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Abstract: Different security notions of secret sharing schemes have been proposed by
different information measures. Entropies, such as Shannon entropy and min entropy, are
frequently used in the setting security notions for secret sharing schemes. Different to
the entropies, Kolmogorov complexity was also defined and used in study the security of
individual instances for secret sharing schemes. This paper is concerned with these security
notions for secret sharing schemes defined by the variational measures, including Shannon
entropy, guessing probability, min entropy and Kolmogorov complexity.
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1. Introduction

A secret sharing scheme [1,2] is a protocol to share a secret among participants such that only
specified subsets of participants can recover the secret. In considering the security notions of secret
sharing schemes, some authors have introduced concepts of security for secret sharing schemes based
on different information measures [3–7]. These information measures include four very important
information measures: Shannon entropy, min entropy, Rényi entropy and Kolmogorov complexity.
Shannon entropy is the most widely used information measure, which is used to prove bounds on the
share size and on the information rate in secret sharing schemes [3–5]. Recently, min and Rényi entropies
are also used in study of the security of secret sharing schemes [6,7].
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Kolmogorov complexity K(x) [8–10], known as algorithmic information theory [11,12], measures
the quantity of information in a single string x, by the size of the smallest program that generates it.
It is well known that Kolmogorov complexity and entropy measure are different but related
measures [13–15]. Measuring the security by Kolmogorov complexity offers us some new security
criteria. Antunes et al. [16] gave a notion of individual security for cryptographic systems by using
Kolmogorov complexity. Kaced [17] defined a normalized version of individual security for secret
sharing schemes.

However these information measures are different. This means a scheme is secure based on one
information measure but not secure based on another information measure [18]. Recently, several
relations of security notions of cryptography have been studied. Iwamoto et al. [6] and Jiang [18] studied
relations between security notions for the symmetric-key cryptography. In this paper, we are interested
in relationships of security notions for secret sharing schemes. Antunes et al. [16] and Kaced [17]
also studied relations between security notions for secret sharing schemes. However, their studies are
between security notions based on Shannon entropy and Kolmogorov complexity. We study relationships
of different security notions for secret sharing schemes under various information measures including
Shannon entropy, guessing probability, min entropy and Kolmogorov complexity.

This paper is organized as follows: In Section 2, we review some definitions of entropy measures,
Kolmogorov complexity and secret sharing schemes. In Section 3, we propose several security notions
in entropies, and their relations. In Section 4, by using Kolmogorov complexity, security notions of
secret sharing schemes are given, then are compared to entropy-based security in Section 5. Conclusions
are presented in Section 6.

2. Preliminaries

In this paper, string means a finite binary string Σ∗ := {0, 1}∗. |x| represents the length of a string x.
For the cardinality of a set A we write |A|. Function log means the function log2. ln(·) denotes the
logarithm function with natural base e = 2.71828....

Let [n] := {1, 2, ..., n} be a finite set of IDs of n users. For every i ∈ [n], let Vi be a finite set of
shares of the user i. Similarly, let S be a finite set of secret information. In the following, for any subset
U := {i1, i2, ..., iu} ⊂ [n], we use the notation vU := {vi1 , vi2 , ..., viu} and VU := {Vi1 , Vi2 , ..., Viu}.

2.1. Entropy

Let X and Y be two finite sets. Let X and Y be two random variables over X and Y , respectively.
The probability that X takes on the value x from a finite or countably infinite set X is denoted by
pX(x); the mutual probability, the probability that both x and y occur, by pXY (x, y) and the conditional
probability, the probability that x occurs knowing that y has occurred by pXY (x|y). For convenience,
pX(x), pXY (x, y) and pXY (x|y) are denoted by p(x), p(x, y) and p(x|y), respectively. Two random
variables X and Y are independent if and only if p(x, y) = p(x)× p(y) for all x ∈ X and y ∈ Y .
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The Shannon entropy [19] of a random variable X , defined by H(X) = −
∑

x∈X p(x) log p(x), is
a measure of its average uncertainty. The conditional Shannon entropy with respect to X given Y is
defined as

H(X) = −
∑
y∈Y

p(y)H(X|Y = y).

The Mutual information between X and Y is

I(X;Y ) = H(X)−H(X|Y ).

Guessing probability [20] of X , occurred by G(X) = maxx∈X p(x), is the success probability of
correctly guessing the value of a realization of variable when using the best guessing strategy (guessing
the most probable value of the range as the guess). Conditional guessing probability with respect to X
given Y is defined as

G(X|Y ) =
∑
y∈Y

p(y) max
x∈X

p(x|y).

Min-entropy [6,18,20] is a measure of success chance of guessing X , i.e.,

H∞(X) = − logG(X) = − log max
x∈X

p(x).

It can also be viewed as the worst case entropy compared to Shannon entropy which is an average
entropy. The conditional min entropy with respect to X given Y is defined as

H∞(X|Y ) = − logG(X|Y ) = − log(
∑
y∈Y

p(y) max
x∈X

p(x|y)).

2.2. Kolmogorov Complexity

In this subsection, some definitions and basic properties of Kolmogorov complexity are recalled
below. We will use the prefix-free definition of Kolmogorov complexity. A set of strings A is prefix-free
if there are not two strings x and y in A such that x is a proper prefix of y. For more details and
attributions we refer to [11,12].

The conditional Kolmogorov complexity K(y|x) of y with condition x, with respect to a universal
prefix-free Turing machine U , is defined by

KU(y|x) = min{|p| : U(p, x) = y}.

Let U be a universal prefix-free computer, then for any other computer F :

KU(y|x) ≤ KF (y|x) + cF .

for all x, y, where cF depends on F but not on x, y. The (unconditional) Kolmogorov complexityKU(y)

of y is defined as KU(y|Λ) where Λ is the empty string. For convenience, KU(y|x) and KU(y) are
denoted, respectively by K(y|x) and K(y).

The mutual algorithmic information between x and y is the quantity

I(x : y) = K(x)−K(x|y).

We consider x and y to be algorithmic independent whenever I(x : y) is zero.
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2.3. Secret Sharing Schemes

Then, secret sharing schemes for general access structures are recalled below. For more details refer
to [1,3,7,21,22].

Each set of shares is classified into either a qualified set or a forbidden set. A qualified set is the set of
shares that can recover the secret. LetQ ⊂ 2[n] and F ⊂ 2[n] be families of qualified and forbidden sets,
respectively. Then Γ := (Q,F) an access structure. An access structure is monotone if for all Q ∈ Q,
every Q ⊂ Q′ satisfies Q′ ∈ Q and; for all F ∈ F , every F ⊂ F ′ satisfies F ′ ∈ F .

In particular, the access structure is called (t, n)-threshold access structure if it satisfies that
Q := {Q : |Q| ≥ t} and F := {F : |F | ≤ t− 1}. In this paper, the access structure is a partition of 2[n],
namely, Q∪ F = 2[n] and Q∩ F = ∅.

Let
∏

= (S, V[n],
∏

share,
∏

comb) be a secret sharing scheme for an access structure Γ ,
as defined below:

(i) S is set of secret information;

(ii) V[n] is set of shares for all users;

(iii)
∏

share is an algorithm for generating shares for all users. It takes a secret s ∈ S on input and
outputs (v1, v2, ..., vn) ∈ V[n];

(iv)
∏

comb is an algorithm for recovering a secret. It takes a set of shares vQ , Q ∈ Q, on input and
outputs a secret s ∈ S.

In this paper, we assume that
∏

meets perfect correctness: for any secret s ∈ S, and for all shares∏
share(s) = (v1, v2, ..., vn), it holds that

∏
comb(vQ) = s for any subset Q ∈ Q.

3. Information Theoretic Security of Secret Sharing Schemes

In this section, we first give the security notions of information theoretic security for secret sharing
schemes based on Shannon entropy, guessing probability and min entropy, respectively, and then we
discuss the relations between these security notions.

Definition 1. Let
∏

be a secret sharing scheme for an access structure Γ . We say
∏

is
(i) ε-Shannon security, if I(S;VF ) ≤ ε;
(ii) ε-guess security, if G(S|VF )−G(S) ≤ ε;
(iii) ε-min security, if H∞(S)−H∞(S|VF ) ≤ ε

for any forbidden set F ∈ F .

Now, we discuss the relations between above three security notions for secret sharing schemes.
The following relations are important for the present paper.

Lemma 1. [11,18,20] Let X and Y be two random variables over X and Y , respectively . Then
(i) G(X|Y ) ≥ G(X).
(ii) H(X|Y ) ≤ H(X).
(iii) H∞(X|Y ) ≤ H∞(X).
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(iv) I(X;Y ) ≥ (2/ ln 2)[G(X|Y )−G(X)]2.

(v) |H∞(X)−H∞(X|Y )| ≥ (1/ ln 2)|G(X)−G(X|Y )|.
(vi) H∞(X)−H∞(X|Y ) ≥ I(X;Y ), where X is uniformly random over X .

From above lemma, several relations of security notions for the symmetric-key cryptography in [18].
Similarly, from above lemma, we obtain the following.

Theorem 1. Let
∏

be a secret sharing scheme for an access structure Γ.

(i) If
∏

is ε-Shannon security, then it is
√

1
2
ε ln 2 -guess security.

(ii) If
∏

is ε-min security, then it is ε ln 2 -guess security
(iii) If

∏
is ε-min security and S is uniformly random over S, then

∏
is ε-Shannon security.

From this result, we can see that, for a secret sharing scheme, ε-Shannon and ε-min security both are
stronger than ε-guess security. If we assume S is uniformly random, then, for a secret sharing scheme,
ε-min security is stronger than ε-Shannon security.

In the following, using a modified example of threshold secret sharing scheme, we showed that a
secret sharing scheme is ε-guess security does not imply it is ε-Shannon security.

Example 1. Let s, and v1, v2, · · · , vn be binary strings with same length k. Assume that s and
v1, v2, · · · , vn−1 are independent. We generate vn by vn = s ⊕ v1 ⊕ v2 ⊕ · · · ⊕ vn−1 where ⊕
denotes the exclusive OR operation. This scheme is (n, n)−threshold secret sharing scheme, called
Karnin–Greene–Hellman scheme [5].

Let S = {0, 1}k, V1 = {0, 1}k−1, V2 = {0, 1}k and V3 = {0, 1}k−1. S is uniformly random over S
and V1 × V2 is uniformly random over {0, 1}k−1 × {0, 1}k. To share s = s′|s′′ for s′ ∈ {0, 1}k−1 and
s′′ ∈ {0, 1}. Let v2 = v′2|v′′2 where v′ ∈ {0, 1}k−1 and v′′ ∈ {0, 1}. And s′ and v1, v′2 are independent. Let
v′′2 = s′′ and v3 = s′ ⊕ v1 ⊕ v′2. Algorithm for recovering the secret is s = s′|s′′ where s′ = v3 ⊕ v′1 ⊕ v2
and s′′ = v′′2 . This scheme is (3, 3)−threshold secret sharing scheme. It is easy to see thatG(S|V2, V3) =

G(S|V1, V3) = G(S|V1, V2) = 2−(k−1) and hence |G(S|Vi, Vj) − G(S)| = 2−k for 1 ≤ i < j ≤ 3.
However, I(S; (V2, V3)) = H(S)−H(S|V2, V3) = k − (k − 1) = 1.

Next, we discuss the relationship between these security notions when ε = 0.

Theorem 2. If a secret sharing scheme is 0-Shannon security, then it is 0-min security. Moreover, if
S is uniformly random over S, then, for a secret sharing scheme, 0-min security, 0-guess security and
0-Shannon security are all equivalent.

However, a secret sharing scheme is 0-min security does not imply it is 0-Shannon security.

Example 2. [18]. Let S = V1 = V2 = {0, ..., k − 1} for k ≥ 4. pV1(1) = ... = pV1(k − 1) = 1/(k + 1)

and pV1(0) = 2/(k + 1). Let pS(1) = ... = pS(k − 1) = 1/(2k − 2) and pS(0) = 1/2. s and v1 are
independent. We generate v2 by v2 = v1 + s( mod k). This scheme is (2, 2)−threshold secret sharing
scheme. By maxs∈S PS(s) = 1/2 and hence H∞(S) = 1. By pS|V2(s|v2) = pS(s)pV2|S(v2|s)/pV2(v2)

then p0|V2 ≥ 1/(2k + 2)pV2 while pS|V2(s|v2) ≤ 1/(k2 − 1)pV2(v2) for s 6= 0. As k ≥ 4, for any v2, we
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have that pS|V2(0|v2) > pS|V2(s|v2) for s 6= 0. So H∞(S|V2) = 1. H∞(S|V1) = H∞(S) = 1 by s and v1
are independent. So this scheme is 0-min security. But this scheme is not 0-Shannon security.

Some implications do not hold in general, but holds when S is uniformly random distribution. From
above results, if S is uniformly random over S, then for a secret sharing scheme, ε-min security is
stronger than ε-Shannon security, ε-Shannon security is stronger than ε-guess security, and these three
security notions are the same when ε = 0.

4. Individual Security of Secret Sharing Schemes

In this section, we first give the security notions of individual security for secret sharing schemes
based on Kolmogorov complexity, and then we consider the size of the shares based on the new concept
of security in secret sharing schemes.

Definition 2. Let
∏

be a secret sharing scheme for an access structure Γ. An instance (s, v1, v2, ..., vn) is
(i) Kolmogorov ε-security, if for any forbidden set F ∈ F it satisfies

I(s; vF ) ≤ ε, i.e., K(s)−K(s|vF ) ≤ ε (1)

(ii) normalized Kolmogorov ε-security, if for any forbidden set F ∈ F it satisfies

I(s; vF ) ≤ εK(s), i.e., K(s)−K(s|vF ) ≤ εK(s). (2)

We know that, in the notion of Kolmogorov ε-security, the security parameter ε of an instance is
amount of information leakage, the maximal value of I(s; vF ) for any forbidden set F . However, for
example, 50 leaked bits is big for a 100-bit secret, but is small for a 1000-bit secret. So, we give the
notion of normalized Kolmogorov ε-security. The parameter ε in latter notion is information leak ratio,
the maximal value of I(s; vF ) for any forbidden set F , divided by K(s).

The notion of normalized Kolmogorov ε-security can simply be understood as a normalized version
of individual security.

In fact, for the same instance (s, v1, v2, ..., vn), the security parameter ε is small in a forbidden
set F but I(s; vF ′ is a big variance in another forbidden set F ′. It is worth noting that in
Definition 2, for Kolmogorov ε-security, ε is a maximum value of {I(s; vF );F ∈ F}, more precisely,
ε = supF∈F I(s; vF ). And for normalized Kolmogorov ε-security, ε is a maximum value of
{I(s; vF )/K(s);F ∈ F}.

Now we discuss some results for Kolmogorov ε-security,
By I(s; vF ) ≤ I(s; vF ′) + O(1), if F ⊆ F ′ (by K(x|y) ≤ K(x|y, z) + O(1)). We know that, up to a

constant, the mutual algorithmic information between s and vi is smaller than ε, because, for any i ∈ F ,
we have

I(s; vi) = K(s)−K(s|vi) ≤ K(s)−K(s|vF ) +O(1) ≤ ε(k) +O(1).

Moreover, if access structure Γ is a (t;n)-threshold access structure, then in Definition 2(i), up to a
constant, ε is a maximum value of {I(s; vF ); |F | = t− 1}, or equivalently, ε = sup|F |=t−1 I(s; vF ).

We show some lower bounds of share sizes of secret sharing schemes.
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Theorem 3. Let
∏

be a secret sharing scheme for an access structure Γ.
(i) If an instance (s, v1, v2, ..., vn) is Kolmogorov ε-security, then

|vi| ≥ K(s)− ε−O(1)

for every i ∈ [n].
(ii) If an instance (s, v1, v2, ..., vn) is normalized Kolmogorov ε-security, then

|vi| ≥ (1− ε)K(s)−O(1)

for every i ∈ [n].

Proof. For any i ∈ [n], there exists a forbidden set F ∈ F such that i /∈ F and F ∪ {i} ∈ Q. Let p a
shortest binary program that computes s from vF . By

∏
comb(vF , vi) = s, we have p ≤ |

∏
comb |+ |vi|.

(i) If
∏

is Kolmogorov ε−security, K(s)−K(s|vF ) ≤ ε, then we have

K(s)− ε ≤ K(s|vF ) ≤ |Πcomb|+ |vi|.

Thus |vi| ≥ K(s)− ε−O(1).
(ii) If

∏
is normalized Kolmogorov ε-security, K(s)−K(s|vF ) ≤ εK(s), then

K(s)− εK(s) ≤ K(s|vF ) ≤ |Πcomb|+ |vi|.

Thus |vi| ≥ (1− ε)K(s)−O(1).

From above theorem, we know that a string with high Kolmogorov complexity, or a nearly
Kolmogorov random string, cannot be split among participants with small share sizes and high
security parameter.

5. Information Theoretic Security Versus Individual Security

In this section, we establish some relations between information theoretic security and individual
security for secret sharing schemes.

First, we know that, in a secret sharing scheme, the security parameter ε is small for some instances
but is a big value for other instances. This means in a secret sharing scheme, it is difficult for every
instance is (normalized) Kolmogorov ε-security and ε is a small value. So we consider the case of a
secret sharing scheme that the probability of an instance with low security parameter is high, i.e., most
of instances are (normalized) Kolmogorov ε-security and ε is a small value.

Definition 3. Let
∏

be a secret sharing scheme for an access structure Γ.
∏

is
(i) Kolmogorov (ε, δ)-security, if for any forbidden set F , it satisfies

Pr
s∈S,vF∈×VF

[I(s; vF |u) ≤ ε] ≥ δ.

(ii) normalized Kolmogorov (ε, δ)-security, if for any forbidden set F , it satisfies

Pr
s∈S,vF∈×VF

[I(s; vF |u) ≤ εK(s)] ≥ δ.

where u a distribution over S × VF .
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The following relations between Kolmogorov complexity, entropy and mutual information are
important for the present paper.

Lemma 2. [11,16] Let X, Y be random variables over X , Y . For any computable probability
distribution u(x, y) over X × Y ,
(i) 0 ≤ (

∑
x,y u(x, y)K(x|y)−H(X|Y )) ≤ K(u) +O(1).

(ii) I(X;Y ) − K(u) ≤
∑

x,y u(x, y)I(x : y) ≤ I(X;Y ) + 2K(u). When u is given, then I(X;Y ) =∑
x,y u(x, y)I(x : y|u) +O(1).

Here we give following relations between information theoretic security and individual security of
Definition 3(i).

Theorem 4. For any (t, n)-threshold scheme
∏

where S is the set of secrets and V[n] the set of all
shares for all users, for any independent variables S, V[n] over S , V[n] with distribution u. If

∏
is

Kolmogorov (ε, δ)-security, then , up to a constant, it is ε + (1 − δ) log(|S|)-Shannon security and√
1
2
[ε+ (1− δ) log(|S|)] ln 2-guess security.

Proof. For any forbidden set F , let Q be the set of Kolmogorov ε-security instances, i.e.,
Q = {(s, v[n]); I(s; vF |u) ≤ ε, ∀F ∈ F}. Then by Lemma 2, up to a constant,

I(S;VF ) ≤
∑

(s,v[n])∈Q

u(s, v)I(s : vF |u) +
∑

(s,v[n])/∈Q

u(s, vF )I(x : y|u)

≤ ε
∑

(s,v[n])∈Q

u(s, v) +
∑

(s,v[n])/∈Q

u(s, vF )[K(s|u)−K(s|vF , u)]

≤ ε+ (1− δ) log(|S|).

Then by Theorem 1, up to a constant, we have |G(S)−G(S|VF )| ≤
√

1
2
[ε+ (1− δ) log(|S|)] ln 2.

Then we establish some relations between information theoretic security and normalized individual
security of Definition 3(ii).

Theorem 5. For any (t, n)-threshold scheme
∏

where S is the set of secrets and V[n] the set of all
shares for all users, for any independent variables S, V[n] over S , V[n] with distribution u. If

∏
is

normalized Kolmogorov (ε, δ)-security, then, up to a constant, it is (1+ε− δ) log(|S|)-Shannon security

and
√

1
2
(1 + ε− δ) log(|S|) ln 2-guess security.

Proof.
∏

is normalized Kolmogorov (ε, δ)-security, then the probability that an instance is normalized
Kolmogorov ε-security is at least δ, i.e., for any forbidden set F ,

Pr
s∈S,vF∈×VF

[I(s; vF |u) ≤ εK(s)] ≥ δ.
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For any forbidden set F , let Q be the set of normalized Kolmogorov ε-security instances, i.e.,
Q = {(s, v[n]); I(s; vF |u) ≤ εK(s),∀F ∈ F}. Then by Lemma 2, up to a constant,

I(S;VF ) ≤
∑

(s,v[n])∈Q

u(s, v)I(s : vF |u) +
∑

(s,v[n])/∈Q

u(s, vF )I(x : y|u)

≤ ε
∑

(s,v[n])∈Q

u(s, v)K(s|u) +
∑

(s,v[n])/∈Q

u(s, vF )[K(s|u)−K(s|vF , u)]

≤ ε log(|S|) + (1− δ) log(|S|)
≤ (1 + ε− δ) log(|S|).

Then by Theorem 1, up to a constant, we have |G(S)−G(S|VF )| ≤
√

1
2
(1 + ε− δ) log(|S|) ln 2.

Comparing the Theorem 4 with Theorem 5, we have different relations between entropy-based
security notions and two versions of individual security for secret sharing schemes.

6. Conclusions

Kolmogorov complexity and entropy measures are fundamentally different measures. They both are
used in measuring the security for secret sharing schemes. In this paper, we study relations of several
security notions for secret sharing schemes. First we consider three security notions of information
theoretic security of secret sharing schemes, ε-Shannon and ε-min security both are stronger than ε-guess
security, and ε-min security is stronger than ε-Shannon security when S is uniformly random. However,
for a secret sharing scheme, 0-min security, 0-guess security and 0-Shannon security are the same when
S is uniformly random. Then after giving the security notions of individual security for secret sharing
schemes in the frame work of Kolmogorov complexity, we establish some relations between information
theoretic security and two versions of individual security for secret sharing schemes, respectively.

In this paper, we only considered relations of several security notions for secret sharing schemes.
Naturally, a more detailed discussion of connections with other security notions in other fields of
cryptography, such as the security notions based on conditional Rényi entropies in [6,7], will be both
necessary and interesting.

Acknowledgments

The authors are grateful for the financial support partly from the NSF Project (No. 61274133)
of China.

Author Contributions

Both authors have contributed to the study and preparation of the article. Both authors have read and
approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.



Entropy 2015, 17 1144

References

1. Blakley, G.R. Safeguarding cryptographic keys. In Proceedings of the 1979 AFIPS National
Computer Conference, New York, NY, USA, 4–7 June 1979; Volume 48, pp. 313–317.

2. Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613.
3. Blundo, C.; De Santis, A.; Vaccaro, U. On secret sharing schemes. Inf. Process. Lett. 1998, 65,

25–32.
4. Karnin, E.D.; Greene, J.W.; Hellman, M.E. On secret sharing systems. IEEE Trans. Inf. Theory

1983, 29, 35–41.
5. Iwamoto, M.; Ohta, K. Security notions for information theoretically secure encryptions. In

Proceedings of 2011 IEEE International Symposium on Information Theory (ISIT), St. Petersburg,
Russia, 31 July–5 August; pp. 1777–1781.

6. Iwamoto, M.; Shikata, J. Information theoretic security for encryption based on conditional Rényi
entropies. In Proceedings of the 7th International Conference on Information Theoretic Security
(ICITS 2013), Singapore, Singapore, 28–30 November 2013; pp. 103–121.

7. Iwamoto, M.; Shikata, J. Secret sharing schemes based on min-entropies. 2014, arXiv:1401.5896.
8. Chaitin, G. On the length of programs for computing finite binary sequences. J. ACM 1966, 13,

547–569.
9. Kolmogorov, A. Three approaches to the quantitative definition of information. Probl. Inf. Transm.

1965, 1, 1–7.
10. Solomonoff, R. A formal theory of inductive inference, part I. Inf. Control 1964, 7, 1–22.
11. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: Hoboken, NJ, USA, 2006.
12. Li, M.; Vitányi, P.M.B. An Introduction to Kolmogorov Complexity and Its Applications, 3rd ed.;

Springer: New York, NY, USA, 2008.
13. Grünwald, P.; Vitányi, P. Shannon information and Kolmogorov complexity. 2008, arXiv:cs/

0410002v1.
14. Pinto, A. Comparing notions of computational entropy. Theory Comput. Syst. 2009, 45, 944–962.
15. Teixeira, A.; Matos, A.; Souto, A.; Antunes, L. Entropy measures vs. Kolmogorov complexity.

Entropy 2011, 13, 595–611.
16. Antunes, L.; Laplante, S.; Pinto, A. Salvador, L. Cryptographic security of individual instances.

In Information Theoretic Security; Springer: Berlin/Heidelberg, Germany, 2009; pp. 195–210.
17. Kaced, T. Almost-perfect secret sharing. In Proceedings of 2011 IEEE International Symposium

on Information Theory (ISIT), St. Petersburg, Russia, 31 July–5 August 2011, 1603–1607.
18. Jiang, S. On Unconditional ε-Security of Private Key Encryption. Comput. J. 2013, doi:10.1093/

comjnl/bxt097.
19. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948 , 27, 379–423,

623–656.
20. Alimomeni, M.; Safavi-Naini, R. Guessing secrecy. In Proceedings of 6th International Conference

on Information Theoretic Security (ICITS 2012), Montreal, QC, Canada, 15–17 August 2012;
pp. 1–13.



Entropy 2015, 17 1145

21. Capocelli, R. M.; De Santis, A.; Gargano, L.; Vaccaro, U. On the size of shares for secret sharing
schemes. J. Cryptol. 1993, 6, 157–167.

22. Stinson, D.R. Decomposition constructions for secret sharing Schemes. IEEE Trans. Inf. Theory
1994, 40, 118–125.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Preliminaries
	Entropy
	Kolmogorov Complexity
	Secret Sharing Schemes

	Information Theoretic Security of Secret Sharing Schemes
	Individual Security of Secret Sharing Schemes
	Information Theoretic Security Versus Individual Security
	Conclusions

