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Abstract: In this paper, an improved bounce-back boundary treatment for fluid systems in 

the lattice Boltzmann method [Yin, X.; Zhang J. J. Comput. Phys. 2012, 231, 4295–4303] is 

extended to handle the electrokinetic flows with complex boundary shapes and conditions. 

Several numerical simulations are performed to validate the electric boundary treatment. 

Simulations are presented to demonstrate the accuracy and capability of this method in 

dealing with complex surface potential situations, and simulated results are compared with 

analytical predictions with excellent agreement. This method could be useful for 

electrokinetic simulations with complex boundaries, and can also be readily extended to 

other phenomena and processes. 
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1. Introduction 

With growing interest in bio-Micro Electro Mechanical Systems (MEMS) and bio-Nano Electro 

Mechanical Systems (NEMS) applications and fuel cell technologies, electrokinetic flows have become 

one of the most important non-mechanical techniques in the application of microfluidics and 
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nanofluidics [1,2]. Electro-osmotic flow (EOF) is a promising approach to drive the microfluidics under 

an external electric field, such as sample injection, chemical reaction, species separation and energy 

supply [3,4]. Due to these important applications, EOF in microchannels has received interesting 

attention [5–11]. 

Electro-osmotic flow (EOF) is a basic electrokinetic phenomenon, where an electrical double layer 

(EDL) is formed due to the interaction between an electrolyte solution and a dielectric surface [12]. From 

the macroscopic point of view, the EOFs are governed by the Navier–Stokes (NS) equations for fluid 

flow and the Poisson–Boltzmann equation for the electrical potential. Many studies have been carried 

out on electro-osmotic flow in microchannel. The lattice Boltzmann method (LBM) has been generally 

accepted as a useful simulation method for complex flows [13–15]. The LBM approach is advantageous 

in dealing with complex boundary geometries [16,17] and could be potentially more efficient with 

advanced computational technologies. Because of its distinctive advantages over conventional numerical 

methods, the lattice Boltzmann method has introduced to simulate electro-osmotic flow in micro devices. 

Warren [18] made the first attempt to apply the LBM to solve the Navier–Stokes equations for the 

solution, while the conservation equation for each ionic species and the Poisson equation for the 

electrical potential were solved via the “moment propagation” method. He and Li [19] proposed a lattice 

Boltzmann scheme for analyzing the electrochemical processes in an electrolyte based on a locally 

electrically neutral assumption. With a multiple-component LBM model, this scheme has also been 

utilized to study the electrohydrodynamic drop deformation in an electric field [20]. The electrokinetic 

flows in microchannels is simulated by the lattice Boltzmann method with one-dimensional linearized 

solution of the Poisson–Boltzmann equation [5,7,8]. Melchionna and Succi [21] solved the nonlinear 

Poisson–Boltzmann equation by an efficient multi-grid technique and then predicted the flow behavior 

using a lattice Boltzmann scheme. The multi-grid technique has great efficiency to solve the nonlinear 

Poisson–Boltzmann equation; however it has rarely been extended for complex geometries [22]. 

Recently, The LBM has been applied to study the mixing enhancement in heterogeneously charged 

microchannels [23–28] and the roughness and cavitation effects in electro-osmotic microfluidics [29,30].  

As with other numerical methods, boundary conditions play crucial roles for the simulation validity 

and stability. However, unlike the tremendous efforts in developing accurate boundary treatments for 

LBM models for fluid flows and convection-diffusion systems [31–36], boundary methods for LBM 

models of electric field have not been addressed adequately. Typical electric field LBM simulations are 

performed in regular domains with flat boundaries aligned along the lattice grid lines. Several studies 

have considered rough surfaces [26,30]; however, the rough surfaces were actually modeled as flat,  

stair-like patches. Recently, Yin and Zhang [32] developed an improved bounce-back method for fluid 

flows, which is discussed in [37–39]. 

In this paper, an improved bounce-back method for fluid flows [32] is extended to simulate the 

electrokinetic flows with arbitrary boundary shapes. Numerical simulations demonstrate that the 

boundary treatments have accurately represented the spatial geometry as well as the surface potential. 

An example calculation is also performed to illustrate the application of our boundary treatment for 

electrokinetic studies. This study could be useful for LBM simulations of electric fields in systems with 

complex surface geometry and surface conditions. 
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2. Macroscopic Governing Equations for EOF 

For incompressible EOF in microfluidic channel, the governing equations including the continuity 

equation and the momentum equation can be described as follows: 

0∇⋅ =u  (1)

2 +P
t

ρ ρ ρυ∂ + ⋅∇ = −∇ + ∇
∂
u u u u F  (2)

where u  is the velocity vector, ρ  is the density of solution, P  is the pressure, υ  is the kinetic 

viscosity of the flow, F  represents the external force and is given as: 

eρ=F E  (3)

where eρ  is the net charge density, and E  is the external electric field. 

The drive force of the EOF is indicated by the body force term ( eρ E ) in the momentum equation and 

is caused by the action of the induced electrical field on the net charge density in the EDL region. EDL 

theory [40] related the electrostatic potential and the ion distribution in the bulk solution can be well 

approximated by the Poisson equation as follows: 

2

0

eρψ
εε

∇ = −  (4)

where ψ  is the electrical potential, ε  and 0ε  are the dimensionless dielectric constant and 

permittivity of vacuum, respectively. 

For the flows over a non-conducting stationary surface, the ion distribution can be well approximated 

by the Boltzmann distribution: 

, sinh i
i i

b

z e
n n

k T

ψ
∞

 
= − 

 
 (5)

where in  is the ionic number concentration of the i -th species, ,in ∞  is the ion concentration in the bulk 

solution, iz  is the valence of type- i  ions, e  is the charge of an electron, bk  is the Boltzmann constant 

and T  is the absolute temperature. For a symmetric electrolyte ( iz z=  and ,in n∞ ∞= ) considered in the 

present study, the net charge density is given as follows: 

2 sinhe
b

ze
n ze

k T

ψρ ∞

 
= −  

 
 (6)

Combining Equations (4) and (6) yields the nonlinear Poisson–Boltzmann distribution for the EDL 

potential in the dilute electrolyte solution: 

2

0

2
sinh

b

n ze ze

k T

ψψ
εε

∞  
∇ =  

 
 (7)

For the surfaces with low surface electric potentials, the Debye–Hückel approximation  

( sinh
b b

ze ze

k T k T

ψ ψ 
≈ 

 
) can be applied and the Poisson–Boltzmann equation can be linearized to: 
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∞∇ = =  (8)

where: 

2 2

0

2

b

n z e

k T
κ

εε
∞=  (9)

and its reciprocal 1κ − , the so-called Debye length, is usually used as a measure of the EDL thickness in 

Debye–Hückel theory. 

3. Numerical Method 

The numerical method adopted in this work requires the solution of the Navier–Stokes equations for 

fluid flow and the Poisson–Boltzmann equation for electric potential distribution. A lattice structure 

D2Q9 with complex boundary conditions is proposed to solve the governing equations using two LBM 

model, corresponding to the fluid flow and electric potential, respectively. It is necessary to introduce 

the LB evolution equations and the boundary treatments in this section. 

3.1. Lattice Boltzmann Model for the NS Equations  

The evolution equation corresponding to the NS equations with external force is given as:  

1
( , ) ( , ) ( , ) ( , )eq

f

f t t t f t f t f t tFα α α α α ατ
 + Δ + Δ − = − − + Δ x e x x x  (10)

where ( , )f tα x  is the distribution function for the flow fields at location x  and time t  and the 

subscript α  indicates the lattice direction. tΔ  is the time step. The parameter fτ  is the relaxation time 

for the density distribution function. Fα  is the forcing term corresponding to the applied external 

electric field. 

In order to recover the correct NS equation, the density equilibrium distribution in this work can be 

typically expressed as:  

( )2 2

2 4 2

3
1 3 9

2 2
eqf

c c c
αα

α αω ρ
 ⋅⋅= + + − 
  

e ue u u
 (11)

where c  is the lattice speed defined as x tΔ Δ , xΔ  the lattice grid size. For the D2Q9 lattice model, 

the lattice weight factors depends on the length of the corresponding lattice vector, and is given by 

0 4 9ω = , 1 4 1 9ω − = , 5 8 1 36ω − = .  

The relaxation time for fluid flow is related with the fluid viscosity by: 

3
0.5f c x

υτ = +
Δ

 (12)

The forcing term caused by the interaction of the EDL field with the externally applied electrical field 

is incorporated into the discrete Boltzmann equation by following the method described: 
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e u e u
e F  (13)

The Chapman–Enskog expansion can be used to recover the macroscopic NS equations, and 

Macroscopic quantities such as the density and fluid velocity can then be evaluated from the distribution 

functions as: 

fα
α

ρ =   (14)

2

t
fα α

α
ρ Δ= +u e F  (15)

3.2. Lattice Boltzmann Model for Poisson–Boltzmann Equation  

Here, to solve the Poisson–Boltzmann equation, we adopt an LBM algorithm proposed by Oulaid  

et al. [41] because of its good numerical accuracy. The Poisson–Boltzmann equation can be considered 
as a convection-diffusion equation at the steady state. A lattice distribution function gα  is introduced, 

and its evolution is described by the following lattice Boltzmann equation: 
21

( , ) ( , ) ( , ) ( , )
2

eq

g

t
g t t t g t g t g t tG D Gαα α α α α α ατ

Δ + Δ + Δ − = − − + Δ + x e x x x  (16)

where ( , )g tα x  is the distribution function for electric potential. gτ  is the relaxation time for the electric 

potential distribution function. Gα  is related to the net charge term in Equation (4) by: 

0

eGα α
ρω χ
εε

= −  (17)

and the operator tDα αθ= ∂ + ⋅∇e , with [ ]0,1θ ∈  as a parameter for different schemes. Both the 

minimum and maximum values of θ  (0 and 1) have been tested with diffusion and convection-diffusion 

systems, and no significant influence on the solution accuracy is found. In this work we use a forward 

scheme for the temporal derivative with 1θ =  for simplicity: 

( ) ( ), ,G t G t t t
D G

t
α α α

α α
− − Δ − Δ

=
Δ

x x e
 (18)

The electric potential ψ  can be calculated from the distribution functions by:  

gα
α

ψ =  (19)

and the equilibrium distribution eqgα  of electrical potential evolution function is: 

eqgα αω ψ=  (20)

Following the spirit for the fluid flow, the following differential equation through the  

Chapman–Enskog analysis can be derived:  
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0

+ e

t

ρψ χ ψ χ
εε

∂ = ∇
∂

 (21)

and the solution to the Poisson Equation (4) can be obtained at the steady state of the simulation  

when the partial differential term on the left-hand side approaches zero. The potential diffusivity in 

Equation (21) is defined as: 

( )2 1

6
g c xτ

χ
− Δ

=  (22)

3.3. Boundary Conditions 

As with any other numerical methods, correct and accurate boundary treatments play a crucial role in 

LBM simulation. Many useful schemes for boundary condition have been developed for solving 

different physical problems. To model the fluid-solid interaction on the complex geometries, the  

mid-point bounce-back scheme [30] is used for the flow field. As shown in Figure 1, the link between 
the fluid node fx  and the solid node sx  intersect the physical boundary at bx . The fraction of the 

intersected link in the solid domain region is s b s fΔ = − −x x x x . 

 

Figure 1. Schematic illustrations for the mid-point bounce-back scheme. 

As we known, the evolution equations consist of two computational steps: 

Collision:  

1
( , ) ( , ) ( , ) ( , )eqt t t tα α α αϕ ϕ ϕ ϕ

τ
∗  − = − − x x x x

 
(23a)

Streaming:  

( , ) ( , )t tt tα α αϕ δ δ ϕ∗+ + =x e x  (23b)

with fα αϕ =  or gα . When implementing the boundary conditions with LBM, the difficulty is how to 

finish the collision and streaming steps at the boundaries. In Figure 1, after the collision step at the fluid 
node fx , the distribution function fα

∗  leave fx , and is then assumed to be bounce-back at the midpoint 

mx  in the reversed direction and with a modified magnitude as fα : 
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2

2
m

s

f f e
c

α
α αα

ρω∗= − ⋅u  (24)

where e eαα = − , mu  is the midpoint velocity at the point mx  to be determined. 

For 1 2Δ ≤ , the midpoint mx  locates between bx  and fx , and the midpoint velocity mu  can be 

readily obtained with a linear interpolation: 

1 1
( )

2 2
1

b f

m

+ − Δ
=

− Δ

u u
u  (25)

where bu  is the imposed boundary velocity at the intersection point bx , and fu  is the flow velocity 

calculated at the fluid node fx . For 1 2Δ > , the midpoint mx  is in the solid domain and therefore an 

extrapolation is needed to obtain velocity mu : 

3 1
( )

2 2
2

b ff

m

− Δ −
=

− Δ

u u
u  (26)

where ffu  is the velocity at the fluid point ffx . 

Following the above velocity boundary treatment, here, we use the electric potential mψ  at the 

midpoint to calculate the electric potential distribution function at the bounce-back nodes: 

( , ) ( , ) 2f f mg x t t g x tα αα δ ω ψ++ = − +  (27)

with the midpoint electric potential mψ  obtained via: 

1 1
( )

2 2 1 2
1

3 1
( )

2 2 1 2
2

b f

m

b ff

ψ ψ

ψ
ψ ψ

 + − Δ
Δ ≤ − Δ= 

 − Δ −
 Δ > − Δ

 (28)

where bψ  is the imposed boundary electric potential at the intersection point bx , fψ  is the electric 

potential calculated at the fluid node fx , and ffψ  is the electric potential at the fluid point ffx . 

4. Validation and Discussions 

4.1. Electric Potential with Flat Surface  

First, we apply the improved bounce-back scheme to calculate the potential profile between two 

parallel plates, both of constant potential, immersed in an electrolyte solution. Near the charged surfaces, 

ions in the electrolyte solution will be redistributed and the electric diffuse layer will be established. The 

ion charge density can be related to the local potential via the Boltzmann distribution. For surfaces with 

low surface potentials, the Debye–Huckel approximation can be applied and the Poisson–Boltzmann 

equation can be solved by Equation (8). The solution of this linearized Poisson–Boltzmann equation 

between two identical plates of a separation H is: 
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0

cosh( )
( )

cosh( / 2)

x
x

H

κψ ψ
κ

=  (29)

where x  is the transverse location across the gap with 0x =  at the centerline. We use 0 1ψ = , 

0.02κ = , and different channel heigh 16,  32,  64,  128H =  in our simulation. The calculated potential 

profile is plotted in Figure 2. The symbols are results from LBM simulations, and the black lines are 

theoretical solutions predicted from Equation (29). Excellent agreement can be seen with different 

channel height between the simulation results and theory.  

 
Figure 2. Electric potential distributions from our LBM simulation (symbols) and the 

analytical solution (black lines) with different height between two identically charged plates 

in an electrolyte solution. 

For a more quantitative analysis, the simulations with channel height 16H =  and different offset  

( =0.2Δ , =0.5Δ , and =0.7Δ ) are implemented by the classical bounce-back treatment and the 

improved bounce-back treatment, as shown in Figure 3. When the offset =0.5Δ , the results from 

different treatment are identical. When the offset =0.2Δ  or =0.7Δ , for the classical bounce-back 

methods, these different offset values have no influence on the electric potential distribution. However, 

the improved bounce-back method can correctly follow the theoretical solution.  

 

Figure 3. Electric potential distributions from present treatment, classical Bounce-Back 

treatment and the analytical solution with different offset (red symbol =0.5Δ ; blue symbol 

=0.7Δ ; green symbol =0.2Δ ). 
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As for typical LBM boundary models, the numerical accuracy is studied. We choose different channel 
heigh 16,  32,  64,  128H =  and calculate the error between the LBM results and theoretical solutions. 

The errors are plotted in Figure 4, and linear fitting are conducted in the logarithmic graph. The fitting 

slope is usually considered as the accuracy order of a numerical model. As show in  

Figure 5, the accuracy order is 1.97, about 2, indicating a second-order for this system by the improved 

bounce-back treatment. 

 

Figure 4. The error for electric potential between two identically charged plates in an 

electrolyte solution. 

 

Figure 5. Electric potential distributions between two coaxial circular surfaces. 

4.2. Electric Potential with Complex Geometry 

Next, to examine the performance of our method for more complex boundary shapes and conditions, 
we consider the electric field between two coaxial circular surfaces with inner and outer radii inR  and 

outR , respectively. With no net charge, the general solution is given as: 

( ) ln1 2r = C r +Cψ  (30)

where the constants 1C  and 2C  can be determined by the boundary conditions on the surfaces. For the 

Dirichlet boundary conditions, the electric potential on both surfaces are 1( )inRψ ψ=  and 2( )outRψ ψ= . 

The corresponding exact solution for this case is: 
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1 2 1

ln( )
( ) ( )

ln( )
in

out in

r R
r =

R R
ψ ψ ψ ψ+ −  (31)

In the simulation, we set 40inR = , =80outR , 1=1.5ψ  and 2 =1ψ . The domain size is 201 201×  and the 

surfaces are put at the center of the domain. Simulation result for this system is plotted in Figure 3. We 

also find that the results agree well with analytical solution. 

4.3. Application in Electro-Osmotic Flows 

In this section, a charged spherical particle immersed in an electrolyte solution is considered with a 
side length of 2 μm. A 100 100 100× ×  uniform grid is used and the particle center ( ), ,c c cx y z  locates 

at the center of the cubic domain. Detailed numerical results on electro-osmotic flow and the effects of 

variation of ionic concentration, the sphere radius, external electric field and electric potential on velocity 

profile are presented. The numerical results are also compared with analytical solutions. In the 

simulation, the Poisson–Boltzmann equation is solved to obtain a steady solution firstly. And then the 

Navier–Stokes equations with the external force term is solved. We select a symmetric solution with 

: 1:1z z =  (for example, KCl, NaCl, etc.) and assume the solution has similar physical properties.  
The parameters are the ionic molar concentration 0.01c M∞ = , An c N∞ ∞= , where AN  is Avogadro’s 

number, the dielectric constant of the solution 10 2
0 6.95 10 C / Jmεε −= × , the temperature 273KT = , the 

density 3 31.0 10 kg/ mρ = × , and the electric potential with 0ψ  as a constant. The external electric field 

is only applied in x -direction, i.e., ( ),0,0xE=E . The dimensionless relaxation time fτ  and gτ  are 

set to be 1.0. Periodic boundary conditions are applied in all the three directions, and hence the simulated 

system actually represents a cubic array of spheres uniformly distribution in space.  

The algorithm and boundary treatment described in previous sections have been used to simulate the 

electric flow with curved boundary. For the purpose of validation, the solution of the Poisson–Boltzmann 

equation around a spherical particle with thin EDL layers is given as: 

( ) ( )
0

r RR
r e

r
κψ ψ − −=  (32)

where r  is the distance to the spherical center. We use 0 10 mVψ =  and 500V/ mxE =  in our 

simulation. The particle has a radius of R = 0.6 μm.  

Figure 6a shows the electric potential as a function of the distance to the particle center. The red 

circles are from our LBM calculation and the black curve is the theory solution according to  
Equation (32). Good agreement can be observed between them. The potential distribution at cy y=  is 

presented in Figure 6b. The distribution appears circularly symmetric and isotropic, and this is confirmed 
by the fact that all the simulated ψ ~ r  data points fall approximately on a single curve in Figure 6a. 

When an external electric field is applied, an electric force F  will be generated in the electrolyte 

solution near the surface due to non-zero charge in that region, and the electrostatic force can thus induce 

fluid flows along the electric field direction. This phenomenon is called the electro-osmosis. Figure 6c 
displays the velocity component u  in the cy y=  with different locations x = 1.0 μm, x = 1.5 μm, and  

x = 2.0 μm. Only the upper half (z ≥ zc = 1.0 μm) is shown for these symmetric curves. At x = 1.0 μm 

(black solid line), the velocity increases from 0 at the surface to a plateau value near the top boundary. 
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This is similar to the typical plug-like velocity profile of electro-osmotic flows in straight channels, since 

the electric force only exists in the thin EDL near the surface. Away from this particular location, the 

cross-sectional area for the flow passage increases, and therefore the flow velocity decreases due to the 
mass conservation. The electro-osmotic flow streamlines in the cy y=  plane are plotted in Figure 6d. 

The red arrows indicate the velocity magnitude and direction. The flow pattern is symmetric about both 

cx x=  and cz z=  due to the symmetric system geometry and the creeping electro-osmotic flow. These 

simulation results demonstrate that our method for electro-kinetic flows is useful. 

 
(a) (b) 

 
(c) (d) 

Figure 6. The electric potential distribution (a) and (b) and electro-osmotic flow (c) and (d) 
around the spherical particle in the y cy=  plane. 

5. Conclusions  

In this paper, we have extended the improved bounce-back boundary treatment for LBM flow 

simulations to electric field simulations. Several simulations have also been performed to examine our 

boundary methods in term of ability to deal with complex boundary situations. An example simulation 

of electro-osmotic flow with a charge sphere particle immersed in an electrolyte solution has also been 

presented. Comparisons with theoretical predictions show excellent agreement for all simulations, and 

our method therefore could be useful for future electrokinetic simulations with complex boundary 

geometries. Furthermore, the boundary treatment in this work can be applied to LBM simulations for 

other processes and phenomena that can be described by similar differential equations. 
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