus on the famous Judy Benjamin case, originally introduced in [5]. In this
case, private Judy Benjamin is dropped in an area that is divided into two territories, the red territory
(R) and the blue territory (¬R). Each of these territories is further divided into the second company area
(S) and headquarters company area (¬S). These divisions form four quadrants. Initially, Judy assigns to
each of the four quadrants a degree of belief of one quarter: P (R ∧ S) = P (R ∧ ¬S) = P (¬R ∧ S) =

P (¬R ∧ ¬S) = 1
4
. Judy, then, receives the following radio message: “I don’t know where you are. If

you are in the red territory, the odds are 3:1 that you are in the headquarters company area”. That is, the
radio message prompts a change in one of Judy’s conditional degrees of belief by setting P ′(¬S|R) = 3

4
.

Suppose further that Judy is an MRE updater, and let R ∧ S,R ∧ ¬S,¬R ∧ S,¬R ∧ ¬S be the minimal
elements of F . Now, we may distinguish two ways of describing the constraint on Judy’s posterior
degrees-of-belief function:

(i∗) The constraint pertains to all propositions of the partition {R ∧ S,R ∧ ¬S,¬R} of the elements
in F ;

(ii∗) The constraint pertains to some propositions of the partition {R ∧ S,R ∧ ¬S,¬R} of the elements
in F .

Let us consider each of these in turn. Case (i∗) rests on the assumption that the MRE updater can obtain
additional information about her posterior degrees of belief over the members of the entire partition
by looking at the context of the Judy Benjamin case. The only explicit information she gets is the
information about her posterior conditional degree of belief in ¬S, given R, i.e., P ′(¬S|R) = 3

4
. Given

this information, she knows how to set her posterior conditional degree of belief in S, given R: since
all of her conditional degrees of belief must sum to one, we have that P ′(S|R) = 1

4
. However, this

does not yet provide a redistribution over the entire partition. What about her shift from P (¬R) to
P ′(¬R)? This information is not given explicitly. However, this information can be gleaned from the
context of the case: since the radio message does not say whether Judy is in the red or in the blue
territory, it follows that her degree of belief in ¬R remains unchanged, i.e., P ′(¬R) = P (¬R) =

P (¬R∧S)+P (¬R∧¬S) = 1
2
. This completes her redistribution over the entire partition of propositions.

Let us assume that Judy’s learning experience does not lead her to the revision of her degree of belief in
R. We thereby assume a condition called by Bradley [7] independence. Then, the sum of Judy’s posterior
degrees of belief inR∧¬S andR∧S equals her prior degree of belief inR, i.e., P ′(R∧¬S)+P ′(R∧S) =

P ′(¬S|R)P (R) + P ′(S|R)P (R). Now, Judy’s task is to find the posterior degrees-of-belief function
P ′ ∈

{
P ′ : P ′(R ∧ ¬S) = 3

8
, P ′(R ∧ S) = 1

8
, P ′(¬R) = 1

2

}
that minimizes RE relative to P . As shown

in [8] in a more general setting, RE is minimized iff for all A ∈ F :

(1) P ′(A|R ∧ ¬S) = P (A|R ∧ ¬S),
(2) P ′(A|R ∧ S) = P (A|R ∧ S),
(3) P ′(A|¬R) = P (A|¬R).
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That is, Judy’s new degrees-of-belief function minimizes RE relative to her prior degree-of-belief
function iff the shift in her degrees of belief is rigid and, thus, goes in accord with Jeffrey’s rule on
the partition {R ∧ S,R ∧ ¬S,¬R}. As emphasized in [8], by using the contextual information in the
Judy Benjamin case, we can complete the constraint reporting Judy’s experience in a way that allows us
to redistribute her new degrees of belief over the entire partition of propositions and to apply Jeffrey’s
rule. Where does this result leave us vis-à-vis the question of whether an MRE shift in response to
Constraint (ii) leads to the value of learning theorem? If Constraint (ii) pertains to the entire partition of
propositions to which Jeffrey’s rule can be applied, then, in view of the representation given in Section 4,
the MRE updater may be represented as a Bayesian conditionalizer in a degrees-of-belief space in which
this constraint is a measurable subset of W . Consequently, she satisfies condition M, and thus, the value
of learning holds for this case.

Things change if we turn to Case (ii∗). Here, the radio message received by Judy prompts an
incomplete redistribution of her degrees of belief over {R ∧ S,R ∧ ¬S,¬R}. Here, we assume that
no information, that makes the redistribution complete, can be gleaned from the context of this case. The
radio message is the sole constraint imposed on her posterior degree-of-belief function. This explicit
constraint causes her redistribution over R ∧ S and R ∧ ¬S, leaving her posterior degree of belief in
¬R unknown. However, as shown in [5], by using MRE updating, we can determine Judy’s posterior
degree of belief in this proposition. However, this determination leaves us with a highly counter-intuitive
consequence: P ′(¬R) > 1

2
, and hence, P ′(¬R) > P (¬R). That is, Judy’s new degree of belief

in ¬R is greater than her prior degree of belief ¬R, even if the radio message yields no information
relevant to whether she is in the red rather than in the blue territory. More generally, for any value of
σ, one’s posterior degree of belief in ¬R that minimizes RE would be greater than one’s prior degree
of belief in ¬R, and it remains unchanged only if σ = 1

2
. However, apart from being counter-intuitive,

this observation shows that the MRE updater cannot satisfy condition M. To show this, we explore a
result, due to Seidenfeld [3] and rehearsed by Uffink [30], which shows that MRE updating cannot
be represented as Bayesian conditioning in an enlarged space in which an incomplete Constraint (ii)
is a measurable subset of W , unless the constraint is irrelevant to one’s prior degrees of belief in ¬R.
Suppose that Γσ (in the Judy Benjamin case, σ = 3

4
) is a measurable subset ofW . Since, for any value of

σ, the posterior degree of belief in ¬R increases unless P (¬R) = P ′(¬R), we have that in the enlarged
degrees-of-belief space:

P (¬R) ≥
∫ 1

0

P (¬R|Γσ)P (Γσ) dσ, (13)

with strict inequality when there is some probability mass function on Γσ for σ 6= 1/2. That is, the
prior degree of belief in ¬R cannot be a convex combination of the conditional degrees of belief, the
P (¬R|Γσ)’s, for σ 6= 1/2. Not only does it show that MRE updating in Case (ii∗) cannot be represented
as Bayesian conditioning in the enlarged space, but also it shows that MRE updating in that case fails to
satisfy condition M, unless P (¬R) = P ′(¬R). If the conditional degrees of belief, the P (¬R|Γσ)’s, are
understood as possible posterior degrees of belief, the P ′(¬R)’s, then we have that:

P (¬R) ≥
∑
P ′

P ′(¬R)P (XP ′) (14)
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Consequently, P (¬R|XP ′) ≥ P ′(¬R), and so, condition M does not hold in general. Additionally, given
that condition M is both necessary and sufficient for the value of learning to hold, it follows that MRE
updating does not in general lead to the value of learning theorem. That is, MRE updating may lead to a
decrease in expected utility.

The above analysis has an interesting philosophical import. Whether MRE updating leads to the
value of learning theorem in the case of Constraint (ii) crucially depends on whether or not the agent
takes into account the contextual information. However, this should not strike us as odd; for there is
nothing in the machinery of MRE updating that could determine the unique way of describing one’s
learning experience. This opens the possibility of using both explicit and contextual information in order
to determine a given constraint. More to the point, MRE does not suffice to guarantee the value of
learning when the new information comes as constraints over conditional degrees of belief. It has been
shown that to guarantee the value of learning, MRE must be supplemented by some additional rule,
which tells us how to add extra constraints gleaned from the context.

Note, however, that Case (ii∗) also points towards another notion of context sensitivity. This has to do
with how MRE determines the lacking information about one’s posterior degree of belief in ¬R. Though
this information is not given explicitly, MRE could fill in the blanks for us. However, whether it does this
adequately depends on the details of a given learning situation, which also include the context. On the
widespread view, in the Judy Benjamin case, MRE does not fill in the blanks adequately, for it leads to
counter-intuitive results: after updating, Judy’s degree of belief in ¬R increases, while it should remain
unchanged. However, it is perfectly possible to add to the Judy Benjamin case a story indicating that the
choice of the blue or red territory is dependent on the choice of the red headquarters company area or
the red second company area. However, this type of context-sensitivity should be distinguished from the
one described above. For whatever story we plot in the Judy Benjamin case, MRE may provide us with
the lacking information in a way that violates condition M, as indicated by [13]. In contrast, the type of
context sensitivity we alluded to above has consequences for whether or not condition M is satisfied by
the MRE updater.

Let us point out some consequences of our analysis. The fact that in some cases the application of
MRE and its justification in terms of the value of learning is context-sensitive lends credence to the idea
that updating rules are essentially tools in the “art of judgment” rather than universally valid inductive
rules. In this spirit, Bradley [7] (p. 362) points out that even Bayes’s rule “should not be thought of as a
universal and mechanical rule of updating, but as a technique to be applied in the right circumstances, as
a tool in what Jeffrey terms the ‘art of judgment”’. Similarly, Douven and Romeijn [8] (p. 660) stress that
adopting an updating rule based on minimizing distance between degrees of belief to cover updating on
conditional information “may be an art, or a skill, rather than a matter of calculation or derivation from
more fundamental epistemic principles”. Our analysis shows that even a justification of MRE updating
in terms of the value of learning cannot proceed mechanically. Rather, it requires a careful consideration
of the entire learning experience that the agent undergoes.

It is important to emphasize that our analysis should not be regarded as providing a support to
yet another idea, widely discussed within the degrees-of-belief dynamics, called by van Fraassen [31]
voluntarism. According to this idea, deliverances of experience should be understood as commands that
constrain the agent’s posterior degrees of belief. These commands reflect the agent’s decision to accept
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whatever her learning experience reveals. It is not hard to observe that voluntarism may lead to the idea
that belief change is sensitive to what the agent accepts as her constraint. After all, two agents may
accept different constraints on their posterior degrees of belief, even if they undergo the same learning
experience. However, this is different from saying that the way in which we respond to a constraint
depends on the context of our learning experience; for the context is not a feature of the agent’s epistemic
attitudes, but rather, it is a part of the learning experience that bears on the agent’s epistemic attitudes.
Hence, whether or not the context of a given case contributes to one’s learning experience is not a matter
of one’s voluntary decision. Of course, according to voluntarism, the agent might voluntarily decide not
to take the contextual information as her constraint. However, our analysis does not force us to accept
this possibility.

6. Concluding Remarks

Clearly, our analysis is not a full story on the justification of MRE in terms of the value of learning.
We have discussed this issue with respect to only two types of constraints: the first pertaining to a
redistribution of one’s degrees of belief over the entire partition of propositions; the second pertaining
to a change in one’s conditional degrees of belief. Despite this limitation, we have shown that the
justification of MRE updating is not so simple a task as one might think. By fitting MRE updating and
Bayesian conditioning together in an enlarged space, we have shown that in cases involving the first
constraint, MRE leads to the value of learning. However, we have argued that this might not be so in
cases involving the second type of constraint. In such cases, whether or not the value of learning holds
crucially depends on whether the context of one’s learning experience is taken into account.

We may transfer the insights of our analysis to the discussion about the status of MRE updating.
Recall that initially, we have distinguished, from various views on this issue, the view on which MRE
updating is universally valid and the views that deny its universal validity. It is tempting to think that
if this rule of updating were universally valid, it would be neutral with respect to how a given learning
experience is described. Moreover, it seems that if it were universally valid, its justification would not
depend on whether or not the contextual information is reported by a given constraint. The findings of
this paper show that neither the application of MRE nor its justification are so neutral. Hence, they lend
credence to the claim that MRE is not a universal or mechanical updating rule.
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