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Abstract: There are a great number of thermodynamic schools, independent of each other, 

and without a powerful general approach, but with a split on non-equilibrium 

thermodynamics. In 1912, in relation to the stationary non-equilibrium states, Ehrenfest 

introduced the fundamental question on the existence of a functional that achieves its 

extreme value for stable states, as entropy does for the stationary states in equilibrium 

thermodynamics. Today, the new branch frontiers of science and engineering, from power 

engineering to environmental sciences, from chaos to complex systems, from life sciences 

to nanosciences, etc. require a unified approach in order to optimize results and obtain a 

powerful approach to non-equilibrium thermodynamics and open systems. In this paper, a 

generalization of the Gouy–Stodola approach is suggested as a possible answer to the 

Ehrenfest question. 
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1. Introduction 

During the XIXth century, thermodynamics began its development as a physical science as a result 

of the studies by Carnot (1796–1832), von Mayer (1814–1878), Helmholtz (1821–1894), Thomson 

(1824–1907) and Clausius (1822–1888) [1]. 

Clausius further developed the results of Helmholtz and Carnot, obtaining the first formulation of 

the second law as we know it nowadays. He suggested considering heat as a transformation of different 

kinds of energy, with the total energy remaining constant during the process. Indeed, he used Carnot’s 

concept of the ideal cycle of a reversible heat engine in order to evaluate the work obtainable by 

transfer of heat from a high temperature to a lower temperature reservoir. Lastly, he introduced entropy 

and its mathematical expression. In 1851, Thomson independently obtained another formulation of the 

second law; he stated that it is impossible to create work by cooling down only one thermal reservoir. 

Therefore, the fundamentals of the second law result in a selection principle meaning an exclusion 

principle so that not all processes may be real, even if they are allowed by the energy conservation  

law [1]. Consequently, in order to study the evolution of the real processes, in the 1850s–60s, Clausius 

introduced a new quantity, i.e., entropy [2]. 

In 1871, Boltzmann (1844–1906) introduced both the ergodic hypothesis, i.e., all accessible 

microstates are equally probable over a long period of time, and, one year later, the H-theorem,  

the first link between the second law and the statistical approach to entropy. Then, in 1889, Planck 

(1858–1947) highlighted the fundamental role of entropy and its statistical interpretation. Later, Gibbs 

(1839–1903) developed the ensemble approach and the entropy functional. He highlighted the 

fundamental role of the maximum entropy approach in the analysis of natural systems: this principle 

has been improved by proving that the entropy variation due to irreversibility, during a process, is 

maximum if evaluated outside of the system and minimum if evaluated inside the system [3]. 

In 1909, Caratheodory (1873–1950) suggested an axiomatic formulation of thermodynamics based 

on the Pfaffian differential forms [4]. However, in 1929, Schottky (1886–1976) first extended the 

approach to thermodynamics for industrial applications. Recently, both thermodynamic formalism and 

the links between macroscopic and microscopic approaches to entropy, have been shown to play an 

important role in nonlinear sciences and complex systems, with particular regard to power engineering, 

environmental sciences, quantum theory, low temperature physics, large scale and small scale physics, 

biophysics, biochemistry and biomedicine, information sciences, etc. Nevertheless, Maxwell  

(1831–1879) was the first scientist interested in the relation between observer and object, information 

and entropy. Then Szilard (1898–1964), von Neumann (1903–1957), Birkhoff (1911–1996), Jaynes 

(1922–1998) and Friden developed this topic obtaining the link between the foundations of statistical 

physics with information theory, just by using the maximum entropy principle. It states that the 

probability distribution is such that uncertainty remains largest in relation to the constraints [3–10]. 

The analysis of the self-organization systems specifically refer to this topic. Introduced by Mayer, 

Boltzmann, Schrödinger (1887–1961) and Prigogine (1917–2003), it is based on the fundamental role 

of the fluxes between the system and its surroundings [3]. 

Related to this topic, the development of non-equilibrium or irreversible thermodynamics [6] must 

also be considered. This was begun by Thomson (1856–1940), Rayleigh (1842–1919), P Duhem  

(1861–1916), Natanson (1864–1937), and Jaumann (1863–1924) and formalized by Gouy (1854–1926), 
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Stodola (1859–1942), Onsager (1903–1976), Eckart (1902–1973), Meixner (1908–1994), Casimir 

(1909–2000), Prigogine and De Groot (1916–1994) [5–18]. Indeed, the analysis of irreversible 

processes is essential to study nonlinear sciences, which need a nonlinear dynamic approach.  

In this context, the evolutionary principles of the open systems and the related evolution of 

information-processing in Nature represent the present basic open problems in the thermodynamics 

field. In particular, the problem consists of the possibility of formulating a universal law of evolution 

for open systems. Moreover, in relation to the formulation of a unified approach useful for describing 

the evolution of open systems, why does a general agreement among scientists and engineers still not 

exist [19]? 

For isolated systems (the ideal systems for real adiabatic closed systems), the second law of 

thermodynamics defines the state of maximum entropy as the equilibrium state. Therefore, when an 

isolated system is not in a state of maximum entropy, it spontaneously changes its entropy in order to 

achieve the nearest state of maximum entropy [19–24]. For example, Onsager proved that  

linear non-equilibrium thermodynamic analyses can be based on the principle of the least energy 

dissipation [5], which is equivalent to the maximum entropy production principle [3]. Again, for a 

rarefied gas in a state close to equilibrium, the solution of the linearized Boltzmann equation leads to 

maximum entropy production [19]. Moreover, we must foreground how the thermodynamicists usually 

use the terms “entropy generation” and “entropy production”. However, nothing is really produced or 

generated; entropy varies in relation to energy and mass fluxes and to irreversibility, but it is not 

produced or generated. Many authors [24–37] have developed different approaches but  

criticisms [23,38,39] have been advanced for each of them. 

The result is a great number of thermodynamic schools, without a powerful general approach, but 

with a split on non-equilibrium thermodynamics. In 1912, in relation to the stationary non-equilibrium 

states, Ehrenfest introduced the fundamental question on the existence of a functional, which achieves 

its extreme value, as entropy does for the stationary states in equilibrium thermodynamics. Today, the 

new branch frontiers of science and engineering, from power engineering to environmental sciences, 

from chaos to complex systems, from life sciences to nano-sciences, etc. require a unified approach in 

order to optimize results and obtain a powerful approach to non-equilibrium thermodynamics and  

open systems. In this paper, an approach based on the energy wasted in the environment is suggested.  

2. The Analytical Formulations of Second Law 

There are many analytical formulations of the second law: each of them represents a dissipation 

inequality. Meixner introduced two different temperatures, the equilibrium and the non-equilibrium 

temperature [40], while Gurtin and Williams introduced the surface and the bulk temperature [41].  

In relation to the definition of temperature, we must first note the fact that the equilibrium temperature 

is defined in an operative way, and that, often, different definitions are only mathematical relations. 

More clarity appears to be fundamental for an exhaustive definition of temperature. 

In order to introduce the hypothesis of equilibrium useful to define the thermodynamic quantities, 

the phase space of irreversible thermodynamics is an equilibrium subspace. On the other hand, in extended 

irreversible thermodynamics the choice of a new state space [42] does not require local equilibrium. 



Entropy 2015, 17 7789 

 

 

In rational, endoreversible and non-equilibrium thermodynamics, local equilibrium is introduced [42]. 

The concept of local equilibrium is useful in order to define the thermodynamic quantities T and 

entropy S, as is usually done in classical thermodynamics. Indeed, we follow this thermodynamic 

approach defining temperature and entropy in relation to local equilibrium as in Ref. [5]. 

In the years 1850–1865, Clausius introduced the notion of entropy S writing its elementary  

change as: 

Q
dS

T


  (1)

where δQ is the heat exchanged by the system at absolute temperature T in a reversible process.  

The existence of a single-valued state function, entropy, represents the essence of the second law for 

macroscopic systems [38]. The most effective and accepted way to formulate the second law is the 

Clausius inequality for a closed system [5]: 

0
Q

T


  (2)

which represents global dissipation inequality. 

For an open system, analysis is more complex. Indeed, the entropy variation with time t inside the 

control volume is the result of the entropy variation inside system, dSin/dt, and the entropy variation 

due to heat and mass flows Js across boundary surface A [5]: 

in
s

A

dSdS
dA

dt dt
   J n  (3)

being n the exit unitary vector perpendicular to elementary boundary surface dA, and dSin the entropy 

increase due to internal irreversibilities. We define entropy generation as the entropy variation of the 

system considered, and entropy production as the entropy generation in the time considered and per 

unit of volume, that is the density rate of entropy generation. 

This global expression in a local form is [5]: 

s

ds

dt
    J  (4)

with σ ≥ 0. Under the hypothesis of local equilibrium, it is possible to introduce an evolutionary 

criterion that involves entropy production density σ [28–35] so that: 

2

0

in
i i

i

S
X J

dVdt
d

dt
d d d


     

 
   

     


 X J

X ΛJ

X J X J

 (5)

which represents the Lyapunov property of the entropy production density itself [28], and where X are 

thermodynamic forces depending on the phenomenon considered, and J is the thermodynamic flux 

density. However, using the Lagrange multipliers method, a different result was obtained [38,39]: 

0
d

dt


  (6)
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Consequently, a question arises: is entropy production density maximum or minimum [3,43–55]? 

This is a very interesting research topic; moreover, from an engineering thermodynamic point of view, 

it requires a fundamental, general principle, based on a macroscopic quantity. Consequently, it is 

interesting to develop a global analysis of the irreversibility in open and complex systems. 

The study on the variational principles for dissipative mechanical systems has been a longstanding 

question [56–59] since 1744, when Euler developed the analysis of the brachistochrone problem with 

friction. The difficulties can be summarized as follows: 

 only some special systems and frictions can be completely analysed; 

 the Lagrangian loses its uniqueness; 

 the link between Lagrangian and Hamiltonian cannot easily highlighted; 

 the action behaviour is not clear for non-dissipative systems. 

3. The Approach Suggested 

The variational method is very important in mathematical and theoretical physics because it allows 

us to describe natural systems by physical quantities, independently from the frame of reference used. 

Indeed, the Lagrangian formulation is useful in a variety of physical phenomena and a structural 

analogy between different physical phenomena has been pointed out. The most important result of the 

variational principle consists in obtaining both local and global theories. A Lagrangian approach to 

entropy generation allowed mathematical relations to be obtained. Entropy generation allows a global 

description of any irreversible process, and interest in its applications is growing. Moreover, it has also 

been related to the thermodynamic Lagrangian, becoming the quantity, which can link the global and 

local approaches to the analysis of any irreversible system [3]. 

Consider an open, continuum or discrete, N particles system. Every i-th element of this system is 

located by a position vector xi, it has a velocity 	ܠሶ ௜ , a mass mi and a momentum ܘ௜  = miܠሶ ௜ , with  

i  [1,N]. The total mass of the system is ݉ = ∑ ݉௜௜  and its density is ρ. The position of the centre of 

mass is xB and its velocity is defined as ܠሶ ஻ = ∑ ݉௜௜ ሶܠ ௜/݉, while the mean motion velocity, called 

diffusion velocity, is defined by the relation ܝ௜ = ሶܠ ௜ − ሶܠ ஻.	The total mass of the system must be a 

conserved quantity, so it must satisfy the following relation ߩሶ + ∇ߩ ⋅ ሶܠ ஻ = 0  [40]. This global 

analytical relation must also be verified locally, related to the density of the i-th elementary volume of 

density ρi and a source Ξ generated by matter transfer, chemical reactions or thermodynamic 

transformations, as follows ߩሶ௜ + ∇௜ߩ ⋅ ሶܠ ௜ = Ξ௜ߩ  [40]. For an open system, as just described in a 

macroscopic way, the equation of the entropy balance Equation (4) can become [17]: 

S

s
v v

t


    


J  (7)

S i i ii
s

T
  Q

J u  (8)

where s = S/V, with S entropy, is the entropy density, v is the specific volume, σ is the entropy 

production and Js is the entropy flux defined as in [40]: where Q is the heat flow vector. When a 

system with a temperature T receives reversibly a small amount of heat δQ, the entropy of the system 

will increase by an amount [5]: 
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fs

is

Q
S

T


   (9)

where S is the entropy variation of the system from the initial (is) and the final (fs) state of the process, 

δ represents an infinitesimal (or rather elementary) small change of a path function. The second law, as 

the law of entropy increases, is always valid for a completely isolated system, so it also remains valid 

for open systems, if the system and its surroundings/environment are considered as a whole system. 

When we sum up all the changes of entropy of interacting subsystems, the total change must be  

non- negative. Moreover, the maximum work is not attainable for natural systems where irreversible 

processes are inevitable. There is a natural tendency of various kinds of irreversible processes to 

dissipate mechanical into heat energy. 

These considerations must be taken into account in the formulation of a general model of analysis 

of the thermodynamic processes introducing a quantity useful to describe the systems’ evolution. 

Moreover, this physical quantity must be useful both in linear and in non-linear phenomena. So, in 

order to develop our approach, we introduce specific hypotheses [44,48]: 

(1) an open irreversible real system with non-linear response is considered; 

(2) each process has a finite lifetime τ [58] 

(3) what happens in each instant in the range [0,τ] may not be known, but what has happened after 

the time τ (the result of the process) can be well known [12]; 

(4) for open system the entropy balance equation is a balance of fluxes of entropy; 

(5) the Gouy–Stodola theorem works for real systems. 

The usual thermodynamic balance is based on the variation of the entropy and three components for 

the entropy are considered: one related to external mass exchanges, one to heat exchanges δS = δQ/T, 

and the last related to the internal origin δinS = −Xdα, with X non-conservative forces and α extensive 

thermodynamic quantities. The entropy S of the whole system (the control volume and the 

surroundings/environment) is a state function depending only on the equilibrium state of the system 

considered and only entropy differences can be evaluated in the lifetime of process τ and the equation 

of entropy balance for the system using Equation (7) results in: 

 
0 0

V

S e gS dt vdv S S


         J  (10)

where ۸ௌ is the entropy flux Equation (8). The quantity ∆Se should be better defined as the entropy 

variation due to the above mentioned fluxes throughout the system boundaries.  

Entropy generation is then evaluable by the Gouy–Stodola theorem: 

0
g

W
S

T
  (11)

with T0 temperature of the surroundings/environment, W dissipated work by irreversibility in the 

process lifetime τ considering Equation (10).  

The relation between entropy production (rate) and entropy generation is: 
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0

g

V

S dt vdV


    
(12)

In a variational approach to thermodynamics, the systems goes from the initial to the final state of 

the process with the lifetime τ, following a path that is the most probable path. Now, we must 

foreground the fact that in irreversible thermodynamics, the local Gyarmati principle is of universal 

validity and represents a fundamental reference for our improvements. Then, following Gyarmati [60], 

the thermodynamic Lagrangian density, ρL, is: 

vT   L  (13)

where ϕ is the dissipation functions so that [3]: 

V

W dV    (14)

From Equation (5) the production density is: 

0

v i i
i

d
dt J X

dV



      J X  (15)

where τ is the lifetime of the process. Consequently, using Equations (11), (12) and (15), the 
thermodynamic Lagrangian becomes: 

  0v g

V V V V

L dV T dV T dV W T dV T S              J X J XL  (16)

Now, considering that 
0

J X g

V V

T dV T dV dt TS


       it follows that: 

 0 0g g gTS T S T T S   L  (17)

Then, considering the definition of action: 

   0 0

0 0

i g gdt T S T S dt T T S dt
  

       
0

A L  (18)

applying the principle of least action δA = 0, it follows that the condition of evolution is [59]: 

 0
0

0g g g

C
S dT T T dS S

T T
    


 (19)

with C constant. This relation proves the existence of maximum in entropy production in the 

thermodynamic universe. 

4. Fourier Law: An Example of Application of the Entropy Approach 

The equation of heat conduction in solids is a fundamental subject of investigation in modern 

mathematical physics. Indeed, the approach used to obtain this equation was the basis of the 

mathematical formulation of many other physical processes related to diffusion. This topic could 

represent a very interesting application of previous results. 
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Fourier (1768–1830) first formulated the transient process of heat conduction. He obtained  

the partial differential equation by linking a rigorous mathematical approach to empirical  

observations [61]. Indeed, he submitted to the Institut de France in December 1807, his memoir on 

“Théorie de la Propagation de la Chaleur dans les Solides”, which was never accepted. His theory 

was completely explained in the monograph “Théorie analytique de la chaleur” [62]. 

Fourier’s equation describes the macroscopic transport of heat in non-equilibrium systems, so his 

approach can be used to describe all the transport phenomena.  

Let us consider a rigid solid body of a homogeneous material with mass density ρ. On the border 

surfaces, there is a temperature gradient. Inside this body, we analyze a small volume. For this system, 

the second law holds: 

1 1
g g

V A V V V

sdV dA s dV dV s dV
T T

       
            

            
    qn q  (20)

With q the unitary heat flux. Applying the previous results to an infinitesimal volume dV, it follows 

that the first derivative of the entropy generation results as: 

   2

1 1
( ) ( )gds

dV s dV dA r T d dA r
d r TT

          


r
q r r q r r  (21)

where A ( )r  is the area of the section perpendicular to direction r considered and: 

   d d   q r r q r q r  (22)

Considering the first law: 

du q l    (23)

with δl = 0 and du = cdT for a solid body. From the energy balance, it follows that: 

dT du
q c

d d
   

 
  (24)

using the entropy definition: 

   2 2
( )g

du T du dV T
s dV dV dA dA r

T d r d T rT T

                    

r r
q r r q r r  (25)

and considering that rdA = (r/r)dV and Equation (12), it follows that: 

  2

( )
g

T rdA r
s

r r dVT

              

r r
q r  (26)

i.e., the entropy production per unit volume, which is constant for stationary conditions. Then: 

  1
0 0

d Td
T

d d k


     

 
q  (27)

which is precisely Fourier’s law. Now, using the geometric frame so that the r axis is parallel to the 

temperature gradient the relation Equation (26) can be written as: 

   2

1
g

T
s

TT

          
 

q r q r  (28)
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Now, considering the relations Equations (19), (27) and (28) it follows that: 
2

0

T C
k V

T T T

      
 (29)

always verified. Consequently, Fourier’s law results from the second law in stationary conditions and 

in agreement with the Gouy–Stodola theorem. The natural behaviour of the conduction is to transfer 

heat on the path of maximum entropy generation. A numerical application as a particular case can be 

found in [63]. 

5. Conclusions 

There are a great number of variational approaches to thermodynamics, but none of them can 

present a unified model in applied thermodynamics, because the thermodynamicists do not unanimously 

accept it. 

Applied thermodynamics is the science that studies both energy and its best use in relation to 

available energy resources. Considering energy as the possibility to exchange work, it is usual to 

define an internal energy, which characterizes any state of a system in relation to a reference state, and 

exchanged energy as work or heat. During any interaction, the total amount of energy is always 

constant in the universe (the system and its environment). So, its physical meaning is related to its 

exchange. Indeed, useful work is obtained by evaluating the variations of the energy of the system, 

which means that any change in a system always relates to a transition between different system states. 

Carnot’s results on heat engines imply the existence of a well calculable limit for any conversion rate 

of heat into kinetic energy and work. Clausius, in order to analyse dissipative processes, introduced 

entropy. In 1889, Gouy [64] and Stodola in 1905 [65], independently proved that the lost exergy in a 

process is proportional to entropy generation. Consequently, it is interesting to introduce a principle of 

evolution of the systems, based on the analysis of the interaction between systems and their environment. 

This approach can be based precisely on the Gouy–Stodola theorem, because it allows us to 

evaluate the irreversibility and dissipations in the interaction between systems and their environment, 

by considering entropy generation, which is related to the energy the systems lose during any interaction. 

Using the above procedure, we have shown how Fourier’s law for conduction in solids can be 

derived from the second law under stationary conditions. 
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