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Abstract: A recent work reported a local stability analysis of a thermo-economical model of an
irreversible heat engine working under maximum power conditions. That work showed that after
small perturbations to the working temperatures, the system decreases exponentially to the steady
state characterized by two different relaxation times. This work extends the local stability analysis
considering other performance regimes: the Maximum Efficient Power (MEP) and the Ecological
Function (EF) regimes. The relaxation time was shown under different performance regimes as
functions of the temperature ratio τ = T2/T1, with T1 > T2, the fractional fuel cost f and a
lumped parameter R related to the internal irreversibilities degree. Under Maximum Efficient Power
conditions the relaxation times are less than the relaxation times under both Maximum Ecological
function and Maximum Power. At Maximum Power Efficient conditions, the model gives better
stability conditions than for the other two regimes.
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1. Introduction

In 2001, Santillán et al. [1] studied the local stability analysis of an endoreversible
Curzon-Ahlborn heat engine [2] operating under maximum power conditions. Later, Guzmán-Vargas
et al. [3] investigated the effect of the heat transfer laws and the thermal conductances on the
local stability of an endoreversible heat engine. Recently, Páez-Hernández et al. [4], analyzed the
local stability of a non-endoreversible Curzon-Ahlborn (CA) cycle taking into account implicity the
engine’s time delays operating under maximum power regime. However, the local stability analysis
described in these works have not considered economical effects. Within the context of Finite-Time
Thermodynamics (FTT), the economical aspects were introduced earlier by De Vos [5] to study
the thermo-economic model performance of a Novikov type power plant [6,7]. Later, Sahin and
Kodal [8] studied the thermo-economics of an endoreversible heat engine in terms of maximization
profit function defined as quotient between the power output and the annual investment and fuel
consumption costs. This thermo-economic performance analysis [9] consists of maximizing a benefit
function in terms of the power output and the cost involved in the power plant performance. All these
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thermo-economic studies have shown that the inclusion of costs of performance have an important
impact in the trade off cost-benefit of the corresponding power plant models [5,10,11]. Recently,
Barranco-Jiménez et al. [12,13] reported a local stability analysis of a thermo-economic model of
an irreversible heat engine working under maximum power conditions. In those studies, they
used two different heat transfer laws, the Newtonian [12] and the Dulong-Petit [13] ones. In this
work, the local stability analysis is extended considering other performance regimes: The Maximum
Efficient Power [14,15] and the Ecological Function regime [16,17]. The relaxation time shown under
maximum efficient power conditions is less than the relaxation times under both maximum power
and maximum ecological function; that is, under maximum efficient power conditions, there is better
stability conditions than for the other two regimes. The paper is organized as follows: Section 2
presents the thermo-economic analysis of the irreversible heat engine under different performance
criteria. In Section 3, the local stability analysis of the irreversible heat engine is shown. Finally, in
Section 4, the conclusions are given.

2. Thermoeconomic Optimization of a Curzon-Ahlborn Engine Model at Different Regimes
of Performance

In Figure 1, a schematic diagram of the irreversible heat engine (Curzon-Ahlborn model) is
shown. This engine consists of a Carnot-like thermal engine that works in irreversible cycles and
exchanges heat with external thermal reservoirs at temperatures T1 and T2 (T1 > T2). In the steady
state, the temperatures of isothermals of the Carnot-like cycle are x and y; here overbars are used to
indicate the corresponding steady-state value. The steady-state heat flows as are shown in Figure 1
are denoted as J1 and J2, respectively.
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Figure 1. Schematic representation of an endoreversible heat engine.

Applying the Clausius theorem and using the fact that the inner Carnot-like engine works in
irreversible cycles, the following inequality is obtained,

J1

x
− J2

y
< 0, (1)
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this expression can be transformed into an equality by introducing a parameter R leading to,

J1

x
= R

J2

y
. (2)

The lumped parameter R, which, in principle, is within the interval 0 ≤ R ≤ 1 (R = 1 for the
endoreversible limit), can be seen as a measure of the departure from the endoreversible regime, it has
been used for non endoreversible thermal heat engine models as a way to include the global internal
irreversibilities [18,19]. Assuming that the heat flows from T1 to x and from y to T2 are of the Newton
type, then

J1 = α(T1 − x), (3)

J2 = α(y− T2), (4)

where α is the thermal conductance. For simplicity of the calculations, it is assumed that the heat
exchanges take place in conductors with the same thermal conductance α; that is, the materials of
both conductors are the same. Applying the first and second laws of thermodynamics, the system’s
steady-state power output and the efficiency can be written as,

P = J1 − J2, (5)

and

η =
P
J1

= 1− J2

J1
= 1− 1

R
y
x

. (6)

By combining Equations (2)–(4) and (6), gives the steady-state temperatures x and y and the power
output in terms of T1, T2, R and η as [1,3],

x =
T1

1 + R

(
1 +

τ

1− η

)
, (7)

y =
R

1 + R
T1

(
1 +

τ

1− η

)
(1− η), (8)

P =
α

1 + R
T1η

(
R− τ

1− η

)
, (9)

where τ = T2/T1. The De Vos thermoecomical analysis considers a profit function F, which is
maximized [5]. This profit function is given by the quotient of the power output (P) and the total
cost involved in the performance of the power plant (Ctot), that is,

F =
P

Ctot
. (10)

In his early study, De Vos assumed that the running cost of the plant consists of two parts: a
capital cost which is proportional to the investment and, therefore, to the size of the plant and, a fuel
cost that is proportional to the fuel consumption and, therefore, to the heat input rate J1. Assuming
that Jmax is an appropriate measure for the size of the plant, the running costs of the plant exploitation
are defined as [5],

Ctot = aJmax + bJ1 = aαT1

[
(1− τ) + β

(
1− x

T1

)]
(11)
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where the proportionality constants a and b have units of $/Joule, β = b/a and Jmax = α(T1 − T2)

is the maximum heat that can be extracted from the heat reservoir without supplying work
(see Figure 1). By using Equations (3), (6), (7), (10) and (11), the profit function can be written as,

aFMP =
η
[

1
1+R

(
R− τ

1−η

)]
(1− τ) + β

1+R

(
R− τ

1−η

) . (12)

If we calculate the derivative of aF with respect to η and we solve for the efficiency
d(aFMP)

dη

∣∣∣
η=η∗

= 0, we obtain η = η∗(β, τ, R) [20]. However, instead of expressing the optimal

efficiency in terms of the parameter β, a number that is difficult to obtain in the literature [5], we
can also express it in terms of the fractional fuel cost, which is defined as [5],

f =
βJ1

Jmax + βJ1
. (13)

The fractional fuel costs ( f ) for various technologies were reported by De Vos for different energy
sources; that is, for example; renewable energy f = 0, for Uranium f = 0.25, for Coal f = 0.35, and
for natural gas f = 0.5 [5]. By using Equations (3), (7) and (13), the parameter β in terms of the
fractional fuel cost can be written as,

β =
f

1− f
(1 + R)(1− τ)

R− τ
1−η

. (14)

Therefore, the efficiency that maximizes the profit function is given by [20],

ηMP( f , τ, R) = 1− f
2R

τ −
√

4(1− f )τR + f 2τ2

2R
. (15)

Equation (15) represents the optimal steady-state efficiency (η) as a function of τ, f and R for a
non endoreversible Novikov-Curzon-Alhborn heat engine working in the maximum-power regime.

Analogously to Equation (10), for our thermo-economic optimization approach, two objective
functions, the so-called Efficient Power [14,15] and the so-called Ecological Function [16,17] are
defined, both divided by the total cost. The Maximum Efficient Power performance [14,15] for heat
engines was studied for Yilmaz [14] and previously defined by Stucki [21] in 1980 as the product of
power output (P) by the efficiency (η) in the context of the first order irreversible thermodynamics.
The ecological optimization criterion for the FTT-thermal cycles was proposed by Angulo-Brown [16].
This criterion considers the maximization of a function E which represents a compromise between
high power output (P) and low entropy production Σ. The E function is given by, E = P − T2Σ
where P is the power output of the cycle, Σ the total entropy production per cycle and T2 is the
temperature of the cold reservoir. One of the most important characteristics of a CA engine operating
under maximum-E conditions is that it produces around 80% of the maximum power and only 30%
of the entropy produced in the maximum power regime [16]. Another interesting property of the
maximum-E regime is that the CA-engine’s efficiency in this regime, is given by ηE ≈ (ηC + ηCA)/2,
where ηC is the Carnot efficiency and ηCA the Curzon-Ahlborn efficiency. For our thermo-economical

approach, these objective functions are given by FEP = ηP
Ctot

and FE = P−T2Σ
Ctot

, respectively. In the same
way that Equation (12) the profit functions can be written as,

aFEP =
η2
[

1
1+R

(
R− τ

1−η

)]
(1− τ) + β

1+R

(
R− τ

1−η

) , (16)
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and

aFE =
(2η + τ − 1)

[
1

1+R

(
R− τ

1−η

)]
(1− τ) + β

1+R

(
R− τ

1−η

) . (17)

In Equation (17), the second law of thermodynamics was applied to calculate the total entropy

production given by Σ = J2
T2
− J1

T1
(see Figure 1). Figure 2 shows the behavior of the three objective

functions versus internal efficiency. As can be seen from Figure 2 there exists an optimal efficiency
value which depends on the parameter R, the parameter τ and the economic parameter β. In addition,
Figure 2 shows for the three performance regimes how the optimal efficiency tends to the Carnot
value when β −→ ∞. Analogously to Equation (12), calculating the derivatives of aFEP and aFE

with respect to η, and solving for the efficiency the following two equations d(aFEP)
dη

∣∣∣
η=η∗

= 0 and

d(aFE)
dη

∣∣∣
η=η∗

= 0 and using Equation (14) we get,

ηEP( f , τ, R) = 1− 1 + f
4R

τ −
√

(1− f )τ
2R

+
(1 + f )2τ2

16R2 . (18)

ηE( f , τ, R) = 1− f
2R

τ −
√

(1− f )(1 + τ)τ

2R
+

f 2τ2

4R2 . (19)
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Figure 2. Profit functions for β = 0 and β = 5 versus η with R = 1 and τ = 0.5.

Equations (18) and (19), represent the steady-state efficiencies working both under
maximum-efficient power (ηEP) and maximum ecological function conditions (ηE), respectively. In
analogous way to Equation (15), for the endoreversible case (R = 1) from Equations (18) and (19),
when f = 0, (β = 0) we obtain η = 1− τ/4−

√
τ(8 + τ)/4 and η = 1−

√
τ(τ + 1)/2, respectively,

which were previously obtained by Yilmaz [14], and by Angulo-Brown [16,22,23], for the case of
a Curzon-Ahlborn heat engine, working at maximum efficient power and maximum ecological
function conditions, respectively.

We can see, in Figure 3, how the optimal efficiencies smoothly increase from the maximum
efficiency point, f = 0 (in each regime of operation), corresponding to energy sources where the
investment is the preponderant cost up to the Carnot value for f = 1, that is, for energy sources
where the fuel is the predominant cost [5], and we can also observe that the following inequality,
ηE > ηEP > ηMP is hold [10,11].
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Figure 3. The steady-state efficiencies working under maximum power output (ηMP),
maximum-efficient power (ηEP) and maximum ecological function (ηE) conditions.

3. Local Stability Analysis

In this section, the local stability theory (see Appendix) is applied to the thermo-economical heat
engine model mentioned previously. Following Santillán et al. [1], due to x and y are macroscopic
objects (the working substance at the isothermal branches of the cycle) with heat capacity C [24,25],
their temperatures change according to the following differential equations:

dx
dt

=
1
C
[α(T1 − x)− J1] , (20)

dy
dt

=
1
C
[J2 − α(y− T2)] , (21)

where J1 and J2 are the heat flows from x to the working substance and from the Carnot engine to y,
respectively. According to the non-endoreversibility hypothesis [19], J1 and J2 are given by

J1 =
Rx

Rx− y
P, (22)

and
J2 =

y
Rx− y

P. (23)

On the other hand, Equations (6), (15), (18) and (19) are used to construct the expressions for τs which
relate the internal variables x and y, to the external temperatures T1 and T2, under maximum power,
maximum efficient power and maximum ecological function conditions, respectively,

τMP =
y2

x2(1− f )R + xy f
. (24)

In addition, for both efficient power and ecological function conditions performance, we obtain

τPEP =
2y2

x2(1− f )R + xy(1 + f )
, (25)

τE =
(1− f )Rx2 + 2 f xy +

√
8(1− f )Rx2y2 + x2(( f − 1)Rx− 2 f y)2

2( f − 1)Rx2 (26)
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The functional dependence of the internal and external temperatures in each regime of operation
is necessary to analyze the local stability. Using the assumption [1] that out of the steady state but not
too far away, the power output of a Curzon-Ahlborn heat engine depends on x and y in the same way
that it depends on x and y at the steady-state (P(x, y, f , R) −→ P(x, y, f , R)); that is, this assumption
is applicable only in the vicinity of the steady state, the dynamical equations for x and y are written
as follows:

dx
dt

=
1
C

[
α(T1 − x)− Rx

Rx− y
P(x, y, f , R)

]
, (27)

dy
dt

=
1
C

[
y

Rx− y
P(x, y, f , R)− α(y− T2)

]
. (28)

To analyze the system stability near the steady state, we proceed following the steps described
in the Appendix. For the case of maximum efficient power we get,

h(x, y, f , R) =
1
C

[
α(T1 − x)− Rx

Rx− y
( f − 1)(y− Rx)2

( f − 1)Rx− (2R + f + 1)y

]
, (29)

g(x, y, f , R) =
1
C

[
y

Rx− y
( f − 1)(y− Rx)2

( f − 1)Rx− (2R + f + 1)y
− α(y− T2)

]
, (30)

where h(x, y, f , R) and g(x, y, f , R) are defined in the Appendix. The case of Maximum Power
conditions was reported in [12]. Similar expressions are obtained for the case of maximum ecological
function, but they are quite lengthy. After solving the corresponding eigenvalue equation, we find
that both eigenvalues (λ1 and λ2) are function of α, C, τ, f and R. The final expression and the
algebraic details are not shown but this can be easily reproduced with the help of a symbolic algebra
package. Moreover, our calculations show that both eigenvalues are real and negative. Thus, the
steady state is stable because any perturbation would decay exponentially. For the case f = 0,
expressions for the eigenvalues previously obtained by Santillán et al. [1] and Guzmán-Vargas et al.
[3] are recovered.

In Figures 4–6, the relaxation times are plotted against τ for different values of fractional fuel cost
f , for a fixed value of R (R = 1), that is, the endoreversible case. It is observed that t1 (Equation (A.8))
is a decreasing function of τ. This relaxation time decreases as the fuel cost increases, indicating a
faster decay as f −→ 1. For t2 (see Equation (A.9)), this relaxation time remains almost constant for
f = 0. As the fractional fuel cost f increases, t2 slowly increases too. In the limit f −→ 1, both
relaxation times tend to be closer each other, but there is a stronger inequality t2 < t1 in the interval
0 < τ < 1. These figures also show the relaxation times as a function of τ, for several values of
the parameter R, and for a fixed value of the fractional fuel cost f . These figures show that t1 is a
decreasing function of τ and decreases as the parameter R decreases and t2 remains almost constant
when the irreversibility parameter changes. From the findings shown in Figures 4–6, it is concluded
that the system is stable for τ > 0. As the fractional fuel cost f increases, t1 decreases whereas t2

increases, for a given value of R. In contrast, for a given value of f , as the irreversibility parameter
R decreases, t1 decreases, whereas t2 increases (see phase portrait [3] where the phase diagram are
showed in details). The power output and the efficiency depend on τ for the cases analyzed here,
and both energetic quantities are decreasing functions of this parameter, that is, the system’s stability
moves in the opposite direction to that of the steady-state as P, η and τ varies.
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Figure 4. Plot of relaxation times under maximum power conditions versus τ for (a) several values of
the endorreversibility parameter and a value of the fractional fuel cost and (b) for several values of
the fractional fuel cost f in the endoreversible case (R = 1).
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Figure 5. Plot of relaxation times under maximum efficient power versus τ for (a) several values of the
endorreversibility parameter and a value of the fractional fuel cost and (b) for several values of the
fractional fuel cost f in the endoreversible case (R = 1).
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Figure 6. Plot of relaxation times under maximum ecological function conditions versus τ for (a)
several values of the endorreversibility parameter and a value of the fractional fuel cost and (b) for
several values of the fractional fuel cost f in the endoreversible case (R = 1).

Additionally, in Figure 7, for the cases of maximum efficient power and maximum ecological
function conditions, show the relaxation times versus fuel fractional cost for several values of τ. In
these cases, it can be seen, how the fast (slow) relaxation time slightly increases (decreases) as f
changes from 0 to 1.
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Figure 7. Relaxation times in the endoreversible case (R = 1) versus fractional fuel cost for several
values of τ for (a) Maximum efficient power conditions and (b) Maximum ecological function.

Finally, Figure 8 shows the ratio of the relaxation times previously calculated for the three
regimes of operation considered. In this Figure, the inequality τEP > τE > τMP holds.
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Figure 8. Ratio of the relaxation times versus τ for a value of the fractional fuel cost and several values
of the parameter R (cases (a), (c) and (e)), and for the endoreversible case R = 1, for different values
of the fractional fuel cost, (cases (b), (d) and (f)).

4. Conclusions

This work presented a local stability analysis of a thermo-economic model of an irreversible
heat engine working under different performance regimes: The Maximum Power Output, Maximum
Efficient Power and the Ecological Function regime considering a linear heat transfer law (the
Newtonian law case). The relaxation times are shown as function of α, C, τ, f and R; that is, they
depend on the materials that separate the working fluid from the reservoirs (through α); and on
the working fluid (through C); on the reservoir temperatures (through τ); on fractional fuel costs
(through f , which is associated with several energy sources from renewable energy to natural gas,
(see Table 1. reported by De Vos [5]) and on the internal irreversibilities (through R). After a small
perturbation, the system exponentially declines to the steady state characterized by two different
relaxation times. In addition, the relaxation time under maximum efficient power conditions is less
than the relaxation times under both maximum ecological function and maximum efficient power;
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that is, under maximum efficient power conditions, there is better stability conditions than for the
other two regimes, although these differences are not large. Our cycle model is an FTT simple version
of a Carnot-type engine, but, additionally, it considers the fractional fuel costs. Finally, the results
confirm the local stability properties of the CA-engine for the three performance regimes.
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Appendix

A. Linearization and Stability Analysis

This section presents a brief description of the linear stability analysis of a two-dimensional
system [26]. Consider the dynamical system,

dx
dt

= h(x, y), (A.1)

dy
dt

= g(x, y), (A.2)

where h an g are functions of x and y. Let (x, y) be a fixed point such that h(x, y) = 0 and g(x, y) = 0.
Consider a small perturbation around this fixed point and write x = x + δx and y = y + δy, where
δx and δy are small disturbances from the corresponding fixed point values. By substituting into
Equations (A.1) and (A.2), expanding h(x + δx, y + δy) and g(x + δx, y + δy) in a Taylor series, and
using the fact that δx and δy are too small to neglect quadratic terms, the following equations are
obtained for the perturbations:(

dδx
dt

dδy
dt

)
=

(
hx hy

gx gy,

)(
δx
δy

)
(A.3)

where hx = ∂h
∂x

∣∣∣
x,y

, hy = ∂h
∂y

∣∣∣
x,y

, gx = ∂g
∂x

∣∣∣
x,y

and gy = ∂h
∂y

∣∣∣
x,y

. Equation (A.3) is a linear system of

differential equations. Thus, the general solution of the system is of the form,

δ~r = eλt~u, (A.4)

with δ~r = (δx, δy) and ~u = (ux, uy). Substitution of the solution δ~r into Equation (A.3) yields the
following eigenvalue equation:

Aδ~r = λδ~u, (A.5)

where A is the matrix given by the first term on the right-hand side of Equation (A.3). The eigenvalues
of this equation are the roots of the characteristic equation,

|A− λI| = (hx − λ)(gy − λ)− gxhy = 0. (A.6)

If λ1 and λ2 are solutions of Equation (A.6), the general solution of the system is

δ~r = c1eλ1t~u1 + c2eλ2t~u2, (A.7)

where c1 and c2 are arbitrary constants and~u1 and ~u2 are the eigenvectors corresponding to λ1 and λ2,
respectively. To determine ~u1 and ~u2 we use Equation (A.5) again for each eigenvalue. Information
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about the stability of the system can be obtained from the eigenvalues λ1 and λ2. In general, λ1 and λ2

are complex numbers. If both λ1 and λ2 have negative real parts, the fixed point is stable. Moreover,
if both eigenvalues are real and negative, the perturbations decrease exponentially. In this last case, it
is possible to identify relaxation times for each eigendirection as,

t1 =
1
|λ1|

, (A.8)

t2 =
1
|λ2|

. (A.9)
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