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Abstract: The graph entropies inspired by Shannon’s entropy concept become the
information-theoretic quantities for measuring the structural information of graphs and complex
networks. In this paper, we continue studying some new properties of the graph entropies based on
information functionals involving vertex degrees. We prove the monotonicity of the graph entropies
with respect to the power exponent. Considering only the maximum and minimum degrees of the
(n, m)-graph, we obtain some upper and lower bounds for the degree-based graph entropy. These
bounds have different performances to restrict the degree-based graph entropy in different kinds of
graphs. Moreover the degree-based graph entropy can be estimated by these bounds.
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1. Introduction

The entropy of a probability distribution is known as a measure of the unpredictability of
information content or a measure of the uncertainty of a system. This concept was introduced
first from Shannon’s famous paper [1]. Later, entropy was initiated to be applied to graphs. It
was developed for measuring the structural information of graphs and networks [2]. In that paper,
Rashevsky proposed the concept of graph entropy based on the classifications of vertex orbits.
Recently, graph entropies have been widely applied in many different fields, such as chemistry,
biology, ecology and sociology [3–7].

There are several different types of such graph entropy measures [8]. For example, the graph
entropy measures that associate probability distributions with elements (vertices, edges, etc.) of a
graph can be classified as intrinsic and extrinsic measures. For intrinsic graph entropy measures,
the probability distribution is induced by some structural feature of the graph. For extrinsic graph
entropy measures, the probability distribution is assigned arbitrarily to elements of the graph. Most of
the classical graph entropies are intrinsic. Dehmer introduced graph entropies based on information
functionals, which capture structural information, and studied their properties [9–11]. The degree
powers are extremely significant invariants and studied extensively in graph theory and network
science, and they are used as the information functionals to explore the networks [12,13]. For
more expansive research, Estrada and co-authors proposed a physically-sound entropy measure for
networks/graphs [14] and studied the walk-based graph entropies [15–17]. There is am especially
close relationship between the graph entropies based on length-two cycles and the graph entropies
based on the degree powers for exponent k = 1. We focus on the degree powers and the graph
entropies based on the degrees. Therefore, we continue studying them under certain conditions.
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The structure of this paper is as follows: In Section 2, some definitions and notations of graph
theory and the graph entropies we are going to study are reviewed. In Section 3, the monotonicity
of the graph entropies with respect to the power exponent is discussed. In Section 4, we give four
upper bounds and three lower bounds of the graph entropies based on the degrees under certain
conditions. In Section 5, numerical results are presented to demonstrate graph entropies. Finally, a
short summary and conclusion are drawn in the last section.

2. Preliminaries to Degree-Based Graph Entropies

A graph G = (V, E) is an ordered pair of sets V and E, where the set V of elements named
vertices or nodes is a nonempty finite set, and the set E is composed of two-element subsets uv of V
named edges. If e = uv is an edge, then u and v are called adjacent to each other, and v is a neighbor
of u. The order of G is defined as the number of vertices in the graph G. Additionally, the size of
G is defined as the number of edges in the graph G. An (n, m)-graph is defined as a graph of order
n and size m. If any two vertices are connected by at most one edge in a graph, then the graph is
called a simple graph. A path is a finite sequence of edges that connect a sequence of vertices, such
that all edges and vertices are distinct from one another. A cycle is a finite sequence of edges that
connect a sequence of vertices starting and ending at the same vertex. A graph is connected if there
exists at least one path between every pair of vertices. Correspondingly, a graph is disconnected if
it is not connected. A tree is a connected graph without any cycle. It is easy to see that a tree is an
(n, n− 1)-graph. A bipartite graph is a graph G whose vertices can be divided into two disjoint sets,
such that every edge connects a vertex in one set to a vertex in another set. The two disjoint sets are
called partite sets. Additionally, a bipartite graph can be denoted by n1× n2 if the orders of the partite
sets are n1 and n2, respectively.

The set of neighbors of a vertex u is called its neighborhood N(u). The number of edges
adjacent to the vertex u is the degree of u, which is denoted by d(u) or in short du. If each vertex
has the same degree in G, then G is a regular graph or is d-regular with vertices of degree d. The
maximum and minimum degrees are often denoted by ∆(G) and δ(G). If V = {v1, v2, · · · , vn},
then D(G) = {d1, d2, · · · , dn} is a degree sequence of G. Without loss of generality, we order the
vertices, such that the degree sequence is monotone decreasing, for example ∆(G) = d1 ≥ d2 ≥
· · · ≥ dn = δ(G). To a given graph G, the vertex degree is an important graph invariant, which
is related to the structural properties of the graph. In the following, we discuss a (n, m)-graph with
given n and m. The sum of degree powers is defined by:

D(k) :=
n

∑
i=1

di
k (1)

where k is an arbitrary real number. Obviously, when k = 1, D(1) = ∑n
i=1 di = 2m presents the sum

of degrees. Observing D(1) = Tr(L) where L = D− A is the graph Laplacian associated with G and
Tr(L) is equal to the sum of the eigenvalues of L, as well, we can see that there exists a connection
between the degree-based graph entropies and spectral-based graph entropies. The sum of degree
powers as an invariant is called the zeroth order general Randić index [18–20]. Chen et al. [21] have
reviewed it for different values of k and the relationships with some indices, such as the Zagreb index,
graph energies, the HOMO-LUMO index and the Estrada index [22–32].

Next, we introduce the definition of Shannon’s entropy in information theory [33]. The
logarithms in this paper are base two logarithms.
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Definition 1. Let P = (p1, p2, · · · , pn) be a probability distribution of discrete random variable X,

such that 0 ≤ pi ≤ 1 and
n
∑

i=1
pi = 1. Shannon’s entropy of the probability distribution P (of discrete

random variable X) is defined by:

H(P) = −
n

∑
i=1

pi log pi (2)

Definition 2. Let G = (V, E) be a connected graph. For any vi ∈ V, we define:

p(vi) =
f (vi)

∑n
j=1 f (vj)

(3)

where f is a meaningful information functional. According to the information functional f , the
vertices are mapped to the non-negative real numbers.

Owing to ∑n
i=1 p(vi) = 1, the quantities p(vi) can be seen as probability values. Then, the graph

entropy of G has been defined as follows [9].

Definition 3. Let G = (V, E) be a connected graph and f be a meaningful information functional.
The (Shannon’s) graph entropy of G is defined by:

I f (G) = −
n

∑
i=1

f (vi)

∑n
j=1 f (vj)

log
f (vi)

∑n
j=1 f (vj)

(4)

In [10], Dehmer and co-authors presented the parametric information functionals by using the
diameter of graph G and the j-sphere of the vertices. In [11], they set other information functionals
by using the spectrum of graph G. Because the degrees of the graph G can be seen as one species
of the most noticeable invariants and they can be calculated very easily in large-scale networks, we
focus on the information functionals by using the degree powers and the graph entropies based on
the degrees. In [12,13], the graph entropy of G based on the degree powers’ information functional is
defined by:

I f (G, k) = −
n

∑
i=1

di
k

∑n
j=1 dj

k log
di

k

∑n
j=1 dj

k (5)

For simplicity, we write the entropy of graph I f (G, 1) as I1
f (G).

3. Monotonicity of I f (G, k) with Respect to the Parameter k

In [13], the authors have proven the theorem:

Theorem 1. If G is a connected graph with vertices of degree d (d-regular graph), then I f (G, k) = log n for
any k.

In this section, we obtain the monotonicity of I f (G, k) with respect to the parameter k when G is
an ordinary graph.

Theorem 2. If G is a connected graph where each vertex does not have the same degree (not a d-regular graph),
then for k > 0, I f (G, k) is monotonically decreasing with respect to k; for k < 0, I f (G, k) is monotonically
increasing with respect to k.
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Proof. We have ordered the vertices such that the degree sequence obtained is monotone decreasing
∆(G) = d1 ≥ d2 ≥ · · · ≥ dn = δ(G) and du > dv for some u, v. The derivative of the function I f (G, k)
with respect to k is:

d
dk

(
I f (G, k)

)
=− d

dk

(
n

∑
i=1

di
k

∑n
j=1 dj

k log
di

k

∑n
j=1 dj

k

)

=− 1
ln 2
· d

dk

(
n

∑
i=1

di
k

∑n
j=1 dj

k ln
di

k

∑n
j=1 dj

k

)

=− 1
ln 2
·

n

∑
i=1

di
k ln di ln

(
di

k

D(k)

)
∑n

j=1 dj
k −

di
k ln

(
di

k

D(k)

) (
∑n

j=1 dj
k ln dj

)
(

∑n
j=1 dj

k
)2


=− 1

ln 2(D(k))2 ·
[(

n

∑
i=1

di
k ln di ln

(
di

k

D(k)

))(
n

∑
j=1

dj
k

)

−
(

n

∑
i=1

di
k ln

(
di

k

D(k)

))(
n

∑
j=1

dj
k ln dj

)]

=− 1
ln 2(D(k))2 ·

n

∑
i=1

n

∑
j=1

[
di

kdj
k ln di ln

(
di

k

D(k)

)
− di

kdj
k ln dj ln

(
di

k

D(k)

)]

=− 1
ln 2(D(k))2 · ∑

1≤i<j≤n
di

kdj
k (ln di − ln dj

) [
ln

(
di

k

D(k)

)
− ln

(
dj

k

D(k)

)]

Obviously D(k) > 0. When i < j, we have ln di ≥ ln dj. Additionally, if k > 0, then di
k ≥ dj

k; if k < 0,
then di

k ≤ dj
k. Moreover, for some u, v,

du
kdv

k (ln du − ln dv)

[
ln

(
du

k

D(k)

)
− ln

(
dv

k

D(k)

)]
6= 0

These results show that if k > 0, d
dk

(
I f (G, k)

)
< 0; if k < 0, d

dk

(
I f (G, k)

)
> 0. Thus, we complete

the proof. �

4. Some New Bounds for I1
f (G)

In this section, we prove some new bounds for the degree-based graph entropy I1
f (G) in

(n, m)-graph G(n, m).

Lemma 1. Let G(n, m) be an (n, m)-graph. The symbols ∆ and δ denote the maximum degree and the
minimum degree of G(n, m), respectively. Then, the inequalities hold:

log(D(k))− k log ∆ ≤ I f (G, k) ≤ log(D(k))− k log δ

The above Lemma 1 is Theorem 1 in [13]. Especially, D(1) = 2m in (n, m)-graph G(n, m).
Therefore, we have the following.

Theorem 3. Let G(n, m) be an (n, m)-graph. The symbols ∆ and δ denote the maximum degree and the
minimum degree of G(n, m), respectively. Then, the inequalities hold:

log(2m)− log ∆ ≤ I1
f (G) ≤ log(2m)− log δ (6)
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Theorem 4. Let G(n, m) be an (n, m)-graph. The symbols ∆ and δ denote the maximum degree and the
minimum degree of G(n, m), respectively. If n > 2, then the inequality holds:

I1
f (G) ≤ 2m− δ− ∆

2m
log

2m(n− 2)
2m− δ− ∆

− δ

2m
log

δ

2m
− ∆

2m
log

∆
2m

(7)

Proof. For ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ and ∑n
i=1 di = 2m, we have:

I1
f (G) = −

n

∑
i=1

di

∑n
j=1 dj

log
di

∑n
j=1 dj

= −
n

∑
i=1

di
2m

log
di

2m

= −
(

n−1

∑
i=2

di
2m

log
di

2m

)
− δ

2m
log

δ

2m
− ∆

2m
log

∆
2m

Observe that ∑n−1
i=2 di = 2m − δ − ∆. Hence, we construct vector q = (q1, q2, · · · , qn−2)

where qj = dj+1
/
(2m− δ− ∆) , j = 1, 2, · · · , n − 2. Then, 0 ≤ qj ≤ 1 and ∑n−2

j=1 qj =

∑n−1
i=2 di

/
(2m− δ− ∆) = 1. The vector q is a probability vector, and Shannon’s entropy of q is:

H(q) =−
n−2

∑
j=1

qj log qj = −
n−1

∑
i=2

di
2m− δ− ∆

log
di

2m− δ− ∆

=−
n−1

∑
i=2

di
2m− δ− ∆

(
log

di
2m

+ log
2m

2m− δ− ∆

)

=−
n−1

∑
i=2

2m
2m− δ− ∆

· di
2m

log
di

2m

−
n−1

∑
i=2

di
2m− δ− ∆

log
2m

2m− δ− ∆

=− 2m
2m− δ− ∆

(
n−1

∑
i=2

di
2m

log
di

2m

)
− log

2m
2m− δ− ∆

In information theory, it is easy to obtain that H(q) ≤ log(n − 2) with equality if and only if
q1 = q2 = · · · = qn−2 (see [33] Theorem 2.6.4). Then, we have:

−
n−1

∑
i=2

di
2m

log
di

2m
=

2m− δ− ∆
2m

[
H(q) + log

2m
2m− δ− ∆

]
≤ 2m− δ− ∆

2m

[
log(n− 2) + log

2m
2m− δ− ∆

]
=

2m− δ− ∆
2m

log
2m(n− 2)
2m− δ− ∆

(8)

Take (8) into I1
f (G):

I1
f (G) = −

(
n−1

∑
i=2

di
2m

log
di

2m

)
− δ

2m
log

δ

2m
− ∆

2m
log

∆
2m

≤ 2m− δ− ∆
2m

log
2m(n− 2)
2m− δ− ∆

− δ

2m
log

δ

2m
− ∆

2m
log

∆
2m

Additionally, the equality holds if and only if d2 = d3 = · · · = dn−1. Thus, we complete the proof. �

8221



Entropy 2015, 17, 8217–8227

Lemma 2. Define µ := min
1≤i≤n

{pi}; ν := max
1≤i≤n

{pi}. Then:

1
2 ln 2 · nν ∑

1≤i<j≤n
(pi − pj)

2 ≤ log n− H(p) ≤ 1
2 ln 2 · nµ ∑

1≤i<j≤n
(pi − pj)

2 (9)

The above Lemma 2 can be seen in [34], Theorem 5. Merely the change of base should be applied
to the formula because the logarithms in [34] are base e logarithms.

Theorem 5. Let G(n, m) be an (n, m)-graph. The symbols ∆ and δ denote the maximum degree and the
minimum degree of G(n, m), respectively. Then, the inequalities hold:

max
{

log n− (2m− nδ)(n∆− 2m)

4 ln 2 · δmn
, 0
}
≤ I1

f (G)

≤ log n− n(n− 2)(δ2 + ∆2) + n(2m− δ− ∆)2 − 4m2(n− 2)
4 ln 2 · ∆mn(n− 2)

(10)

Proof. Let pi =
di
2m , then µ = δ

2m , ν = ∆
2m and ∑n

i=1 di = 2m. Firstly,

∑
1≤i<j≤n

(pi − pj)
2 = ∑

1≤i<j≤n

(
di

2m
−

dj

2m

)2

=
1

4m2

n
n

∑
i=1

d2
i −

(
n

∑
i=1

di

)2


=
1

4m2

(
n

n

∑
i=1

d2
i − 4m2

) (11)

holds. We observe that:

0 ≤
n

∑
i=1

(di − δ)(∆− di) = (δ + ∆)
n

∑
i=1

di − nδ∆−
n

∑
i=1

d2
i

= 2m(δ + ∆)− nδ∆−
n

∑
i=1

d2
i

This leads to:

n
n

∑
i=1

d2
i − 4m2 ≤ n [2m(δ + ∆)− nδ∆]− 4m2

= (2m− nδ)(n∆− 2m).

(12)

Taking (11) and (12) into Lemma 2, we deduce the inequality:

log n− I1
f (G) ≤ (2m− nδ)(n∆− 2m)

4 ln 2 · δmn
(13)

On the other hand,

n

∑
i=1

d2
i = δ2 + ∆2 +

n−1

∑
i=2

d2
i

≥ δ2 + ∆2 +
1

n− 2

(
n−1

∑
i=2

di

)2

= δ2 + ∆2 +
(2m− δ− ∆)2

n− 2

(14)
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The inequality is obtained by using Chebyshev’s sum inequality. This leads to:

n
n

∑
i=1

d2
i − 4m2 ≥ n

[
δ2 + ∆2 +

(2m− δ− ∆)2

n− 2

]
− 4m2

=
n(n− 2)(δ2 + ∆2) + n(2m− δ− ∆)2 − 4m2(n− 2)

n− 2

(15)

Taking (11) and (15) into Lemma 2, we deduce the inequality:

log n− I1
f (G) ≥ log n− n(n− 2)(δ2 + ∆2) + n(2m− δ− ∆)2 − 4m2(n− 2)

4 ln 2 · ∆mn(n− 2)
(16)

Using (13) and (16), the validity of the inequalities (10) can be obtained. �

Lemma 3. Define µ := min
1≤i≤n

{pi}; ν := max
1≤i≤n

{pi}. Then:

ψ(µ, ν) ≤ log n− H(p) ≤ min{Ψ(µ, ν), n · ψ(µ, ν)} (17)

where ψ(µ, ν) := µ log
(

2µ
µ+ν

)
+ ν log

(
2ν

µ+ν

)
, Ψ(µ, ν) := log

(
(µ+ν)2

4µν

)
.

The above Lemma 3 is proven in [35], Proposition 3.

Theorem 6. Let G(n, m) be an (n, m)-graph. The symbols ∆ and δ denote the maximum degree and the
minimum degree of G(n, m), respectively. Then, the inequalities hold:

log n−min{Ψ(δ, ∆), n · ψ(δ, ∆)} ≤ I1
f (G) ≤ log n− ψ(δ, ∆) (18)

where ψ(δ, ∆) := 1
2m

[
δ log

(
2δ

δ+∆

)
+ ∆ log

(
2∆

δ+∆

)]
, Ψ(δ, ∆) := log

(
(δ+∆)2

4δ∆

)
.

Proof. Let µ = δ
/
(2m) and ν = ∆

/
(2m) in (17). Then, inequality (18) is obtained. �

Overall, we obtain four upper bounds:

U0 := log(2m)− log δ

U1 :=
2m− δ− ∆

2m
log

2m(n− 2)
2m− δ− ∆

− δ

2m
log

δ

2m
− ∆

2m
log

∆
2m

U2 := log n− n(n− 2)(δ2 + ∆2) + n(2m− δ− ∆)2 − 4m2(n− 2)
4 ln 2 · ∆mn(n− 2)

U3 := log n− ψ(δ, ∆)

and three new lower bounds:

L0 := log(2m)− log ∆

L1 := max
{

log n− (2m− nδ)(n∆− 2m)

4 ln 2 · δmn
, 0
}

L2 := log n−min{Ψ(δ, ∆), n · ψ(δ, ∆)}

5. Numerical Results

In this section, we compute the values of the degree-based graph entropy I1
f (G) and the bounds

obtained above for some special (n, m)-graphs.
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5.1. Path Graph

Let Pn be a path graph with exactly two pendant vertices and n− 2 internal vertices. Therefore,
in Pn two pendant vertices have degree one, while all others (if any) have degree two. Additionally,
m = n− 1, ∆ = 2, δ = 1.

By calculating the graph entropy of a series of path graphs, we show some values of the
degree-based graph entropy and bounds in the following Table 1.

Table 1. The values of the degree-based graph entropy and bounds for Pn.

n 4 5 6 7 10 20 30 40 50 100

I1
f (Pn) 1.918 2.250 2.522 2.752 3.281 4.301 4.892 5.311 5.635 6.639
U0 2.585 3.000 3.322 3.585 4.170 5.248 5.858 6.285 6.615 7.629
L0 1.585 2.000 2.322 2.585 4.170 4.248 4.858 5.285 5.615 6.629
U1 1.959 2.289 2.557 2.782 3.303 4.312 4.900 5.317 5.640 6.642
L1 1.880 2.214 2.489 2.721 3.258 4.288 4.884 5.304 5.630 6.637
U2 1.970 2.298 2.564 2.788 3.307 4.314 4.901 5.318 5.640 6.642
L2 1.837 2.169 2.438 2.664 3.186 4.193 4.780 5.196 5.519 6.520
U3 1.959 2.291 2.560 2.787 3.308 4.315 4.903 5.319 5.641 6.643

5.2. Star Graph

Let Sn be a star graph with one internal vertex and n− 1 pendant vertices. It also can be seen
as a complete bipartite graph K1,n−1. Therefore, in Sn, one internal vertex has degree n− 1, while all
others (if any) have degree 1. Additionally, m = n− 1, ∆ = n− 1, δ = 1.

By calculating the graph entropy of a series of star graphs, we show some values of the
degree-based graph entropy and bounds in the following Table 2.

Table 2. The values of the degree-based graph entropy and bounds for Sn.

n 4 5 6 7 10 20 30 40 50 100

I1
f (Sn) 1.792 2.000 2.161 2.292 2.585 3.124 3.429 3.643 3.807 4.315
U0 2.585 3.000 3.322 3.585 4.170 5.248 5.858 6.285 6.615 7.629
L0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
U1 1.792 2.000 2.161 2.292 2.585 3.124 3.429 3.643 3.807 4.315
L1 1.639 1.673 1.623 1.519 1.104 0.000 0.000 0.000 0.000 0.000
U2 1.880 2.160 2.393 2.593 3.065 4.014 4.582 4.988 5.305 6.294
L2 1.585 1.678 1.737 1.778 1.848 1.926 1.951 1.963 1.971 1.986
U3 1.880 2.160 2.393 2.593 3.065 4.014 4.582 4.988 5.305 6.294

5.3. Monocentric Homogeneous Dendrimer Graph

Let the monocentric dendrimer be a special tree, which is controlled by two parameters t and r.
The parameter t denotes the progressive level, and the parameter r denotes the radius of the tree. The
degrees of all internal vertices are equal to t + 1. As there exists one central vertex in a monocentric
dendrimer, the maximum distance from one pendant vertex to the central vertex is referred to as the
radius. If the distances from the central vertex to all pendant vertices are equal to r, then we call
the tree a monocentric homogeneous dendrimer. For more details, please see [36,37]. Figure 1 is an
example of a monocentric homogeneous dendrimer with three as the value of t and s, respectively.
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Figure 1. A monocentric homogeneous dendrimer with t = 3 and r = 3.

For parameters t and r, we have the order n = 1+ (t+1)(tr−1)
t−1 , and m = n− 1, ∆ = t+ 1, δ = 1. Let

t = 3; we change the value of parameter r to compute the degree-based graph entropy and bounds.
The results are listed in Table 3.

Table 3. The values of the degree-based graph entropy and bounds for monocentric homogeneous
dendrimer D(3, r).

r 1 2 3 4 5 6 7 8 9 10

I1
f (D(3, r)) 2.000 3.750 5.393 6.997 8.588 10.175 11.761 13.346 14.931 16.516

U0 3.000 5.000 6.700 8.322 9.919 11.508 13.094 14.680 16.265 17.850
L0 1.000 3.000 4.700 6.322 7.919 9.508 11.094 12.680 14.265 15.850
U1 2.000 4.035 5.713 7.326 8.920 10.508 12.094 13.680 15.265 16.850
L1 1.673 3.371 5.007 6.610 8.201 9.787 11.373 12.958 14.543 16.128
U2 2.160 4.057 5.719 7.328 8.921 10.509 12.094 13.680 15.265 16.850
L2 1.678 3.444 5.084 6.687 8.278 9.865 11.451 13.036 14.621 16.206
U3 2.148 4.044 5.715 7.327 8.920 10.508 12.094 13.680 15.265 16.850

5.4. Complete Bipartite Graph Ks,2s

Let Kn1,n2 be a complete bipartite graph. In other words, Kn1,n2 is an n1 × n2 bipartite graph,
where every vertex of one partite set is connected to every vertex of the other partite set. For a special
class of complete bipartite graphs Ks,2s, we have the order n = 3s, and m = 2s2, ∆ = 2s, δ = s.

By calculating the graph entropy of the special class of complete bipartite graphs Ks,2s, we show
some values of the degree-based graph entropy and bounds in the following Table 4.

Table 4. The values of the degree-based graph entropy and bounds for Ks,2s.

n 4 5 6 7 10 20 30 40 50 100

I1
f (Ks,2s) 3.500 3.822 4.085 4.307 4.822 5.822 6.407 6.822 7.144 8.144

U0 4.000 4.322 4.585 4.807 5.322 6.322 6.907 7.322 7.644 8.644
L0 3.000 3.322 3.585 3.807 4.322 5.322 5.907 6.322 6.644 7.644
U1 3.567 3.893 4.158 4.382 4.900 5.903 6.490 6.905 7.227 8.228
L1 3.465 3.787 4.050 4.272 4.787 5.787 6.372 6.787 7.109 8.109
U2 3.572 3.897 4.161 4.385 4.902 5.904 6.490 6.906 7.228 8.228
L2 3.415 3.737 4.000 4.222 4.737 5.737 6.322 6.737 7.059 8.059
U3 3.570 3.895 4.160 4.384 4.901 5.904 6.490 6.905 7.228 8.228
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Observe the four tables above, and we summarize the findings as follows:

• The value of degree-based entropy I1
f (G) corresponds to the scale of the graph. The larger the

order and size are, the bigger the degree-based entropy is. This means that the corresponding
graph is more complex in the structure information.

• To the graph Pn and Sn of the same order and size, I1
f (Pn) ≥ I1

f (Sn). This means that if Pn and
Sn have the same scale, Pn is more complex in the structure information.

• The upper bound U1 is the closest to I1
f (G) or better than U0, U2, U3, and the lower bound L2

is the closest to I1
f (G) or better than L0, L2. The upper bound U0 is the farthest from I1

f (G) or

worse than U1, U2, U3. The closeness of I1
f (G) and other upper bounds U1, U2 or lower bound

L0, L1 is uncertain.
• In Table 2, when the size n is big enough and continues to increase, the value of L0 is always

one, and the value of L1 approaches zero. This means that these lower bounds are not ideal.
However, in other tables, all bounds correspond to the scale of the graph. Therefore, we infer
that the bounds are closely related to the structure information of the graph. The more complex
a graph of the same order and size is in the structure information, the better the bounds are.

6. Summary and Conclusions

In this paper, we studied the properties for degree-based graph entropies. We discussed the
degree powers’ information functional and obtained the monotonicity of the graph entropy I f (G, k)
with respect to the parameter k. Specifically, for the degree-based graph entropy I1

f (G), we introduced

some new bounds, which can estimate I1
f (G) by only using the order n, the size m and the maximum

and minimum degrees of a given graph G. The numerical results for special graphs show that the
new bounds have different effects to restrict I1

f (G). The monotonicity and bounds might prove useful
in further structure information investigation of graphs and real networks, such as estimating the
complexity and analyzing the aggregation or homogeneity.
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