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1. Introduction

The operation of many natural and engineered systems depends crucially on their ability to
function at very low dissipation rates, the lower most often the better [1]. Zero-dissipation, however,
is an ideal limit which could only be reached if these systems could operate at virtually infinite
processing speed. Hence, a very general question arises: how low can one keep dissipation in a
given thermodynamic system?

Here we show that the ability of a specific class of fluid-kinetic systems [2–4] to function at a
very low dissipation is dramatically enhanced by enforcing the second principle of thermodynamics
in the form of an entropic feedback [5]. Through concrete examples of turbulent flows, we highlight
how entropy-assisted simulation maintains the system at low viscosity, through a highly orchestrated
and self-consistent interplay between local enhancement and reduction of the dissipation. Balancing
of these dissipation fluctuations leads to a spatial distribution of the average effective viscosity which
keeps the simulation “alive and well”. We envisage the entropy-assisted computing procedure to
offer a general paradigm for the computer simulation of a wide class of low-dissipative complex
phenomena, such as classical and quantum turbulence and wave propagation in active media.

2. Survival below Minimum Dissipation Threshold

The second principle of thermodynamics stands out as one of the most general and inescapable
laws of physics, with profound bearings on the time evolution of virtually all natural systems [1].
In its essence, it states that any natural system is driven towards a state of maximum entropy
(equilibrium), characterized by a maximum number of microscopic configurations. However, it says
little about a most relevant question: how long does it take for a given system to reach its equilibrium
state? This question, the heart of non-equilibrium thermodynamics, is all but academic, since most
natural phenomena, life in the first place, depend on the time the system is able to borrow from
temporary elusion of the second principle [1]. The rate of decay to equilibrium is measured by
transport coefficients, such as kinematic viscosity, and can change widely from system to system,
from seconds in an ordinary gas, to years and centuries in glassy materials.
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The typical form of kinematic viscosity is given by ν ∼ v2
Tτ, where vT =

√
kBT/m is the

thermal speed, τ a typical relaxation time. The kinematic viscosity measures the diffusivity of
momentum across the system: such diffusivity results from the competition between kinetic energy,
which sustains the free motion of molecules, and potential energy, which controls their interactions
(collisions). Kinetic energy drives the system out of equilibrium, while molecular collisions pull it
back to a local equilibrium, in which entropy is locally maximized (Boltzmann’s H-theorem) [6–8].
Thus, a low-viscous fluid is not one with nearly no collisions, but one where collisions are so frequent
and effective that they inhibit any migration of momentum from place to place, which is the source of
macroscopic dissipation. From the above argument, it is seen that zero-viscosity is a mirage because
it would imply instantaneous relaxation, i.e., τ → 0. Given that strictly zero-viscosity is a chimera
in a real (finite-speed) world, a natural question arises: what is the minimum dissipation which can be
sustained by a given physical system? While the answer depends on the specific system in mind, here
we shall focus on discrete dynamical systems, i.e., featuring a fundamental minimal length scale a
and minimal time scale h.

For the case of simulated fluids, for instance, the condition is that the smallest coherent structures
(eddies) capable of surviving dissipation be resolved by the discrete grid, i.e., lK > a, where
lK ∼ L/Re3/4 is the so-called Kolmogorov’s length [9], the smallest active scale in the game and
Re = UL/ν is the Reynolds number, i.e., the ratio of nonlinear energy transfer to dissipation, for a
fluid moving at a macroscopic speed U on a domain of macroscopic size L. As a result, the minimal
viscosity is given by νmin = (u/N1/3)νl , where N = L/a is the grid size, u ≡ U/Ul, Ul = a/h
and νl = a2/h being the natural lattice speed and lattice viscosity, respectively. Given that u < 1
for reasons of numerical stability, we see that the minimal viscosity is always smaller than the lattice
viscosity, the ratio of the two decreasing like 1/N1/3, so that the minimum viscosity can be brought
to zero only in the continuum limit N → ∞. Another face of the same chimera. The message is that
fluids cannot support viscosity below their minimum bound νmin. Breaking such constraint leads to
two basic scenarios: a mild reaction (loss of accuracy), whereby the resolved eddies, l > a, still survive,
although with a corrupted dynamics, the degree of corruption increasing as they approach a. The
second, more dramatic, possibility is loss of realizability: the system develops disruptive instabilities,
typically in the form of an uncontrolled growth of the smallest eddies. This is nothing short of a
survival problem, except that it concerns a discrete dynamical system. From the practical point of
view, the art of keeping the system alive and well in the forbidden regime ν < νmin is known as
turbulence modeling, a topic of utmost practical and conceptual importance. Essentially, the idea is
to replace the nominal viscosity with an effective one, representing the effects of unresolved eddies
as “random” collisions on the resolved ones. This picture explicitly draws upon an analogy with
kinetic theory, where there is a clear scale separation between molecular and hydrodynamic degrees
of freedom. Turbulence, on the contrary, features a continuum spectrum of scales, hence the notion of
eddy viscosity, although very useful, still resists a rigorous justification.

3. Minimum Viscosity in Discrete Phase-Space-Time

However, a modern formulation of continuum fluid mechanics in a form which explicitly
ingrains the discreteness of space-time is known as the lattice Boltzmann equation [4]

fi(x + cih; t + h) = f ′i ≡
(

1− h
2τ

)
fi(x, t) +

(
h

2τ

)
f mirr
i (x, t) (1)

In the above fi is the probability of finding a “particle” at position x in the lattice at time t, moving
with discrete velocity ci along b lattice links; f mirr

i is the so-called mirror state. In the simplest case [4],
it is taken as f mirr

i = 2 f eq
i − fi, with f eq

i the local equilibrium, which is a universal non-linear function
of the local order parameters. For standard fluids, these are the fluid density n(x, t) = ∑i fi(x, t) and
velocity u(x, t) = n−1 ∑i ci fi(x, t). The left-hand side of Equation (1) represents the free-streaming
step, while the right-hand side describes the interactions among the discrete populations fi at each
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given lattice site. On condition that the lattice obeys proper symmetries, the lattice Boltzmann
Equation (1) reproduces fluid dynamics with the viscosity

ν ∼
(

τ

h
− 1

2

)
νl (2)

The negative shift, −1/2 in Equation (2) is crucial; indeed, if only in principle, it permits to
achieve zero viscosity in the limit τ → h/2, i.e., without sending τ → 0, unlike in the
continuum. This negative shift is the result of the broken time-symmetry, which contributes a negative
viscosity (sometimes called propagation viscosity) to the overall momentum diffusivity, besides the
conventional contribution due to the collisional relaxation. Thus, in a discrete world, the viscosity
receives contributions from both dynamical steps of the kinetic description: free streaming and
collisions. They carry opposite signs, hence, if only in principle, they can cancel each other, leaving the
time step and relaxation time both finite. This property, typically regarded as a very useful numerical
artifact, has played a major role in the lattice Boltzmann simulation of a variety of complex flows, and
most notably turbulent ones [10].

Amazingly, suitably designed discrete kinetic systems keep describing correct fluid behavior
several orders of magnitude below the hydrodynamic minimum viscosity bounds mentioned earlier in
this paper. How come the minimal viscosity can be eluded by several orders of magnitude?

The key is the second principle in fully discrete setting. Indeed, the lattice Boltzmann
Equation (1) is compatible with a discrete-time H-theorem, based on the H-function (negative of
the entropy), H[ f ] = ∑i fi ln( fi/wi), where wi are suitable positive-definite weights. Lattice
Boltzmann systems equipped with the H-theorem are known as entropic [5] and function on a
feedback mechanism, whereby the local relaxation τ is adjusted in space and time, so as to secure
the entropic bound, H[ f ′] ≤ H[ f ], where f and f ′ are the pre- and post-collisional states, respectively.

The working principle is explained in Figure 1 and amounts to using in Equation (1) the
entropy-supervised mirror state f mirr

i = (1− α) fi + α f eq, where the stretch α is found from the isentropic
constraint, H[ f mirr] = H[ f ]. This can be interpreted as the effective viscosity,

νeff ∼
(

τeff
h
− 1

2

)
νl (3)

with the effective relaxation time, τeff = 2τ/α. The entropy-assisted computation thus informs the
pre-collision state f about its isentropic mirror f mirr and stipulates the single condition that the
second law is respected by the post-collision state f ′. Whenever non-equilibrium effects become
strong enough to endanger realizability, the entropic constraint adjusts the relaxation time so as to
secure compliance with the second principle. This feedback is self-activated “on demand”, i.e., only
whenever and wherever the need arises. And when the danger is gone, most elegantly, the entropic
feedback, leaves the stage unsolicited. The second principle decides by itself: sometimes viscosity is
increased (νeff > ν) to smooth out sharp features, sometimes it is reduced (νeff < ν) to sharpen the
dying ones. In the most demanding cases, the effective viscosity may even drop negative (τeff < h/2)
to promote local instabilities and sustain the system against dissipative death. The effective viscosity
self-adapts to the actual state of turbulence to literally protect it against defective evolution and
disruptive instabilities.

In Figure 2 we illustrate the above by the vorticity field of a flow past a circular cylinder at
Re ∼ 3300, in which many active scales of motion are visible. The Reynolds number, Re = UD/ν, is
based on the diameter of the cylinder, which is here taken as D = 30 a, while the mean flow velocity is
U = 0.03 (a/h), corresponding to a viscosity ν = UD/Re ∼ 2.7× 10−4 (a2/h). With these parameters,
the minimum viscosity is νmin = 0.03/301/3 ∼ 0.01 (a2/h), so that ν/νmin ∼ 1/40. The flow structures
in Figure 2a are colored with the effective viscosity, normalized as R = (νeff − ν)/ν. The high quality
of resolution of the flow structures (vortex tubes, tangles etc.) is maintained by a concerted action
of dampers (R > 0) and promoters (R < 0). The tiniest structures would not be able to survive
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unless the effective viscosity is enabled to go negative from time to time, in order to compensate for
over-dissipation and “regenerate” small scale structures otherwise doomed by over-damping. Also
to be noted (Figure 2b) is the spottiness of the effective viscosity, with a highly fine-grained mixing of
dampers and promoters.

Figure 1. Entropy-assisted computing. The initial state f is over-relaxed to the state f ′ with the
entropy function H value strictly below the value at the entropy mirror state f mirr. The zigzag
trajectory of over-relaxations eventually ends up at the bottom of the well—at the equilibrium f eq.

(a)

(b)

Figure 2. (a) Turbulent flow generated by a round cylinder. Snapshot of the vorticity iso-surfaces are
shown, colored with the effective viscosity. Blue: R > 0 (dampers); Red/Yellow: R < 0 (promoters).
The interplay between the dampers and promoters along each vortex tube is clearly seen. (b) Snapshot
of the intertwining of dampers (R > 0, blue) and promoters (R < 0, red). Essential dampers (R > 1.5)
and promoters (R < −0.6) are shown. The entropic feedback is concentrated in the region behind the
obstacle, where the transition to turbulence occurs. Gray background: Vorticity.
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All of the above configures a very elegant preemptive scenario which we can take as the hallmark
of entropic computing: very attentive “guardian angels”. Amazingly, the spatial pattern of the
time-averaged effective viscosity shown in Figure 3 resembles indeed a “guardian angel”, protecting
the system against numerical crisis!
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Figure 3. Distribution of the time-averaged normalized effective viscosity R = (νeff − ν)/ν at the
mid-section of the flow past a round cylinder. Red/Yellow: Promoters (R < 0); Blue: Dampers
(R > 0); Green: Nominal (R = 0). While the snapshot in Figure 2 demonstrates a larger variation
of the effective viscosity, the time-average picture is much milder: most of the activity (strongest
damping neighboring the strongest promotion) is concentrated at and around the twin shear layers,
just behind the cylinder. In the rest of the domain, the deviation of the effective viscosity from its
nominal value is less than a fraction of a percent.

4. Entropic Lattice Boltzmann Algorithm

Here we describe the essentials of the simulation method used above. In the entropic lattice
Boltzmann scheme, populations associated with the discrete velocities ci evolve according to (1). The
local equilibrium f eq

i was found by minimizing the entropy function H[ f ]. The entropic mirror state
f mirr
i = (1− α) fi + α f eq is specified by the stretch α, which is computed as the positive root of the

entropy condition: H[ f + α( f eq− f )] = H[ f ]. Whenever the simulation is resolved at a particular grid
node x, the stretch α becomes fixed automatically to the value α = 2 at that node, and the effective
viscosity νeff (3) reduces to the nominal viscosity ν (2). The stretch was obtained numerically at each
grid point using Newton-Raphson method. For the simulation presented above, we used the lattice
with b = 15 discrete velocities [11]. Apart from an entropy-supported kinetic equation, we require
augmenting boundary conditions that are capable of simulating both resolved and under-resolved
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flows. Existing boundary conditions such as the bounce-back scheme [4], provide reliable results
for resolved simulations but with reducing grid sizes and increasing the Reynolds number, the
quality of the simulations is lost due to shock-like instabilities generated at the walls. Hence, we
used here the recently proposed Tamm–Mott-Smith boundary condition [12] for circumventing these
instabilities. Entropy-supported kinetic Equation (1) provides reliable simulations for any choice of
lattice and flow velocity as long as the Mach number remains small. Armed with stable boundary
condition, the present scheme was extensively tested for various flow setups such as decaying
turbulence (ν/νmin ∼ 10−4) [13], turbulent channel (ν/νmin ∼ 10−3) [12], grid generated turbulence
(ν/νmin ∼ 10−3), flow past an airfoil (ν/νmin ∼ 10−4) and others. For the particular simulation of the
flow past a circular cylinder presented in Figures 2 and 3, we used a computational domain that is
9D long in the span-wise direction, 35D along in the stream-wise direction with 10D upstream of the
cylinder and 25D downstream of it; along vertical direction the domain was 21D long with cylinder
axis in the mid-plane. The cylinder was resolved with the diameter D = 30 grid points. Apart from
the simulation of turbulent flows, the entropy feedback has significantly improved stability of thermal
flows with temperature gradients [14], multiphase flows [15] and other fluid dynamics problems. This
gives us strong confidence that entropy-guidance can be extended to other low-dissipative physical
systems.

5. ELBM: Questions and Answers

Here we answer some typical questions to the entropic lattice Boltzmann method (ELBM)
reviewed above. For the sake of convenience, we rewrite the ELBM equation setting the time step
h = 1:

fi(x + ci, t + 1) ≡ f ′i = (1− β) fi(x, t) + β f mirr
i (x, t) (4)

where β ∈ [0, 1], while the entropic mirror state f mirr is

f mirr
i = fi + α( f eq

i − fi) (5)

The stretch α is defined by the entropy balance between the pre-collision state f and the mirror
state f mirr,

H( f mirr) = H( f ) (6)

A discrete-time H-theorem states: If the non-trivial solution α exists for the entropy balance (6), then
the total entropy H̄(t) = ∑x H( f (x, t)) is not increasing, H̄(t + 1) ≤ H̄(t). Note that the validity of
the H-theorem requires not just the equilibrium to be evaluated through the minimization of H but
also, and most importantly, the fulfillment of the entropy balance condition (6).

1. Is the entropic feedback in ELBM a stabilizing technique or a physically sound subgrid-scale model for
turbulence?

A: The ELBM should be viewed as a built-in subgrid model rather than a mere stabilization
technique. Stabilization in ELBM is a by-product of the discrete-time H-theorem. Instead of a
mere addition of artificial viscosity, the ELBM allows the effective viscosity to fluctuate around
the target value ν. In order to clarify this point, note a few general features of the entropic
stretch α.

• Over-relaxation: Thanks to convexity of the entropy function, the solution to Equation (6)
always leads to over-relaxation, α > 1;

• Duality: Let f be a population vector, and f (α) ≡ f + α( f eq − f ) its entropic mirror state,
with the same value of the entropy, H( f (α)) = H( f ). If the entropy estimate is applied to
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f (α) instead of f , then the initial state is recovered in the form f = f (α) + α∗( f eq − f (α)),
with another stretch α∗ > 1 which satisfies a duality relation:

α∗α = α∗ + α. (7)

Equation (7) implies that whenever α ≶ 2, the opposite holds for the dual, α∗ ≷ 2.

• Hydrodynamic limit: whenever the simulation is resolved (populations stay close to the
local equilibrium), the stretch α tends to the fixed value α = 2 (and so does also the dual
stretch, α∗ = 2, according to (7)). Then ELBM self-consistently becomes equivalent to the
lattice Bhatnagar–Gross–Krook (LBGK) equation (α = 2) and recovers the Navier-Stokes
equations with the kinematic viscosity,

ν = c2
s

(
1

2β
− 1

2

)
(8)

where cs is speed of sound (a O(1) lattice-dependent constant).

Note that the above is a direct implication of the built-in H-theorem. Indeed, the resolved
simulation, at the kinetic level, is characterized by the fact that all populations are
asymptotically close to the local equilibrium. Then, the entropy function becomes well
represented by its second-order approximation: at fixed locally conserved fields (density
and momentum here), if δ f = f − f eq, |δ f / f eq| � 1, then H( f ) ≈ Heq + (1/2)∑i δ f 2

i / f eq
i .

The levels of the entropy are then asymptotically close to the levels of the above quadratic
form. It is under such condition that the entropy estimate (6) results in α = 2. Note that
the standard Chapman–Enskog approximation is valid under precisely the same condition
of closeness to the local equilibrium, thereby the viscosity ν is the same for both ELBM
and LBGK.

• Effective viscosity and self-averaging: The effective viscosity in the above notation reads,

νeff = c2
s

(
1

αβ
− 1

2

)
(9)

Depending on the outcome for stretch α, the effective viscosity νeff(αβ) is larger than the
viscosity ν ≡ νeff(2β) if α < 2, and it is smaller than ν if α > 2. In the first case, the (larger)
effective viscosity leads to smoothing the velocity gradient at the given node, while in the
second case, the smaller viscosity leads to a sharpening of the velocity gradient. Note
that, when β → 1 (vanishing viscosity ν → 0), the effective viscosity (9) can drop to even
negative values if α > 2. This asymmetry between the over-relaxation being “shorter”
(α < 2) or “longer” (α > 2) than the LBGK over-relaxation α = 2 is the crucial implication
of the compliance with the H-theorem: even if the effective viscosity becomes negative at
some lattice nodes, this does not lead to numerical instability because even in that case the
H-theorem (and the proper behavior of the total entropy) remains valid.

Parameterization with the effective viscosity νeff(αβ) can be seen as an alternative to the
parameterization with the over-relaxation α. Let us note that, if a pair {α, α∗} is connected
by the duality relation (7), then the mean value of the corresponding effective viscosity is
equal to the viscosity (8),

νeff(αβ) + νeff(α
∗β)

2
= νeff(2β) ≡ ν (10)

The relation (10) is termed self-averaging, and provides important albeit heuristic
argument that the averaged-in-time effective viscosity in ELBM simulation is close to the
viscosity ν. In other words, we expect that it is only the matter of resolution that the

8105



Entropy 2015, 17, 8099–8110

average effective viscosity deviates from ν. This assertion, while not rigorous, is supported
by simulation (see Figure 3). The rapid fluctuations of the stretch α around α = 2 at a given
monitoring point chosen at random in the simulation domain are clearly seen in Figure 4.
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Figure 4. Top: History of the entropic strech α at a monitoring point; Middle: Histogram of α; Bottom:
Close-up of the hystogram around the dominant value α = 2.

In summary, the ELBGK exploits the self-adaptive mechanism of effective viscosity by choosing
automatically the over-relaxation α at each node to guarantee the H-theorem at all sites and all
discrete time-steps. When the grid is coarsened, over-relaxation α becomes “smeared” in an
interval, [αmin, αmax], with 1 < αmin < 2, and αmax > 2. The self-adapted over-relaxation set up
by (6), results in two oppositely directed effects: if α < 2, the effective viscosity is larger than ν,
and the ELBM will tend to smoothen any flow perturbation. On the other hand, if α > 2, the
flow perturbation is enhanced (effective viscosity is smaller than ν). In ELBM simulations, these
two effects act simultaneously on various nodes, with the net effect combining stabilization
(through smoothing, α < 2) with the preservation of the resolution (through sharpening, α > 2).
Note that, as β → 1, the effective viscosity can even drop to negative values when α > 2. This,
however, does not lead to instabilities as the total entropy balance remains under control by the
discrete-time H-theorem. This all is very different from a conventional perspective on “eddy
viscosity” turbulence modeling, and it is not surprising that ELBM does not reduce to familiar
large eddy simulation (LES) models [16].

2. What is the relation of ELBM to the entropic stabilizing techniques proposed in CFD?

A: During the last four decades numerous entropic stabilizing techniques have been proposed
in computational fluid dynamics (CFD) (see, e.g., Refs [17–25] and references therein). The idea
behind is, roughly speaking, to maintain an appropriate amount of artificial viscosity through
the analysis of discretization of the entropy balance (physical or artificial). In this regards, ELBM
is based on a different premise: it applies to strictly discrete systems (in velocity-space-time),
and the discrete-time H-theorem does not reduce to the estimate of the entropy production (cf.,
e.g., [26]).
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3. How ELBM performs in comparison to other stabilizing techniques proposed for LBM?

A: The closest analog of the conventional stabilization techniques in the LBM setting is perhaps
the method of entropic limiters [27–29]. The idea behind is to measure the closeness of the
pre-collision state to the corresponding local equilibrium (in the sense of the entropy difference),
and to apply equilibration instead of over-relaxation if the difference exceeds a user-defined
threshold. This is similar to conventional artificial viscosity stabilization techniques in CFD.
Various versions of limiters were considered [27–29]. The authors of [29] claimed that entropic
limiters “perform better” than ELBM.

4. What is the main numerical mechanism promoting stability in ELBM?

A: Stability is promoted by the discrete-time H-theorem. Note that the implication of the
H-theorem in the presence of the over-relaxation allows post-collision distributions to be both closer
to the equilibrium than the LBGK outcome (α < 2) or further away from the equilibrium (α > 2).
It must be noted that, in principle, for some pre-collision states, the corresponding entropic
mirror state may not exist (and hence no entropy balance is possible). However, this happens
beyond the domain of validity of the lattice Boltzmann models, and is of no concern in practice.
In particular, pathological cases (no solution for α) occur in none of the simulations referred to
in this paper.

5. Very recently, in Ref. [30], Karlin et al. presented a new entropic stabilizer for LB schemes. How is it
different from the ELBM?

A: ELBM is based on the discrete-time H-theorem which is imposed in a rather “orthodox”
manner through the entropy balance condition (6) for the over-relaxation. A different realization
of the entropic control was introduced recently by three of the present authors in [30] (we refer to
this as KBC model). The idea is to replace the entropic over-relaxation on all the non-conserved
moments as it is done in ELBM by a combination of the standard (unsupervised) over-relaxation
of the stresses with the proper equilibration of the rest of the non-conserved moments. More
specifically, if we write a moment representation of the populations, fi = ki + si + hi, where
ki is the contribution of locally conserved fields, si are the stresses and hi are the remaining
higher-order moments, then the mirror state for KBC models reads,

f mirr
i = ki + [2seq

i − si] +
[
(1− γ)hi + γheq

i

]
(11)

where γ is the entropic stabilizer which is found by minimizing the entropy in the post-collision
state (4) with the mirror state (11):

dH[ f ′(γ)]
dγ

= 0 (12)

The rationale behind is this: The over-relaxation of the stresses in the mirror state is the
only formal condition to recover the viscosity ν (8); hence, an optimal post-collision state
should minimize the entropy under this constraint. Thus, the KBC post-collision state is a
quasi-equilibrium which corresponds to the minimum of the entropy function once all the
relevant constraints are applied. Moreover, Equation (12) admits the following approximate
solution,

γ =
1
β
−
(

2− 1
β

) 〈δs|δh〉
〈δh|δh〉 , (13)

with 〈X|Y〉 = ∑i,j Xi[∂
2H/∂ fi∂ f j]eqYj the entropic scalar product, and δsi = si − seq

i ,
δhi = hi − heq

i . While (11) lumps together all the higher-order moments in the h-part
of the populations, a generalization which makes a distinction within these moments is
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straightforward: For hi = ∑m hmi with m labeling the different higher-order moments (or groups
of such moments), we have instead of (11),

f mirr
i = ki + [2seq

i − si] + ∑
m

[
(1− γm)hi + γmheq

i

]
(14)

while the formula (13) generalizes to

γm =
1
β
−
(

2− 1
β

)
∑
n
[C−1]mn〈δs|δhn〉 (15)

with C−1 the inverse of the correlation matrix Cmn = 〈δhm|δhn〉. While the H-theorem is
not directly imposed in the KBC models (unlike the ELBM), simulations of various setups
demonstrated they are ‘virtually indestructible’ (Ref. [31]).

Note that in both ELBM and KBC models (and eventually in any lattice Boltzmann model) a
statement that “it recovers the viscosity ν” refers only to a fully resolved simulation. Validity of
the Navier-Stokes equation at small scales for a given simulation is checked independently, for
example, by measuring the viscosity in the energy and enstrophy balance equations. For a
detailed analysis of these aspects for the KBC models we refer to recent papers [32,33].

6. Conclusion

The second law of thermodynamics provides a parameter-free solution to the problem of
controlling the effective turbulent viscosity, so as to tame numerical disruption. Besides turbulence,
to which the above findings have an immediate impact on, the general notion of entropy-assisted
computing, likely with different realizations of the entropy feedback, is expected to apply to other
states of matter characterized by extremely low dissipation, such as superfluids [34] and cosmological
fluids [35] near black-hole horizons. It is also of interest to explore whether a similar paradigm
might inform the behavior of active matter systems [36]. Finally, one may extrapolate even further
and conjecture that entropy-assisted feedback systems, functioning according to the feedback loop
discussed above, may be engineered outside the realm of fluid mechanics, typically at the intersection
of information, biology and statistical physics [37–39]. In an even broader perspective, we surmise
that entropy-assisted procedures might also inspire the design of novel active feedback systems in
natural, biological and possibly also medical sciences.
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