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Abstract: A quantum game is described making use of coins embodied as entangled 

Fermions in a potential energy well. It is shown that the odds are affected by the Pauli 

Exclusion Principle. They depend on the elevation in the energy well where the coins are 

selected, ranging from being a certainty of winning at the bottom of the well to being near 

classical at the top. These odds differ markedly from those in a classical game in which 

they are independent of elevation. The thermodynamics counterpart of the quantum game 

is discussed. It is shown that the temperature of a Maxwellian gas column in a potential 

energy gradient is independent of elevation. However, the temperature of a Fermion gas is 

shown to drop with elevation. The game and the gas column utilize the same components. 

When Fermions are used, a shifting of odds is produced in the game and a shifting of 

kinetic energy is produced in the thermodynamic experiment, leading to a spontaneous 

temperature gradient. 

Keywords: quantum game; second law; entropy; Fermi–Dirac; Maxwell–Boltzmann; 

Fermion; Boson; temperature gradient; statistical mechanics; quantum mechanics 

 

1. Introduction 

The idea that a quantum game strategy can beat a classical one is not new. Flitney and Abbott [1] 

summarize a coin tossing game first described by Meyer [2] as follows: 

Meyer considered the simple game “penny flip” that consists of the following: Alice 

prepares a coin in the heads state, Bob, without knowing the state of the coin, can choose 
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to either flip the coin or leave its state unaltered, and Alice, without knowing Bob’s action, 

can do likewise. Finally, Bob has a second turn at the coin. The coin is now examined and 

Bob wins if it shows heads. A classical coin clearly gives both players an equal probability 

of success unless they utilize knowledge of the other’s psychological bias, and such 

knowledge is beyond analysis by standard game theory. 

To quantize this game, we replace the coin by a two state quantum system such as a spin 

one-half particle. Now Bob is given the power to make quantum moves while Alice is 
restricted to classical ones. Can Bob profit from his increased strategic space? Let | 0 >  

represent the “heads” state and |1 >  the “tails” state. Alice initially prepares the system in 

the | 0 >  state. Bob can proceed by first applying the Hadamard operator: 

1 11

1 12
H

 
=  − 

 (1)

putting the system into the equal superposition of the two states: ( )1
| 0 |1

2
> + > . Now 

Alice can leave the “coin” alone or interchange the states | 0 >  and |1 > , but if we suppose 

this is done without causing the system to decohere either action will leave the system 

unaltered, a fact that can be exploited by Bob. In his second move he applies the Hadamard 
operator again resulting in the pure state | 0 >  thus winning the game. Bob utilized a 

superposition of states and the increased latitude allowed him by the possibility of quantum 

operators to make Alice’s strategy irrelevant, giving him a certainty of winning. 

—A.P. Flitney and D. Abbott 

In Meyer’s game, the coin is manipulated sequentially by the players and the quantum player (Bob) 
utilizes the Hadamard operator to ensure that the outcome is always tail | 0 > . Meyer does not describe 

a real world implementation for his game. 
This paper describes a physical embodiment for a coin tossing game by representing a coin as a 

Fermion inside a potential energy well and shows that a player can manipulate the outcome of the 

game simply by changing her particle’s elevation in the well. In addition, the thermodynamics 

implications of this game are also discussed in which the temperature of a non-Maxwellian gas is also 

shown to depend on elevation. 

2. Classical Coin Game Thought Experiment 

Consider the following classical game played by a player, say Alice, against the “House”: The 

dealer tosses a large number of coins but their final states are hidden until the player selects two coins. 

Before uncovering them, she calls her bet: “matched” or “mismatched.” as shown in Figure 1. 

Matching coin combinations include (Head, Head) and (Tail, Tail). Mismatching coins include (Head, 

Tail) or (Tail, Head). In a classical game the odds are obviously equal since p(Head, Head) = p(Tail, 

Tail) = p(Head, Tail) = p(Tail, Head) = 0.25. The entropy corresponding to making a bet is: 

1
0.25log 0.25log 4 0.25 2log 2 0.5shannons

0.25
S

 = = = × = 
 

 (2)
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Playing such a game, Alice has a 50% chance of winning. Can she improve her odds by using a 

quantum strategy? 

 

Figure 1. In a classical environment the selected coins are uncorrelated, and could be 

(Head, Head), (Head, Tail), (Tail, Head) or (Tail, Tail). Alice wins 50% of the time. 

3. Quantum Coin Game Thought Experiment 

Let us assume that coins are actually Fermions with “Head” having, for example, a physical 

representation of spin up, and “Tail”, of spin down. Furthermore, let’s say that the coins are entangled 

in a potential energy well characterized by a number of discrete quantum states. In addition, let each 

coin possess energy, the lowest value being the ground state. This coin arrangement is exemplified by 

the well-known electronic configuration in an atom. To make it more interesting, we can assume that 

the atom is not in the ground state, so that some low energy levels are unoccupied. The general 

description of such system follows the Fermi–Dirac distribution.  

Since the coins are Fermions, their states are constrained by the Pauli Exclusion Principle which 

requires that they are different as shown in Figure 2.  

 

Figure 2. When the coins are Fermions in the ground state and constrained in a potential 

energy well, the Pauli Exclusion Principle requires them to be different allowing Alice to 

win all the time. 

The lowest energy levels are the most crowded and include two anti-parallel states, both states 

being occupied, one coin being “Head” (spin up) and the other coin being “Tail” (spin down). For the 

sake of simplicity let us assume the ground state where the coins are perfectly entangled such that if 

both coins are selected from the ground state they form a mismatched pair. 

At the top of the energy well, the states are less crowded than at the bottom and therefore it is possible 

to find unoccupied states, or coins occupying anti-parallel states as well as parallel states. For example 



Entropy 2015, 17 7648 

 

 

two coins can be Head (spin up), or two coins can be “Tail” (spin down). For the sake of simplicity we 

shall also assume that a coin selected from the top level of the energy well is unentangled from the 

other coins such that when combined with another coin it would form a matched or mismatched pair 

with equal probability. 

Therefore, Alice can increase her chances of winning, simply by selecting low energy coins and 

calling a “mismatch”. Selecting from the bottom of the energy well, the entropy for each play is: 

( )1 log 1 0shannonsS = × =  (3)

Note that all Alice needs to do is observe the coins, not remove them from the well. 

4. Discussion of the Coin Experiments 

One should note that if classical coins are used, the odds are even and independent of elevation. In 

his game, Meyer shifts the odds in favor of Bob by using a quantum coin being flipped repeatedly and 

applying the Hadamard operator to ensure that the outcome is always “Tail”. In contrast, the game 

outlined above utilizes a multiplicity of quantum coins having an anti-symmetric wave function 

(Fermions). The coins are located in a potential energy well, thereby subjected to the Pauli Exclusion 

Principle. The player draws two coins, his goal being to get a mismatch. The odds are shifted in favor 

of Alice by selecting coins at a low elevation where the coins are entangled and have a higher 

probability for mismatch. The same conclusion would have been reached had the coins been Bosons 

and the winning combinations, matched pairs. The requirements for such a game are: 

(1) Non-Maxwellian objects such as Fermions or Bosons. 

(2) A potential energy gradient that crowds the objects and forces them into their characteristic  

non-Maxwellian distribution. For example, if the objects are Fermions, their distribution is, according 

to Landauer formalism, the product of their density of state and the Fermi–Dirac distribution. 

The classical and quantum coin experiments have a Thermodynamics counterpart as explained below. 

5. Classical Gas Thought Experiment 

The coin thought experiment described above can be translated to the context of Thermodynamics. 

Consider a column of gas subjected to a force field and held in a container with perfectly reflecting and 

elastic walls, floor and ceiling. A game between Alice and the House is defined as follows. The House 

provides Alice with the position of each molecule and Alice selects two molecules, A and B. If A has 

more kinetic energy than B, Alice wins, otherwise the House wins. The question for Alice is whether 

she can improve her odds by selecting molecules at different elevation in the column. 

One could rephrase the game in more friendly thermodynamics terms. Is the temperature at the top 

and at the bottom of the potential energy gradient the same or different? 

One shall first consider the classical case shown in Figure 3, which uses a Maxwellian gas such as 

air, and a force such as gravity. 
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Figure 3. Classical gas subjected to a force field and enclosed in a perfectly reflecting box. 

Is the temperature of the gas the same or different at the top and at the bottom? 

The molecules collide with each other thereby evolving a Maxwellian distribution. The distribution 

of the gas at ground level is given by the Maxwell–Boltzmann distribution equation: 
3/2

1
( ) 2 expk k

MB k
B B

E E
f E

k T k T

   −=    π   
 (4)

also shown by the red curve at the bottom of Figure 4 (see Appendix A for details). 

 

Figure 4. To compare the temperature of a classical gas at the bottom and at the top of  

a gas column, the following steps are taken: (1) a distribution is defined at the bottom;  

(2) The distribution at the top is obtained by inserting potential energy, thereby denormalizing 

the distribution; (3) The distribution at the top is then renormalized and compared to the 

one at the bottom. No shift in the first moment indicates that the gas is isothermal with 

elevation in conformance with the Second Law. 

The equation for the distribution comprises three kinds of terms. The first corresponds to a normalization 

factor such that the area under the curve is unity. The second term is the square root of kinetic energy. 

The third term is the Maxwell term which is exponential with kinetic energy. The strict exponential 

nature of this term is important as shall be explained. 
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The distribution at the top of the column can be generated by inserting potential energy pE  in the 

exponential term adjacent to the kinetic energy kE  to express the total energy of molecules: 

3/2
1

( , ) 2 exp k pk
MB k p unnormalized

B B

E EE
f E E

k T k T

− −   
=    π   

 (5)

Because it is expressed within an exponent, potential energy can also be factored out in its own 

exponential term as shown in the equation below: 
3/2

1
( , ) 2 exp exp pk k

MB k p unnormalized
B B B

EE E
f E E

k T k T k T

−     −=      π     
 (6)

One must note that inserting potential energy denormalizes the distribution, reducing its amplitude 

and resulting, as expected, in a lower density of molecules at higher elevation as shown at the top of 

Figure 4. Of concern however, is not density but temperature. A change in temperature can be expressed 

by a shift in the first moment of the distribution which can be visually expressed by comparing the 

distributions at the bottom and at the top. This comparison, however, must be made after the distribution 

at the top is renormalized. Since potential energy is expressed exponentially, it can be factored out as 

indicated in Equation (6) and eliminated by the renormalization process. The resulting renormalized 

equation for the gas at the top is: 
3/2

1
( ) 2 expk k

MB k renormalized
B B

E E
f E

k T k T

   −=    π   
 (7)

which is identical to the distribution at the bottom Equation (4). The corresponding curves, thick red 

for the bottom and thin blue for the top are shown at the right of Figure 4. These curves are identical, 

implying that the first moments of both curves are the same, and that the average kinetic energy and 

the temperature are invariant with elevation. 

As expected, the Maxwellian gas is isothermal with elevation in compliance with the Second Law. 

This experiment corresponds to the coin selection experiment in which the player comes out even against 

the House (assuming no entrance or playing fee). 

6. Quantum Gas Thought Experiment 

The quantum version of the gas experiment outline above requires that the molecules be non-Maxwellian, 

for example Fermions. As shown in Figure 5, these can be embodied in a thermoelectric material by 

electrons or holes which can be regarded as being in a gas phase (see Appendix B for details). 

The thermoelectric slab is subjected to an electric field, produced for example by insulated capacitor 

plates or a junction. The slab is composed of a material with a high ZT, such that the carriers do not 

collide with heat phonons. ZT is a dimensionless figure of merit used in the thermoelectric industry.  

It is a measure of the ability of a given material to produce thermoelectric power and is given by 
2S T

ZT
σ=

λ
. It depends on the electrical conductivity σ , the Seebeck coefficient S , the temperature 

T  and the thermal conductivity λ . 
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Figure 5. A gas comprised of quantum particles (e.g., Fermions) is subjected to a force 

field and enclosed in a slab of semiconductor. Is the temperature of the gas the same or 

different at the top and at the bottom? 

Because of the high ZT, electrons are mostly ballistic with respect to the lattice, but they still interact 

between themselves thereby evolving their own Fermion distribution. A detailed description of the 

experiment is given by the author in [3] and experimental evidence is provided that the phenomenon 

described below does occur. 

In this experiment as in the previous one, the question being asked is whether the temperature at the 

top and at the bottom of the potential energy gradient is the same or different. The same procedure can be 

applied as before. First the distribution at the bottom of the potential energy gradient is defined.  

In accordance with Landauer–Boltzmann formalism, since the gas is composed of Fermions, their 

distribution is the product of the density of state (which we will assume to be parabolic for the sake  

of simplicity): 

3/2
3

8 2
( )c t kg E m E

h

π=  (8)

and of the Fermi–Dirac distribution: 

1
( )

1 exp
FD t

k c F

B

F E
E E E

k T

=
 + −+  
 

 
(9)

Combining Equations (8) and (9), and normalizing yields the normalized Fermion distribution: 

1

1
( )

1 exp
FD k k

k c F

B

f E A E
E E E

k T

=
 + −+  
 

 
(10)

where 1A  is the normalization factor. 

The distribution at the top of the slab is obtained by inserting potential energy pE  next to kinetic 

energy kE  in the Fermi–Dirac term, to express the total energy of molecules: 
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1

1
( )

1 exp
FD k k

k p c F

B

f E A E
E E E E

k T

=
+ + − 

+  
 

 
(11)

The step of inserting potential energy denormalizes the distribution which is shown as the thin blue 

curve at the top of Figure 6. 

A change in temperature corresponds to a change in the first moment of the distribution. The change 

can be visually determined by comparing the original distribution shown at the bottom of Figure 6  

with the distribution at the top. However, this comparison must be made after the distribution at the top 

is renormalized. 

 

Figure 6. As in the classical experiment, the temperatures of the gas at the bottom and at 

the top of a potential energy gradient are compared using the following procedure: (1) a 

distribution is generated at the bottom of the column (2) The distribution at the top is obtained 

by inserting potential energy, thereby denormalizing the distribution; (3) The distribution  

at the top is renormalized and compared to the one at the bottom. A shift in the first moment 

indicates that the gas is colder at the top of the columns than at the bottom. 

2

1
( )

1 exp
FD k renormalized k

k p c F

B

f E A E
E E E E

k T

=
+ + − 

+  
 

 

(12)

where 2A  is the normalization factor. In contrast to the previous experiment, the distribution is not a 

strict exponential function of potential energy. Therefore, potential energy cannot be eliminated by the 

renormalization process, resulting in the distribution at the top being skewed toward the left in 

comparison with the one at the bottom and indicating a shift of the first moment. This shift 

demonstrates a lower average kinetic energy, and therefore a lower temperature with elevation. The 
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reason for this result is the non-strictly exponential nature of the Fermi–Dirac distribution which 

prevents the cancellation of potential energy by renormalization.  

Figure 7 summarizes the result of the classical and quantum gas experiment. It shows the energy 

distribution of the gas at two elevations (thick red: ground level; thin blue: elevation above ground) for 

a Maxwellian gas (a) and for a non-Maxwellian gas (b). The calculator software for generating these 

curves is available at [4]. 

(a) (b) 

Figure 7. (a) Normalized energy distribution for a Maxwellian gas at two elevations, (red 

curve for ground level and blue curve for elevation above ground). The two distributions 

are superimposed indicating that their first moment is identical, and that the gas is isothermal 

with elevation. These distributions were calculated using the Maxwell–Boltzmann 

distribution; (b) Normalized energy distribution for a Fermion gas at two elevations, (red 

curve for ground level and blue curve for elevation above ground). The distribution above 

ground is skewed to the left compared to the one at ground level, indicating a smaller first 

moment and a drop in temperature with elevation. These distributions were calculated as the 

product of a parabolic density of state and the Fermi–Dirac distribution. 

7. Discussion of the Gas Experiments 

The thermodynamics counterpart of the quantum game above is fully described by the author in [3] 

and reproduced in part in this paper. He shows that when a gas comprised of non-Maxwellian particles 

(Fermions or Bosons) is subjected to an external force (potential energy gradient), the temperature of 

the gas drops with elevation. This thermodynamic effect is Quantic in nature and can be used to play 

the Quantum game described above. 

In contrast, when the gas is Maxwellian, elevation has no effect on temperature—the gas is isothermal 

in accordance with the Second Law. This corresponds to the classical game described above in which 

Alice’s chances of winning are 50%—not including any fees she may have to pay the “House” for 

playing the game, which would reduce her expected winnings. 

8. Conclusions 

A coin tossing game is described in which a player plays against the House by selecting two coins. 

Before uncovering them, she calls a “match” or a “mismatch”. The classical game utilizes coins that 

follow rules of Classical Physics. When the player plays classically, she comes out even. 

The quantum game uses coins embodied as Fermions and subjected to a potential energy gradient in 

a potential well. It is shown that a quantum strategy can beat classical odds. According to the Pauli 

Exclusion Principle no two Fermions can occupy the same state and therefore, selecting Fermions from 
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the bottom of the energy well is the best strategy to achieve a mismatch. The odds of winning the game 

are shown to depend on the elevation of the Fermions being selected ranging from being a certainty of 

winning at the bottom of the well to being near classical at the top. These odds differ markedly from 

those in a classical game in which they are independent of elevation. 

The thermodynamics counterpart of the quantum game is discussed in which a Maxwellian gas and 

a non-Maxwellian gas are subjected to a force. Temperature is shown to be independent of elevation for the 

Maxwellian gas in accordance with the Second Law, but drops with elevation for the non-Maxwellian gas. 

The game and the Fermion gas column utilize the same components: Fermions are subjected to  

a force field, and develop their own characteristic distribution. A shifting of odds is produced in the 

game and a shifting of kinetic energy is produced in the thermodynamic experiment: the Fermion gas 

column develops a spontaneous temperature gradient. 

Obviously such a phenomenon is not allowed in classical Physics but is permitted in Quantum 

Mechanics when the particles follow a non-Maxwellian distribution. 

The three laws of Thermodynamics can facetiously be described as “You can’t win”, “You can’t get 

even”, and “You can’t get out of the game”. The game is rigged by the rules of Classical Mechanics. 

The best strategy then, is to play according to different rules, in other words, to cheat. Quantum Mechanics 

allows you to do just that. 
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Appendix A. Derivation of Maxwell–Boltzmann Distribution in the Presence of an External 

Force Field 

The first step is to express the Maxwell–Boltzmann distribution when an external force field is applied 

on the gas. In the absence of a force each component of the velocity vector has a normal distribution: 
1/2 2

( ) exp
2 2

x
MB x

B B

mvm
f v

k T k T

   −=    π   
 (13)

1/2 2

( ) exp
2 2

y
MB y

B B

mvm
f v

k T k T

 − 
=     π   

 (14)

1/2 2

( ) exp
2 2

z
MB z

B B

mvm
f v

k T k T

   −=    π   
 (15)

If a force is applied in the z  direction the gas acquires potential energy pE mgz=  and  

Equation (15) becomes: 

21/2
1
2( , ) exp

2

z

MB z
B B

mv mgzm
f v z

k T k T

 − −  
=   π   

 

 (16)
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The probability distribution of the vector v  at a given elevation z  can be seen as the joint 
probability of three independent probabilities ( )MB xf v , ( )MB yf v  and ( , )MB zf v z  along each degree of 

freedom. Hence: 

( , ) ( , , , ) ( ) ( ) ( , )MB MB x y z MB x MB y MB zf v z f v v v z f v f v f v z= =  (17)

Therefore, substituting Equations (13), (14) and (16) into Equation (17) produces: 
3/2 2 2 2( )

( , ) exp exp
2 2

x y z
MB x y z x y z

B B B

m v v vm mgz
f v z dv dv dv dv dv dv

k T k T k T

 − + +   −=      π    
 (18)

To obtain the distribution for the kinetic energy kE , the velocity components are expressed in spherical 

coordinates. A velocity volume element is given by: 
2 sinx y zdv dv dv v d d dv= θ θ φ  (19)

Integrating θ  and φ , this volume element becomes: 

22 2

0 0
sin 4x y zdv dv dv v dv d d v dv

π π
= φ θ θ = π   (20)

Substituting Equation (20) into Equation (18) produces: 
3/2 2

2( , ) exp exp 4
2 2MB

B B B

m mv mgz
f v z dv v dv

k T k T k T

     − −= π     π     
 (21)

Since 2k kdE mvdv mE dv= =  and defining the potential energy as pE mgz=  results in: 

3/2
1

( , ) 2 exp exp pk k
MB k p

B B B

EE E
f E E

k T k T k T

−     −=      π     
 (22)

Normalizing Equation (22) yields: 

3/2

3/2

0

1
2 exp exp

( , )
1

2 exp exp

pk k

B B B
MB k p normalized

pk k
k

B B B

EE E

k T k T k T
f E E

EE E
dE

k T k T k T

∞

−     −
     π     =

−     −
     π     


 (23)

Rearranging yields: 

3/2

3/2

0

1
2 exp exp

( , )
1

exp 2 exp

pk k

B B B
MB k p normalized

p k k
k

B B B

EE E

k T k T k T
f E E

E E E
dE

k T k T k T

∞

−     −
     π     =
−     −

     π     


 (24)

Since 
3/2

0

1
2 exp 1k k

k
B B

E E
dE

k T k T

∞    − =   π   
 , we get: 
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3/2
1

( , ) 2 expk k
MB k p normalized

B B

E E
f E E

k T k T

   −=    π   
 (25)

Hence the distribution is independent of potential energy pE  and of elevation in compliance with the 

Second Law as shown in the Figure 7a. 

Appendix B. Derivation of the Fermion Distribution in the Presence of an External Force Field 

Consider a Fermion gas embodied as electrons confined to an n-doped semiconductor slab as shown 

in Figure 5. The thermally significant electrons are those that happen to be in the conduction band and 

that are made available by the Fermi–Dirac distribution. Such electrons must have a positive kinetic 
energy 0kE >  and a total energy tE  greater than the potential energy of the band’s bottom cE , i.e., 

t cE E> . In the conduction band, the electron’s density of states is given by [1,2] by: 

3/2
3

8 2
( )c t t cg E m E E

h

π= −  (26)

Expressing kinetic energy as k t cE E E= −  and substituting into Equation (26) produces: 

3/2
3

8 2
( )c t kg E m E

h

π=  (27)

The Fermi–Dirac distribution of the carriers can be expressed as: 

1
( )

1 exp
FD t

t F

B

F E
E E

k T

=
 −+  
 

 
(28)

and using k t cE E E= −  we get: 

1
( )

1 exp
FD k

k c F

B

F E
E E E

k T

=
 + −+  
 

 
(29)

In the presence of an electrical field, an electrical potential energy pE  is induced in the carriers, and 

the Fermi–Dirac distribution is modified accordingly: 

1
( , )

1 exp
FD k p

k c p F

B

F E E
E E E E

k T

=
+ + − 

+  
 

 
(30)

In accordance with Landauer–Boltzmann formalism, the electron density ( , )t pn E E  is the product of 

the carrier density of states and the Fermi distribution: 

( , ) ( , ) ( ) ( , )Fermions k p k p c k FD k pf E E n E E g E F E E= =  (31)

Substituting Equations (27) and (30) into Equation (31) yields: 
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k p c F

B

f E E m E
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π=
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+  
 

 
(32)

Normalizing yields: 

3/2
3

3/2
30

8 2 1

1 exp

( , )
8 2 1

1 exp

k
k p c F

B
Fermions k p normalized

k k
k p c F

B

m E
E E E Eh

k T
f E E

m E dE
E E E Eh

k T

∞

π
+ + − 

+  
 =

π
+ + − 

+  
 


 (33)

and cancelling constant terms produces: 

0

1

1 exp

( , )
1

1 exp

k
k c p F

B
Fermions k p normalized

k k
k c p F

B

E
E E E E

k T
f E E

E dE
E E E E

k T

∞

+ + − 
+  

 =

+ + − 
+  

 


 (34)

Please note that, unlike in the Maxwell–Boltzmann case (Appendix A), the potential energy term pE  is 

not readily cancelled causing the Fermion distribution with 0pE >  not to be identical with the 

distribution with 0pE = . Since the areas under the distributions are equal to unity, and the distribution 

are not congruent, the distributions must be skewed with respect to each other as shown in Figure 7b. 

This figure has been generated using a calculator program. It shows that the distributions have different 

first moments implying different temperatures, in violation of Clausius’ formulation of the Second Law. 
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