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Abstract: In recent years, the maximum entropy principle has been applied to a wide
range of different fields, often successfully. While these works are usually focussed on
cross-disciplinary applications, the point of this letter is instead to reconsider a fundamental
point of kinetic theory. Namely, we shall re-examine the Stosszahlansatz leading to the
irreversible Boltzmann equation at the light of the MaxEnt principle. We assert that this way
of thinking allows to move one step further than the factorization hypothesis and provides
a coherent—though implicit—closure scheme for the two-particle distribution function.
Such higher-order dependences are believed to open the way to a deeper understanding of
fluctuating phenomena.
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1. Introduction

While the formulation of equilibrium statistical mechanics in terms of the maximum entropy
(“MaxEnt”) principle goes back to Jaynes’ seminal work [1,2] in the 50s, the last decade has seen
a spectacular revival of this approach. In particular, the MaxEnt-based characterization of complex
systems presented in [3] paved the way to applications in a variety of fields ranging from linguistics
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to biology [4–8]. First focussed on equilibrium situations, these works soon turned their attention to
non-equilibrium properties as well [9–12].

However, it seems that these authors paid comparatively little attention to more “fundamental”
issues. In the present letter, we would like to reconsider some aspects of the kinetic theory of
gases at the light of the MaxEnt philosophy. More precisely, kinetic theory relies heavily on the
so-called Stosszahlansatz which asserts that, before colliding, particles are uncorrelated. While this bold
assumption can be motivated physically, it is not completely clear how it should be generalized when
considering higher-order distribution functions. Our point is that if one considers the Stosszahlansatz
as a heuristically motivated assumption, it generalizes naturally to higher-order cases—even though this
raises extra mathematical challenges!

We start with a brief reminder on MaxEnt distributions as well as on the BBGKY hierarchy leading
to kinetic equations, and bridge both in the last two sections.

2. Maximum Entropy Distributions

The Shannon entropy H(X) = −
∫
dxP (x) lnP (x) has all properties one would expect from

an uncertainty measure [13,14]. In other terms, among a set of distributions, the least biased
guess an observer can make is the one having the largest entropy while still satisfying available
observational constraints. Assume for instance we try to maximize H(X) under the constraint 〈O〉 =∫
dxO(x)P (x) = µ. Introducing a multiplier for the constraint and another for the probabilistic

normalization, one has to compute

∂

∂P

(∫
dxP (x) ln

1

P (x)
+ λ0

∫
dxP (x) + λ

∫
dxO(x)P (x)

)
=

∫
dx

(
ln

1

P (x)
− 1 + λ0 + λO(x)

)
.

(1)

Letting this expression vanish yields

P (x) = exp (−1 + λ0 + λO(x)) , (2)

where the multipliers have to be determined to match the constraints. This result extends
straightforwardly to the case of several constraints, namely 〈Ok〉 =

∫
dxOk(x)P (x) = µk for

k = 1, 2, ..., K. Then

P (x) =
1

Z
exp

(
K∑
k=1

λkOk(x)

)
. (3)

In what follows we shall be concerned primarily with constraints on marginals instead of averages.
An appropriate use of δ functions allows to generalize the previous result. As an example consider the
case of a quadrivariate variable x = (w, x, y, z) the marginal P123(a, b, c) of which is assumed to be
known. Putting O(x) = δ(w, a)δ(x, b)δ(y, c) we can write
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〈O〉 =
∑
x

O(x)P (x)

=
∑
w,x,y

δ(w, a)δ(x, b)δ(y, c)
∑
z

P (x)

=
∑
w,x,y

δ(w, a)δ(x, b)δ(y, c)P123(w, x, y)

= P123(a, b, c). (4)

Using the result (3) derived for the averages one gets

P (x) =
1

Z
exp

(∑
a,b,c

λ(a, b, c)O(x)

)
=

1

Z
expλ(w, x, y), (5)

λ now denoting a function. This result can be extended to any number of marginals of any order. If for
instance besides P123 the marginals P124 and P34 are given we get

P (x) =
1

Z
exp (λ1(w, x, y) + λ2(w, x, z) + λ3(y, z)) (6)

for functions λ1, λ2 and λ3 to be determined. Unfortunately, this determination is difficult except in
the case of univariate constraints. Then λ1(w) = lnP1(w), etc., obviously solves the problem, so that
the corresponding MaxEnt distribution is the factorized distribution. When turning our attention to the
applicability of this result to the realm of kinetic theory, it will appear that in that context the problem
can be slightly simplified due to the structure of reduced distributions.

3. The BBGKY Hierarchy

Let us consider N particles of mass m, the coordinates of which in phase space are their positions qi
and momenta pi. It will be convenient to define a condensed notation xi = (qi,pi). Let fN(x1, ..., xN , t)

denote the joint distribution function characterizing the system, which obeys Liouville’s equation

dfN
dt

=
∂fN
∂t

+
N∑
i=1

pi
m

∂fN
∂qi

+
N∑
i=1

Fi
∂fN
∂pi

= 0, (7)

where Fi denotes the force exerted on particle i. We shall restrict ourselves to the case without external
force and where particles interact pairwise through some radial potential V (|qi − qj|) = Vij . Then
Fi = −

∑
j 6=i

∂Vij
∂qi

.
Reminding that fN itself is normalized to N !, we now introduce the reduced s-particle distribution

fs(x1, ..., xs, t) = N !
(N−s)!

∫
dxs+1...dxNfN(x1, ..., xN , t). The standard result [15] is that by integrating

Liouville’s equation, one obtains a dynamical equation for fs given by the so-called BBGKY hierarchy
(from the non-chronological list of its co-discoverers’ names : Bogoliubov, Born, Green, Kirkwood,
Yvon) :

∂fs
∂t

+
s∑
i=1

pi
m

∂fs
∂qi
−

s∑
i=1

s∑
j 6=i

∂Vij
∂qi

∂fs
∂pi
−
∫
dxs+1

s∑
i=1

∂Vi,s+1

∂qi

∂fs+1

∂pi
= 0. (8)
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This expression forms a hierarchy since the dynamics for fs is expressed in terms of the higher-order
distribution fs+1. Of course each equation can be deduced from its higher-order precursor by integration,
at the cost of an information loss. In what follows we shall denote the s-th equation of the hierarchy as
BBGKY-s. BBGKY1 and BBGKY2, in which we are primarily interested here, are

∂f1
∂t

+
p1

m

∂f1
∂q1

=

∫
dx2

∂V12
∂q1

∂f2
∂p1

(9)

and

∂f2
∂t

+
p1

m

∂f2
∂q1

+
p2

m

∂f2
∂q2

− ∂V12
∂q1

(
∂

∂p1

− ∂

∂p2

)
f2 =

∫
dx3

(
∂V13
∂q1

∂f3
∂p1

+
∂V23
∂q2

∂f3
∂p2

)
, (10)

where of course f1 = f1(p1,q1, t), f2 = f2(p1,q1,p2,q2, t) and f3 = f3(p1,q1,p2,q2,p3,q3, t). The
purpose of this paper is to investigate the second of these equations. As stressed above, we shall not
try to express BBGKY1 and BBGKY2 as a set of coupled equations relating f1 and f2, since such an
approach would not “fit” nicely in the spirit of the BBGKY approach. Instead, we shall manage to
truncate BBGKY2 in order to obtain a single, self-standing equation for f2.

4. The Stosszahlansatz for BBGKY2

The procedure leading from the BBGKY1 equation to a consistent kinetic equation for f1 is standard:
the Stosszahlansatz asserts that before colliding two particles are uncorrelated, i.e., f2 factorizes as
f2(x1, x2) = f1(x1)f1(x2). This allows us to express the collision integral in terms of f1, so that
BBGKY1 becomes a closed equation for f1. Since this factorization hypothesis may be supported from
a physical standpoint, it is tempting to use this ansatz in the collision term for BBGKY2 as well. But this
raises an issue: if BBGKY2 can be cast into an equation relating a streaming term expressed in terms of
f2 to a collision term expressed in terms of f1, then this equation is obviously not consistent by itself and
has to be supplemented, so as to obtain a system of coupled equations.

Our point is that this issue vanishes if the Stosszahlansatz is reconsidered as a heuristic ansatz
instead of a physically-grounded assumption. We propose to reformulate it as follows: since the exact
codependence of particles entering the collision range is unknown, one has to make a reasonable guess
on it, and the MaxEnt distribution steps out at this point. The MaxEnt guess for f2, compatible with
the univariate distribution appearing in the streaming term, is the factorized one, but on the contrary
the guess for f3, compatible with the f2 appearing in the left-hand side, will be quite different from a
factorized distribution (as exemplified by (6)).

Let us now see to what extent the result (6) obtained for the MaxEnt distribution may be particularized
to our current purpose. We showed that, given bivariate marginals, the MaxEnt estimate for f3(x1, x2, x3)
was given by

fME
3 (x1, x2, x3) =

1

Z
exp (λ1(x1, x2) + λ2(x1, x3) + λ3(x2, x3)) (11)

for some λ1, λ2 and λ3. The point is that these marginals are the same for each pair by definition of the
reduced distribution f2, and accordingly all three λs are the same. Absorbing the normalization, one is
therefore allowed to write that

fME
3 (x1, x2, x3) = g(x1, x2)g(x1, x3)g(x2, x3) (12)
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for a function g that is nevertheless unknown, except for the fact that it has to satisfy the marginal
constraint

g(x, y)

∫
dzg(x, z)g(y, z) = f2(x, y). (13)

5. The Collision Term

Using this ansatz we now proceed to write down the kinetic equation for f2. All through, we shall
retain the usual assumptions of kinetic theory, leading us to neglect triple collisions: the streaming term
for the two-particle distribution characterizing particles “1” and “2” will thus be altered by (1) binary
collisions between “1”and another particle, “2” being spectator, and (2) binary collisions between “2”and
another particle, “1” being spectator.

The binary interaction is defined as occurring when two particles meet in a ball B of radius R.
Defining ternary interactions is more subtle since, inasmuch as the interaction potential is the same
whatever the order of the interaction, it seems artificial to introduce a specific cutoff. We shall therefore
define the range of triple collisions as the lenticular overlap of balls B(1)

R and B(2)
R characterizing the

domain of interaction with “1” and “2” respectively. Neglecting triple collisions thus amounts to
assuming that |q1 − q2| > 2R.

We first compute the contribution of collisions of “2” with “3”, “1” being left aside. Let us recall that
the collision term is given by(

∂f2
∂t

)
coll

=

∫
dx3

(
∂V13
∂q1

∂f3
∂p1

+
∂V23
∂q2

∂f3
∂p2

)
. (14)

In the usual derivation of the Boltzmann equation from the BBGKY hierarchy, the right-hand
side of BBGKY1 is transformed using BBGKY2. Similarly, we can transform (∂tf2)coll using
BBGKY3, namely

∂f3
∂t

+
p1

m

∂f3
∂q1

+
p2

m

∂f3
∂q2

+
p3

m

∂f3
∂q3

− ∂V12
∂q1

(
∂

∂p1
− ∂

∂p2

)
f3 −

∂V13
∂q1

(
∂

∂p1
− ∂

∂p3

)
f3 −

∂V23
∂q2

(
∂

∂p2
− ∂

∂p3

)
f3 =

(
∂f3
∂t

)
coll

(15)

(we do not make explicit the collision term (∂tf3)coll since we shall cancel it soon anyway). Under usual
dimensional assumptions, we can write ∂tf3 ≈ 0 and (∂tf3)coll ≈ 0, so that, substituting in the collision
term, (∂tf2)coll is rewritten as(
∂f2
∂t

)
coll

=

∫
dx3

(
p1

m

∂f3
∂q1

+
p2

m

∂f3
∂q2

+
p3

m

∂f3
∂q3

− ∂V12
∂q1

(
∂

∂p1

− ∂

∂p2

)
f3 +

(
∂V13
∂q1

+
∂V23
∂q2

)
∂f3
∂p3

)
=

∫
dx3

(
p2

m

∂f3
∂q2

+
p3

m

∂f3
∂q3

)
(16)

(the last term vanishes due to the boundary condition f3(|p| → ∞) = 0, the penultimate since “1”
and “2” are supposed far apart from each other and the first because f3 depends but weakly on q1).
More precisely, (

∂f2
∂t

)
coll

=

∫
q3∈B(2)

R

dq3dp3

(
p2

m

∂f3
∂q2

+
p3

m

∂f3
∂q3

)
. (17)
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The following is standard [15]. We introduce the relative coordinate r23 = q3 − q2 and use Gauss’
theorem in order to rewrite (∂tf2)coll as a surface integral, so that(

∂f2
∂t

)
coll

=

∫
r23∈BR

dr23dp3
p3 − p2

m

∂

∂r23
f3(q1,p1,q2,p2,q3,p3, t)

=

∫
SR

dp3dΣ · p3 − p2

m
f3(q1,p1,q2,p2,q3,p3, t)

=

∫
S−
R∪S

+
R

dp3dΣ · p3 − p2

m
f3(q1,p1,q2,p2,q3,p3, t), (18)

where dΣ denotes the surface element of the sphere SR such that |r23| = R. The southern hemisphere is
interpreted as the contribution of oncoming collisions since (p3 − p2) · dΣ < 0, while the northern one
is the contribution of ending collisions since (p3 − p2) · dΣ > 0.

Orienting the polar axis along p3 − p2, we have dΣ · (p3 − p2) = |p3 − p2|R2 sin θ cos θdθdφ. This
can be re-expressed in terms of the surface element of the azimuthal plane such that θ = π/2. Letting
r denote the radial component on the plane, we obviously have r = R sin θ, whence dr = ±R cos θdθ

(depending on θ being lesser or larger than π/2) and dΣ · (p3−p2) = ±|p3−p2|dω. The collision term
can thus be rewritten as (approximating q3 ≈ q2)(

∂f2
∂t

)
coll

=

∫
after

dp3dω
|p3 − p2|

m
f3(q1,p1,q2,p2,q2,p3, t)

−
∫
before

dp3dω
|p3 − p2|

m
f3(q1,p1,q2,p2,q2,p3, t). (19)

Now comes the ansatz. Before the collision we obviously have

f3(q1,p1,q2,p2,q2,p3, t) = g(q1,p1,q2,p2, t)g(q1,p1,q2,p3, t)g(q2,p2,q2,p3, t). (20)

The ansatz may be extended after the collision using the fact that, by Liouville’s equation,
f3(q1,p1,q2,p2,q2,p3, t) = f3(q

−τ
1 ,p1,q

−τ
2 ,p′2,q

−τ
2 ,p′3, t− τ), where τ is the retardation such that at

t− τ the particles are entering the collision range with momenta p′2, p′3. Since q−τi ≈ qi and t ≈ t− τ ,
and since p′2, p

′
3 are pre-collisional momenta, the ansatz may be introduced in the first integral as well

with arguments p′2, p
′
3. We are therefore eventually led to the following Boltzmann-like form for the

BBGKY2 equation:

∂f2
∂t

+
p1

m

∂f2
∂q1

+
p2

m

∂f2
∂q2

− ∂V12
∂q1

(
∂

∂p1

− ∂

∂p2

)
f2

=

∫
dp3dω

|p3 − p2|
m

(g(q1,p1,q2,p
′
2)g(q1,p1,q2,p

′
3)g(q2,p

′
2,q2,p

′
3)

− g(q1,p1,q2,p2)g(q1,p1,q2,p3)g(q2,p2,q2,p3))

+ (1↔ 2). (21)

The last term accounts for the contribution of collisions undergone by particle “1”.
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6. Final Remarks

As promised, equation (21) is coherent for f2 since g can—in principle—be solved in terms of f2.
Unfortunately, we are not aware of any readily available solution to the integral equation (13). It is
interesting to note that kinetic theory provides a motivation for studying the mathematical object (12),
which proves surprisingly involved in spite of its deceptive apparent simplicity. In the authors’ opinion,
it might turn sound to tackle the problem from a linearized vantage point, considering situations where
the particles are almost uncorrelated, that is where g is almost factorizable. Such an approach would also
be in line with usual methods of kinetic theory [16].

This current implicit form of the collision term bears a close ressemblance with the one appearing in
the standard Boltzmann equation. This ressemblance might however turn deceptive since g is likely to be
a complicated functional of f2. We hope that the present letter can prompt further work on this collision
term, which might eventually lead to a form susceptible of a hydrodynamical treatment. Our hope is that
such a treatment could lead to a deeper understanding of fluctuating phenomena, for which the first-order
theory provides only lacunary insights. In particular, it seems reasonable to expect that (21) can be cast
in the lattice-based formalism which proved so successful for the usual Boltzmann equation.
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8. Stephens, G.J.; Mora, T.; Tkačik, G.; Bialek, W. Statistical Thermodynamics of Natural Images.
Phys. Rev. Lett. 2013, 110, 018701.

9. Van der Straeten, E. Maximum Entropy Estimation of Transition Probabilities of Reversible
Markov Chains. Entropy 2009, 11, 867–887.

10. Marre, O.; El Boustani, S.; Frégnac, Y.; Destexhe, A. Prediction of Spatiotemporal Patterns of
Neural Activity from Pairwise Correlations. Phys. Rev. Lett. 2009, 102, 138101.

11. Cavagna, A.; Giardina, I.; Ginelli, F.; Mora, T.; Piovani, D.; Tavarone, R.; Walczak, A.M.
Dynamical Maximum Entropy Approach to Flocking. Phys. Rev. E 2014, 89, 042707.

12. Chliamovitch, G.; Dupuis, A.; Golub, A.; Chopard, B. Improving Predictability of Time Series
Using Maximum Entropy Methods. Europhys. Lett. 2015, 110, doi:10.1209/0295-5075/110/
10003.

13. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423.
14. Khinchin, A.Y. Mathematical Foundations of Information Theory; Dover: Mineola, NY, USA,

1957.
15. Kreuzer, H.J. Nonequilibrium Thermodynamics and its Statistical Foundations; Oxford University

Press: Oxford, UK, 1984.
16. Liboff, R.L. Kinetic Theory; Springer: New York, NY, USA, 2003.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Maximum Entropy Distributions
	The BBGKY Hierarchy
	The Stosszahlansatz for BBGKY2
	The Collision Term
	Final Remarks

