

  Extended Thermodynamics for Dense Gases up to Whatever Order and with Only Some Symmetries




Extended Thermodynamics for Dense Gases up to Whatever Order and with Only Some Symmetries







Entropy 2015, 17(10), 7052-7075; doi:10.3390/e17107052




Article



Extended Thermodynamics for Dense Gases up to Whatever Order and with Only Some Symmetries



Maria Cristina Carrisi 1, Rita Enoh Tchame 2, Marcel Obounou 2 and Sebastiano Pennisi 1,*





1



Dipartimento di Matematica ed Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy






2



Department of Physics, University of Yaoundé I, PO Box 812 Yaoundé, Cameroon









*



Author to whom correspondence should be addressed; Tel.: +39-70-6758533.







Academic Editor: Kevin Knuth



Received: 21 August 2015 / Accepted: 13 October 2015 / Published: 16 October 2015



Abstract:

 Extended Thermodynamics of dense gases is characterized by two hierarchies of field equations, which allow one to overcome some restrictions on the generality of the previous models. This idea has been introduced by Arima, Taniguchi, Ruggeri and Sugiyama. In the case of a 14-moment model, they have found the closure of the balance equations up to second order with respect to equilibrium. Here, the closure is obtained up to whatever order and imposing only the necessary symmetry conditions. It comes out that the first non-symmetric parts of the higher order fluxes appear only at third order with respect to equilibrium, even if Arima, Taniguchi, Ruggeri and Sugiyama found a non-symmetric part proportional to an arbitrary constant also at first order with respect to equilibrium. Consequently, this constant must be zero, as Arima, Taniguchi, Ruggeri and Sugiyama assumed in the applications and on an intuitive ground.
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1. Introduction

One of the challenging tasks of modern research is that of modeling non-equilibrium phenomena in which steep gradients and rapid changes occur. Two complementary approaches have been followed in this regard, the kinetic approach and the continuum approach. Here, we follow this second approach, in particular by using the extended thermodynamics (ET) framework, which has many undisputed physical and mathematical advantages.

The first ideas in this regard were proposed by Müller [1] and were based on the modification of the Gibbs relation. Following Ruggeri’s criticism [2], a new version was proposed by Liu and Müller [3] and, subsequently, for the relativistic case, by Liu, Müller and Ruggeri [4]; more recent papers in this framework are [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23].

However, the internal structure of ET implies so strong restrictions to allow only particular state functions; for example, the function [image: there is no content] relating the pressure p with the mass density ρ and the absolute temperature T was determined, except for a single-variable function, so that it was adept at describing only particular gases or a continuum (this situation is indicated in Equation (7.9) of [3], for example).

A new approach has been proposed in [24] and other articles, such as [25,26,27,28,29,30,31,32,33,34,35,36,37,38], which overcomes this problem by considering two blocks of balance equations. In this framework, we have recently studied two different cases: one deals with rarefied polyatomic gases [37], even if the reduced set of applicability is not indicated in the title of that paper. The other one is presented here and deals with dense gases. These two cases are like two branches of the same tree; consequently, the description of their common trunk is the same, and we report it here for the sake of completeness, but with the prospect of the new application. We will address below the new points of the present article, for example after Equation (5) and four lines after Equation (9). The results will be expressed in terms of a function H, which will result in the sum of the corresponding expression in [37] and of a new incremental term; the present study aims to find this new term.

Therefore, let us begin with the description of the above-mentioned common trunk; in particular, in the 14-moment case treated in [24], the two blocks of balance equations are:



∂tF+∂kFk=0,∂t[image: there is no content]+∂kFki=0,∂t[image: there is no content]+∂k[image: there is no content]=[image: there is no content],



(1)






∂tG+∂kGk=0,∂tGi+∂k[image: there is no content]=[image: there is no content],








here (1)1,2 are the conservation laws of mass and momentum, while (1)4 is the conservation laws of energy. The block (1)1–3 is called the “mass block” while (1)4,5 is called the “energy block”.
Equation (1) can be written in a more compact form as:



∂t[image: there is no content]+∂k[image: there is no content]=PA,



(2)






where[image: there is no content]=(FN,GE),[image: there is no content]=(FkN,GkE),PA=(PN,QE).








In Equation (2), the constitutive functions [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] appear. Restrictions on their generalities are obtained by imposing the entropy principle, the symmetry conditions and the Galilean relativity principle.

The first of these principles can be exploited through Liu’s theorem [39] and by using a bright idea conceived of by Ruggeri [40]; so, it becomes equivalent to assuming the existence of Lagrange multipliers [image: there is no content], which can be taken as independent variables, and after that, we have:



[image: there is no content]=∂[image: there is no content]∂[image: there is no content],[image: there is no content]=∂[image: there is no content]∂[image: there is no content],



(3)




which expresses all of the moments in terms of only two unknown functions, the four-potentials [image: there is no content], [image: there is no content]. A consequence of Equation (3) is that the field equations assume the symmetric form, thus assuring hyperbolicity if [image: there is no content] is a convex function of its variables.
Other restrictions are given by the symmetry conditions, that is the flux in each balance equation is equal to the independent variable in the subsequent equation, except for the flux in the last equation of the mass block and of that in the energy block. Moreover, [image: there is no content] is a symmetric tensor.

Thanks to Equation (3), these conditions assume the form:



∂[image: there is no content]∂[image: there is no content]=∂h′i∂μ,∂[image: there is no content]∂[image: there is no content]=∂h′i∂[image: there is no content],∂[image: there is no content]∂[image: there is no content]=∂h′i∂λ,



(4)




(where we have assumed the decomposition [image: there is no content]=(μ,[image: there is no content],[image: there is no content],upλ,[image: there is no content]) for the Lagrange multipliers) and [image: there is no content] is a symmetric tensor.
Eventual supplementary symmetry conditions are those imposing the symmetry of the tensors [image: there is no content] and [image: there is no content] and are motivated by the kinetic counterpart of this theory. Thanks to Equation (3), these conditions may be expressed as:



∂h′[k∂μi]j=0,∂h′[k∂λi]=0.



(5)




These supplementary symmetry conditions were not imposed in [24] because in that article, the phenomenological approach was adopted in order to construct the extended thermodynamics of dense gases. After the development of this theory, the kinetic theoretical approach was proposed in [28], but only for rarefied polyatomic gases, not dense gases. For this reason, in the balance Equation (1), the moments appear as a distribution function, which is generalized, so that it depends also on an internal energy parameter I; as a consequence, the supplementary symmetry condition Equation (5) has to be imposed for this case.

In [37], the general solution has been found up to whatever order with respect to the equilibrium of the condition Equations (4) and (5) and of the below reported Equation (6). Therefore, the general solution for the rarefied polyatomic gases has been completely exploited.

In the present article, we aim to obtain the general solution without imposing the supplementary condition Equation (5) in order to have the model for dense gases and in agreement with the article [24].

The next conditions come from the Galilean relativity principle. A natural way to impose this principle is described in [33] for the 18-moment model. It extends, to the two-block theory, the method described in [41] with the further deepening of [42] for the old one-block theory. The resulting Equations (13) and (14) of [33] contain two additional variables with respect to the present model, that is [image: there is no content] and [image: there is no content]; by making these variables equal to zero, we obtain the counterpart for our model, that is:



∂[image: there is no content]∂μ[image: there is no content]+∂[image: there is no content]∂μh(2μih+2λδhi)+2∂[image: there is no content]∂μhiλh+∂[image: there is no content]∂λ[image: there is no content]=0,



(6)






∂[image: there is no content]∂μ[image: there is no content]+∂[image: there is no content]∂μh(2μih+2λδhi)+2∂[image: there is no content]∂μhiλh+∂[image: there is no content]∂λ[image: there is no content]+[image: there is no content]δki=0.








Now, by using Equation (4), we note that the derivative of (6)1 with respect to [image: there is no content] is equal to the derivative of (6)2 with respect to μ; similarly, the derivative of (6)1 with respect to [image: there is no content] is equal to the derivative of (6)2 with respect to λ.

Consequently, the left-hand side of Equation (6)1 is a vectorial function depending only on two scalars μ, λ and on a symmetric tensor [image: there is no content]. For the representation theorems [43,44], it can be only zero, and for this reason, we do not need to impose (6)1.

This result, combined with the above conditions coming from the entropy principle and the symmetry conditions, will be that a scalar function H exists, such that:



[image: there is no content]=∂H∂μ,h′i=∂H∂[image: there is no content].



(7)






∂2H∂μ∂[image: there is no content]=∂2H∂[image: there is no content]∂[image: there is no content],∂2H∂μ∂[image: there is no content]=∂2H∂λ∂[image: there is no content].



(8)






∂2H∂μ∂[image: there is no content][image: there is no content]+2∂2H∂μ∂μkjμji+2∂2H∂μ∂μkiλ+2∂2H∂[image: there is no content]∂[image: there is no content][image: there is no content]+∂2H∂μ∂[image: there is no content][image: there is no content]+∂H∂μδki=0.



(9)




The challenge is now to find the general solution of our conditions, up to whatever order with respect to equilibrium. This is defined as the state where [image: there is no content], [image: there is no content]=0, [image: there is no content], so that the only non-zero variables are μ and λ.

Now, in [37], the general solution has been found, up to whatever order with respect to equilibrium, of the condition Equations (8) and (9) and also of Equation (5); but, for a closer agreement with the article [24], we want now to do this without imposing Equation (5).

However, although it may seem strange, with less conditions, the calculations become heavier! In fact, if it was possible to use the condition Equation (5), then the function H can be expressed as a sum of a function, which has derivatives that are symmetric tensors (so that we can also easily write its expansion), and of a function depending only on [image: there is no content], λ, [image: there is no content] (so that it does not contribute to Equation (5), Equations (8) and (9).

Now, in the present article, we cannot use this property, because we do not have the constraint Equation (5). To overcome this difficulty, we proceed as follows. Firstly,


	We show a particular solution of Equations (8) and (9).

It is [image: there is no content], where:



[image: there is no content]



(10)






·δ(i1⋯iph1k1⋯hqkqj1⋯jr)[image: there is no content]⋯μipμh1k1⋯μhqkqλj1⋯λjr,








and [image: there is no content] is a family of functions constrained only by:



∂∂μψ[image: there is no content]=[image: there is no content]forn≥0.



(11)




In Equation (10), the symbol [image: there is no content] means that the summation is limited to the values of r, such that [image: there is no content] is even.

In Appendix 1, the proof is reported for the fact that [image: there is no content] is a solution of Equations (8) and (9). Moreover, [image: there is no content], which is an arbitrary two-variable function, such as [image: there is no content].



So we can identifyψ0(μ,λ)=[image: there is no content]and defineΔH=H-[image: there is no content].



(12)




In this way, the condition Equations (8) and (9) become:



∂2ΔH∂μ∂[image: there is no content]=∂2ΔH∂[image: there is no content]∂[image: there is no content],∂2ΔH∂μ∂λi=∂2ΔH∂λ∂[image: there is no content],



(13)






∂2ΔH∂μ∂[image: there is no content][image: there is no content]+2∂2ΔH∂μ∂μkjμji+2∂2ΔH∂μ∂μkiλ+2∂2ΔH∂[image: there is no content]∂[image: there is no content]λj+∂2ΔH∂μ∂λkλi+[image: there is no content]δki=0










and we have also(ΔH)eq.=0.



(14)




Now, an interesting consequence of Equations (13) and (14) is that:

Property 1: “ The expansion of [image: there is no content] up to order [image: there is no content] with respect to equilibrium is a polynomial of degree [image: there is no content] in the variable μ.”

We report in Appendix 2 the proof of the property.

Now, a well-known elementary mathematical property is that the Taylor expansion of a polynomial is not an approximate expression of that polynomial function, but is exactly equal to it. We can also assume an expansion of infinity order for that polynomial, with zero coefficients for the terms of order greater than the degree of the polynomial itself.

Moreover, we have deduced this property from Equations (13) and (14); consequently, it will be not necessary to take into account what coefficients are zero, since on the resulting expansion, we will impose again Equations (13) and (14).

Thanks to these properties, it is not restrictive to assume for [image: there is no content] a polynomial expansion of infinity order in the variable μ; this fact allows us to treat the variable μ as the other Lagrange multipliers [image: there is no content] and [image: there is no content] of the block (1)1, because we had already a polynomial expansion for them.

Therefore, even if μ is not zero at equilibrium, as concerns [image: there is no content], we can do an expansion also around [image: there is no content]; obviously, the situation is different for the particular solution [image: there is no content] reported in Equation (10). Therefore, the physical meaning of a non-polynomial expression in the variable μ remains charged only to the solution [image: there is no content].

The next step with which we proceed is the following one:


	We note that [image: there is no content] has symmetric tensors as derivatives.

The details in this regard are reported in Section 2, and also, they will imply the following expression for [image: there is no content]:






[image: there is no content]=∑p,q,s0⋯∞∑[image: there is no content]1p!1q!1r!1s!ϑp,q,r,s(λ)μsδ(i1⋯iph1k1⋯hqkqj1⋯jr)



(15)






[image: there is no content]⋯μip[image: there is no content]⋯μhqkqλj1⋯λjr++[image: there is no content]([image: there is no content],λ,upλc).








with:


[image: there is no content](λ)=0,ϑ0,0,0,s(λ)=0fors≥0,[image: there is no content](0ab,λ,0c)=0.



(16)




Further restrictions are consequences of Equation (13) and will be considered in Subsection 2.1. They are expressed by Equation (26) and will be useful for the sequel.

In Section 3, restrictions will be found for the scalar functions appearing in Equation (15), by analyzing Equation (26) and the derivative of Equation (13) with respect to μ. In Section 4, Equation (15) will be integrated, and arbitrary functions will arise from integration; moreover, the condition Equation (13) (not derivated) will restrict their generality. The solution of these restrictions will be found in Section 5 and Section 6. Finally, conclusions will be drawn.

It is not difficult to report in explicit form the fields equations up to whatever order; but a very long expression is not elegant and may give to this article the aspect of a mere database. Therefore, we prefer to show how to write them by simple taking some derivatives without repeating the present calculations. To this end, let us consider firstly H=[image: there is no content]+ΔH with [image: there is no content] given by Equation (10) and [image: there is no content] given by the below Equation (54); then, let us write [image: there is no content] and [image: there is no content] from Equation (7).

After that, let us substitute them into Equation (3), which can be written in explicit form as:



F=∂[image: there is no content]∂μ,[image: there is no content]=∂[image: there is no content]∂[image: there is no content],[image: there is no content]=∂[image: there is no content]∂[image: there is no content],[image: there is no content]=∂[image: there is no content]∂λ,[image: there is no content]=∂[image: there is no content]∂λi,










[image: there is no content]=∂[image: there is no content]∂[image: there is no content],Gkill=∂[image: there is no content]∂[image: there is no content].



(17)




By substituting these expressions in Equation (1), we obtain partial differential equations for the determination of the unknown functions [image: there is no content](x→,t) and [image: there is no content]. Finally, by substituting these last functions into Equation (17), we obtain how the fields evolve in space and time. Someone may object that the Lagrange multipliers have no physical meaning; this is true, but at the end, we obtain in any case the fields [image: there is no content] and [image: there is no content]. The situation has a counterpart in the geometry of a surface. This can be given through parametric equations, and the parameters have no geometrical meaning, however, nobody objects for this reason to use parametrical equations of a surface.

Obviously, from this situation, it is evident that the Lagrange multipliers are special parameters, and in fact, for this reason, they have been called “main field” in [40].

Alternatively, (17)1–5 may be used to obtain the Lagrange multipliers in terms of F, [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and then to substitute them into (17)6–7; the invertibility is surely possible, but the resulting expressions are very long and complicated, so that only with a computer program this is possible, after having chosen the order in which to stop the process.

A more fine procedure is to follow the same iter, but with the Galilean invariant parts of the fields. In this case, instead of Equation (17), we have to consider the relations:



ρ=∂[image: there is no content]∂μ,0=∂[image: there is no content]∂μi,[image: there is no content]=∂[image: there is no content]∂[image: there is no content],[image: there is no content]=∂[image: there is no content]∂λ,[image: there is no content]=∂[image: there is no content]∂[image: there is no content]








to obtain the velocity-independent parts of the Lagrange multipliers in terms of [image: there is no content], [image: there is no content], [image: there is no content] and of the mass density ρ; after that, we have to substitute them into:


Mkij=∂[image: there is no content]∂[image: there is no content],mkipp=∂[image: there is no content]∂[image: there is no content]








and, finally, in Equation (8) of [24]. Furthermore, in this case, the resulting expressions are very long and complicated and may be written only after having chosen the order in which to stop the process.
We conclude this section noting that, since the non-symmetric part of the higher order fluxes appear only at third order with respect to equilibrium, we have that the closure up to second order satisfies all of the symmetry conditions (also the supplementary ones), so that it is equal to that of [37]. In that paper, it has been proven also that its results reproduce exactly those of [24] in the approximation near the equilibrium state, provided that an arbitrary constant is considered zero, as also the authors of [24] have done in all of the applications and on an intuitive ground. Consequently, the same thing can be said for the present results; this gives a strong confirmation of the results in [24], because it furnishes proof that a higher order approach does not limit also the results near equilibrium. Obviously, the article [24] did not need this confirmation, but it will not do any harm.

For the sake of completeness, we report here the constitutive equations with the second order closure with respect to equilibrium, which have not been achieved in [24].

Let us begin by writing the field equations in the physical variables ρ, T, [image: there is no content], π, [image: there is no content], [image: there is no content], as can be found from Equation (9) of [24] by taking into account Equations (10)–(12) of the same article. They are:



ddtρ+ρ∂vk∂xk=0,ρddt[image: there is no content]+∂[(p+π)δij-[image: there is no content]]∂xj=0,










ddt(2ρϵ)+2ρϵ∂vk∂xk+2∂qk∂xk+2[(p+π)δik-S<ik>]∂[image: there is no content]∂xk=0










ddt(p+π)+(p+π)∂vk∂xk+13∂Miik∂xk+23[(p+π)δik-S<ik>]∂[image: there is no content]∂xk=Pii,










ddt[image: there is no content]+[image: there is no content]∂vk∂xk-∂M<ij>k∂xk-2(p+π)∂v<i∂xj>



(18)






+S<kj>∂[image: there is no content]∂xk+S<ki>∂vj∂xk-23S<ka>∂va∂xkδij=-P<ij>,










ddt[image: there is no content]+[image: there is no content]∂vk∂xk+12∂[image: there is no content]∂xk+Mpik∂vp∂xk+qk∂[image: there is no content]∂xk










+[(p+π)δip-S<ip>]ddtvp+ρϵddt[image: there is no content]=12Qi,








where ddt denotes the Lagrangian derivative with respect to time.
The constitutive functions appearing in these equations are [image: there is no content], [image: there is no content], besides the production terms about which we add nothing more to what is written in [24]. We find:



[image: there is no content]=32Kq(iδjk)+3K1(S(<ij>qk)+δ(ijS<k)c>qc)










+32K2πδ(ijqk)-32K3δ(ijS<k)c>qc,



(19)






[image: there is no content]=β1δik+πδik512h4h2K-h42h2∂P∂Tρ∂ϵ∂T+2ϵ+pρ-S<ik>h42h3K+2ϵ+pρ+B2π2δik+B3S<ab>S<ab>δik+B4qaqaδik+B5[image: there is no content]qk+B6πS<ik>+B7πS<ia>S<ak>.








The expressions of the coefficients are reported in [24] and Equations (90)–(93) of [37]; we do not copy them here for the sake of brevity.



2. On the Symmetry of the Derivatives of [image: there is no content] and Its Consequences

We note that [image: there is no content] has symmetric tensors as derivatives. In fact, from the derivatives of (13)1,2 with respect to [image: there is no content], we can take the skew-symmetric part with respect to i and k, so obtaining:



∂3ΔH∂μ∂μ[k∂μi]j=0,∂3ΔH∂μ∂μ[k∂λi]=0.



(20)




From the second derivatives of (13)1,2 with respect to μ and [image: there is no content], we can take the skew-symmetric part with respect to i and b, so obtaining:



∂4ΔH∂μ2∂μa[b∂μi]j=∂4ΔH∂μ∂μa[b∂μi]∂μj=0,∂4ΔH∂μ2∂μa[b∂λi]=∂4ΔH∂μ∂λ∂μa[b∂μi]=0



(21)




where Equation (20) has been used in the second passage.
Equation (21) and the derivatives of Equation (20), with respect to μ, prove our property. We now prove that [image: there is no content] is the sum of [image: there is no content]([image: there is no content],λ,[image: there is no content]) and of a scalar function whose derivatives are all symmetric tensors.

In fact, from Equation (20), we deduce that ∂2ΔH∂[image: there is no content]∂μ has all symmetric derivatives, so that its expansion around equilibrium is of the type:



∂2ΔH∂[image: there is no content]∂μ=∑p,q0⋯∞∑r∈Ip+11p!1q!1r!Hp,q,r*δ(ki1⋯iph1k1⋯hqkqj1⋯jr)[image: there is no content]⋯μip[image: there is no content]⋯μhqkq[image: there is no content]⋯λjr.








By integrating this expression with respect to [image: there is no content], we obtain:



[image: there is no content]=∑p,q0⋯∞∑r∈Ip+11(p+1)!1q!1r!Hp,q,r*δ(i1⋯ip+1h1k1⋯hqkqj1⋯jr)










[image: there is no content]⋯μip+1[image: there is no content]⋯μhqkq[image: there is no content]⋯λjr+[image: there is no content](μ,[image: there is no content],λ,[image: there is no content]).



(22)




The derivative of Equation (22) with respect to μ is:



[image: there is no content]=∑p,q0⋯∞∑r∈Ip+11(p+1)!1q!1r!∂Hp,q,r*∂μδ(i1⋯ip+1h1k1⋯hqkqj1⋯jr)










[image: there is no content]⋯μip+1[image: there is no content]⋯μhqkq[image: there is no content]⋯λjr+[image: there is no content].



(23)




However, also [image: there is no content] has all symmetric derivatives, so that its expansion is:



[image: there is no content]=∑p,q0⋯∞∑[image: there is no content]1p!1q!1r!∂[image: there is no content](μ,λ)∂μδ(i1⋯iph1k1⋯hqkqj1⋯jr)










[image: there is no content]⋯μip[image: there is no content]⋯μhqkq[image: there is no content]⋯λjr.



(24)




where [image: there is no content] appears through its derivative with respect to μ for later convenience and without loss of generality.
By substituting Equation (24) into Equation (23), we find an expression from which we deduce [image: there is no content]; by integrating it, we obtain:



[image: there is no content]=∑p,q0⋯∞∑[image: there is no content]1p!1q!1r![image: there is no content](μ,λ)δ(i1⋯iph1k1⋯hqkqj1⋯jr)[image: there is no content]⋯μip[image: there is no content]⋯μhqkq[image: there is no content]⋯λjr-∑p,q0⋯∞∑r∈Ip+11(p+1)!1q!1r!Hp,q,r*δ(i1⋯ip+1h1k1⋯hqkqj1⋯jr)[image: there is no content]⋯μip+1[image: there is no content]⋯μhqkq[image: there is no content]⋯λjr+[image: there is no content]([image: there is no content],λ,[image: there is no content]),








where [image: there is no content] arises from an integration with respect to μ, so that it does not depend on μ; moreover, it does not depend on [image: there is no content], because [image: there is no content] does not depend on [image: there is no content].
By substituting this expression into Equation (22), we find that [image: there is no content] is the sum of [image: there is no content]([image: there is no content],λ,[image: there is no content]) and of a function whose derivatives are all symmetric tensors; consequently, it can be written in the form:



[image: there is no content]=∑p,q0⋯∞∑[image: there is no content]1p!1q!1r![image: there is no content](μ,λ)δ(i1⋯iph1k1⋯hqkqj1⋯jr)










[image: there is no content]⋯μip[image: there is no content]⋯μhqkqλj1⋯λjr+[image: there is no content]([image: there is no content],λ,[image: there is no content]).



(25)




If we take into account the result of Property 1, we see that also [image: there is no content] can be expressed as a polynomial of infinite degree in μ, so that Equation (25) can be written as Equation (15). Now, if we substitute into Equation (15) [image: there is no content] with [image: there is no content], we note that Equation (15) remains unchanged, except that now, we have [image: there is no content] instead of [image: there is no content] and zero instead of [image: there is no content]. We conclude that we may still use Equation (15) and assume, without loss of generality, that (16)1 holds.

If we calculate Equation (15) at equilibrium and take into account Equation (14), we obtain: 0=∑s=0∞1s!ϑ0,0,0,s(λ)μs+[image: there is no content](0ab,λ,0c).

Consequently, we have [image: there is no content] for [image: there is no content], and from Equation (16)1, it follows (16)2. Moreover, Equation (14) will give (16)3.


Further Restrictions

For the sequel, it will be useful to consider some consequences of Equation (13). They are:



∂3ΔH∂[image: there is no content]∂[image: there is no content]∂μ=∂3ΔH∂λ∂μij∂μ,



(26)






∂2ΔH∂μ∂[image: there is no content][image: there is no content]+2∂2ΔH∂μ∂μkjμji+2∂2ΔH∂μ∂μkiλ+[image: there is no content]δki[image: there is no content]=0,










∂3ΔH∂[image: there is no content]∂[image: there is no content]∂μ[image: there is no content]+2∂2ΔH∂μ∂μ(kδa)i+2∂3ΔH∂[image: there is no content]∂μkj∂μμji+2∂3ΔH∂[image: there is no content]∂μki∂μλ










+∂3ΔH∂[image: there is no content]∂[image: there is no content]∂μ[image: there is no content]+2∂3ΔH∂[image: there is no content]∂μka∂μ[image: there is no content]=0,










∂3ΔH∂μki∂μ∂λ[image: there is no content]+2∂3ΔH∂μkj∂μ∂λμji+2∂3ΔH∂μki∂μ∂λλ+2∂2ΔH∂μki∂μ










+∂3ΔH∂[image: there is no content]∂μ∂λ[image: there is no content]+∂2ΔH∂λ∂μδki+2∂3ΔH∂[image: there is no content]∂[image: there is no content]∂μ[image: there is no content]=0








The first one of these equations is obtained by taking the derivatives of (13)2 with respect to [image: there is no content] and by substituting in its right-hand side ∂2ΔH∂[image: there is no content]∂[image: there is no content] from (13)1; the second one is obtained by simply calculating (13)3 in [image: there is no content]; similarly, (26)3 is obtained by taking the derivative of (13)3 with respect to [image: there is no content] and, subsequently, by substituting in its fourth term ∂2ΔH∂[image: there is no content]∂[image: there is no content] from (13)1. Finally, in the derivative of (13)3 with respect to λ, we can substitute ∂2ΔH∂λ∂[image: there is no content] from (13)2 in its fourth term; in this way, (26)4 is obtained.

We see that Equation (26) is the conditions on [image: there is no content], so that they may be considered a sort of integrability condition on [image: there is no content], if [image: there is no content] would be known.

In the next section, restrictions will be found for the scalar functions appearing in Equation (15), by analyzing Equations (13) and (26).




3. The Expression for [image: there is no content]

If we substitute Equation (15) in the derivative of (13)1,2 with respect to μ, we obtain:



ϑp,q+1,r,s+1=ϑp+2,q,r,s,ϑp,q,r+1,s+1=∂∂λϑp+1,q,r,s.



(27)




From Equation (27)1, we now obtain:



ϑp,q,r,s=ϑ0,q+p2,r,s+p2ifpisevenϑ1,q+p-12,r,s+p-12ifpisodd.



(28)




After that, we see that Equation (27)1 is satisfied as a consequence of Equation (28).

Let us now focus our attention on Equation (27)2; for [image: there is no content], it becomes:



ϑ0,q,r+1,s+1=∂∂λϑ1,q,r,s,ϑ1,q,r+1,s+1=∂∂λϑ0,q+1,r,s+1,



(29)




where, for (29)2, we have used Equation (28) with [image: there is no content]. After that, Equation (27)2 will be a consequence of Equations (28) and (29).
However, we have now to impose the derivative of (13)3 with respect to μ, that is:



∂3ΔH∂μ2∂[image: there is no content][image: there is no content]+2∂3ΔH∂μ2∂μkjμji+2∂3ΔH∂μ2∂μkiλ+2∂3ΔH∂μ∂[image: there is no content]∂[image: there is no content][image: there is no content]+∂3ΔH∂μ2∂[image: there is no content][image: there is no content]+[image: there is no content]δki=0.








To impose this relation, let us take its derivatives with respect to [image: there is no content], ⋯ , [image: there is no content], [image: there is no content], ⋯ , [image: there is no content], [image: there is no content], ⋯ , [image: there is no content], and let us calculate the result at equilibrium; with some calculations, we obtain:



0=(2Q+R+1)ϑ0,Q,R,s+1+2λϑ0,Q+1,R,s+1+2Rϑ1,Q+1,R-1,s,



(30)






0=(2Q+R+2)ϑ1,Q,R,s+1+2λϑ1,Q+1,R,s+1+2Rϑ0,Q+2,R-1,s+1,








with the agreement that the last terms are not present in the case [image: there is no content]. Summarizing the results, we have that Equation (28) gives [image: there is no content] in terms of [image: there is no content] and [image: there is no content], while Equations (29) and (30) give restrictions on [image: there is no content] and [image: there is no content].

	We want now to impose the further restriction Equation (26). By substituting Equation (15) into Equation (26) and with some calculations, we find:






∂2[image: there is no content]∂λ∂[image: there is no content]=∑q0⋯∞∑r∈I01q!1r!ϑ1,q,r+1,0δ(ijh1k1⋯hqkqj1⋯jr)[image: there is no content]⋯μhqkq[image: there is no content]⋯λjr.



(31)






0=∂Q∂[image: there is no content]⋯∂[image: there is no content]2μji∂[image: there is no content]∂μkj+2λ∂[image: there is no content]∂μki+[image: there is no content]δki[image: there is no content]=0,μia=0.



(32)






0=∑q0⋯∞∑r∈I11q!1r!(2q+r+2)[image: there is no content]+2λϑ1,q+1,r,0δ(akih1k1⋯hqkqj1⋯jr)[image: there is no content]⋯μhqkq[image: there is no content]⋯λjr



(33)






+2[image: there is no content]∂2[image: there is no content]([image: there is no content],λ,[image: there is no content])∂[image: there is no content]∂μka,










0=2μji∂2[image: there is no content]∂μkj∂λ+2λ∂2[image: there is no content]∂μki∂λ+2∂[image: there is no content]∂μki+[image: there is no content]∂2[image: there is no content]∂[image: there is no content]∂λ+δki∂[image: there is no content]∂λ+2[image: there is no content]∂2[image: there is no content]∂[image: there is no content]∂[image: there is no content].



(34)




These are restrictions on [image: there is no content].



4. The Expression for [image: there is no content]

By integrating Equation (15) with respect to μ, we obtain:



ΔH=∑p,q,s0⋯∞∑[image: there is no content]1p!1q!1r!1(s+1)!ϑp,q,r,s(λ)μs+1δ(i1⋯iph1k1⋯hqkqj1⋯jr)



(35)






[image: there is no content]⋯μip[image: there is no content]⋯μhqkq[image: there is no content]⋯λjr+μ[image: there is no content]([image: there is no content],λ,[image: there is no content])+[image: there is no content]([image: there is no content],μbc,λ,λd).








By substituting [image: there is no content] from here into (13)1 and with an integration, we find:



[image: there is no content]=∑p,q0⋯∞∑[image: there is no content]1(p+2)!1q!1r!ϑp,q+1,r,0δ(i1⋯ip+2h1k1⋯hqkqj1⋯jr)










[image: there is no content]⋯μip+2[image: there is no content]⋯μhqkq[image: there is no content]⋯λjr+12[image: there is no content][image: there is no content]∂[image: there is no content]∂[image: there is no content]+[image: there is no content]([image: there is no content],λ,[image: there is no content])[image: there is no content]+[image: there is no content]([image: there is no content],λ,[image: there is no content]),



(36)




where [image: there is no content] and [image: there is no content] arise from the integration.
By substituting [image: there is no content] from Equation (35) into Equation (13)2, and by taking into account Equation (36), we find:



∂[image: there is no content]∂[image: there is no content]=∂[image: there is no content]∂λ.



(37)




Let us substitute now [image: there is no content] from Equation (35) into (13)3 and take into account Equation (36); we obtain:



2μji∂[image: there is no content]∂μkj+2λ∂[image: there is no content]∂μki+[image: there is no content]∂[image: there is no content]∂λk+δki[image: there is no content]+2[image: there is no content]∂[image: there is no content]k∂[image: there is no content]=0.



(38)




Therefore, the situation is now that Equation (13) is equivalent to Equation (36) (which gives [image: there is no content] in terms of [image: there is no content]([image: there is no content],λ,[image: there is no content]) and of [image: there is no content]([image: there is no content],λ,[image: there is no content])) and to the condition Equations (37) and (38) on [image: there is no content]k, while [image: there is no content] remains arbitrary, as was obvious, because in Equation (13) it appears only through its derivatives with respect to μ and [image: there is no content], which are zero. We note also that Equation (32) is a particular case of Equation (38), when this last one is calculated in [image: there is no content].

A sort of integrability condition can be obtained in the following way: let us take the derivative of Equation (38) with respect to [image: there is no content]; let us contract the result with [image: there is no content]; and let us take from the resulting equation the skew-symmetric part with respect to i and a. In this way, we obtain:



0=2μj[i∂2[image: there is no content]∂μa]b∂μkj[image: there is no content]+2λ∂2[image: there is no content]∂μk[i∂μa]b[image: there is no content]+λ[i∂2[image: there is no content]∂μa]b∂[image: there is no content][image: there is no content]+δk[i∂[image: there is no content]∂μa]b[image: there is no content].



(39)




To conclude this section, we can say that we have to impose the condition Equations (31)–(34) and Equation (39) on [image: there is no content]([image: there is no content],λ,[image: there is no content]).

After that, Equation (37) and Equation (38) will give [image: there is no content]; we will see that a small further integrability condition will be necessary to this end.

We firstly note that the second term in Equation (39) is zero thanks to Equation (33). We can take the derivative with respect to λ of what remains and substitute Equation (31). We obtain a relation and note that:


	Its terms of degree zero in [image: there is no content] and of degree one in [image: there is no content] give [image: there is no content].


	After that, what remains of its term of degree one in [image: there is no content] gives [image: there is no content]. This result, jointly with the previous one, gives [image: there is no content].


	After that, its term of degree zero in [image: there is no content] gives [image: there is no content].


	What remains, after a reformatting of its indexes, is equivalent to [image: there is no content]. This result, jointly with the previous one, yields [image: there is no content] and [image: there is no content].








This result can be rewritten also as:[image: there is no content]=0,



(40)




because the sum of the first and third index must be an even number, so that obviously, we must have [image: there is no content] in [image: there is no content].
By using this condition, we can see that a solution of the condition Equation (31)–(34) and (39) is given by:



[image: there is no content]=∑r∈I01(r+2)![image: there is no content]δ(j1⋯jr+2)[image: there is no content]⋯λjr+2-∑r=0∞2λ2r+3r!(λa[image: there is no content])r+1[image: there is no content]



(41)






+∑r=0∞2r+3r!(λa[image: there is no content])r[image: there is no content]μik[image: there is no content][image: there is no content],








where [image: there is no content] and [image: there is no content] are two arbitrary sets of constants. In fact,

	it is easy to verify Equation (31), because [image: there is no content] given by Equation (41) is the sum of a function not depending on λ and of a function not depending on [image: there is no content]; moreover, the right-hand side of Equation (31) is zero, thanks to Equation (40).


	It is to verify Equation (32), because [image: there is no content] given by Equation (41) becomes zero when calculated in [image: there is no content].


	It is to verify Equation (33), thanks to Equation (40) and because [image: there is no content] given by Equation (41) is linear in [image: there is no content]=0.


	Let us verify Equation (34). By a substitution of [image: there is no content] from Equation (41) it becomes:








0=2∑r=0∞2r+3r![image: there is no content](λa[image: there is no content])r[image: there is no content][image: there is no content]+[image: there is no content]∂∂[image: there is no content]-∑r=0∞22r+3r![image: there is no content](λa[image: there is no content])r+1+δki-∑r=0∞22r+3r![image: there is no content](λa[image: there is no content])r+1+2[image: there is no content]∂∂[image: there is no content]∑r=0∞2r+3r![image: there is no content](λa[image: there is no content])r[image: there is no content]λj,








which is true, because the sum of the 1st and 4th term is equal to ∂∂[image: there is no content][2∑r=0∞2r+3r![image: there is no content](λa[image: there is no content])r[image: there is no content]λj[image: there is no content]], while the sum of the 2nd and 3rd term is equal to ∂∂[image: there is no content][-[image: there is no content]∑r=0∞22r+3r![image: there is no content](λa[image: there is no content])r+1].

	Let us verify Equation (39). By a substitution of [image: there is no content] from Equation (41), it becomes:



0=[image: there is no content]λ[i∂∂[image: there is no content]∑r=0∞2r+3r![image: there is no content]([image: there is no content]λc)rλa]λb+[image: there is no content]δk[i∑r=0∞2r+3r![image: there is no content]([image: there is no content]λc)rλa]λb.











In the first term, when we do not take the derivative of [image: there is no content] with respect to [image: there is no content], we obtain zero for the identity [image: there is no content]; when we take the derivative of [image: there is no content] with respect to [image: there is no content], we obtain [image: there is no content]λ[iδa]k∑r=0∞2r+3r![image: there is no content]([image: there is no content]λc)rλb, which is the opposite of the second term.

This completes our verification.

We can prove that Equation (41) is the unique solution of our conditions, but the passages are very long and boring; so we avoid reporting them for the sake of brevity; the interested reader can ask for this proof, and we will send it to him or her. Only to mention briefly the strategy of the proof, we say that Equation (31) can be used, with some passages, to obtain [image: there is no content], except for an arbitrary function [image: there is no content]([image: there is no content],[image: there is no content]). After that, Equation (33) will give the expression of [image: there is no content]∂2[image: there is no content]∂[image: there is no content]∂μka.

Subsequently, Equation (34) will give the expression of ∂[image: there is no content]∂μki+[image: there is no content]∂2[image: there is no content]∂[image: there is no content]∂[image: there is no content], and Equations (32), (39) will give other conditions on [image: there is no content]. By solving all of these conditions and substituting the resulting expression of [image: there is no content] into the above-mentioned [image: there is no content], we obtain Equation (41).



5. Solution of the Conditions on [image: there is no content]

Let us firstly change the unknown function from [image: there is no content]k to [image: there is no content]*k defined by:



[image: there is no content]k=[image: there is no content]*k+∑r∈I01(r+1)!λδ(kj1⋯jr+1)-12r+3r+2δ(kijj1⋯jr+1)[image: there is no content][image: there is no content][image: there is no content]⋯λjr+1



(42)






+∂∂[image: there is no content]∑r=0∞2r+3r![image: there is no content](λa[image: there is no content])rλμbcλbλc-λ2[image: there is no content]λb










-μkdλd(μbcλbλc)∑r=2∞2r+3r![image: there is no content](λaλa)r-1-14[image: there is no content](μbcλbλc)2∑r=2∞(2r-3)2r+3r![image: there is no content](λa[image: there is no content])r-2










-[image: there is no content](μbdμdcλbλc)∑r=2∞2r+3r![image: there is no content](λa[image: there is no content])r-1.








By substituting [image: there is no content]k from Equation (42) and [image: there is no content] from Equation (41) into Equations (37) and (38), these equations are transformed respectively into:



∂∂λ[image: there is no content]*i=0,



(43)






0=2λj∂[image: there is no content]*k∂[image: there is no content]+δki(μbcλbλc)+4λ(kμi)j[image: there is no content]3β0+5β1λa[image: there is no content]+10[image: there is no content][image: there is no content](μbcλbλc)β1.



(44)




A further refinement of the situation can be obtained with another change of the unknown function from [image: there is no content]*k to [image: there is no content]**k defined by:



[image: there is no content]*k=[image: there is no content]**k-54β14(μbcλbλc)μkdλd+[image: there is no content](μbcμbc)(λa[image: there is no content])+2[image: there is no content]λbμacμcb.



(45)




By using this, Equation (44) becomes:



0=2[image: there is no content]∂[image: there is no content]**k∂[image: there is no content]+3β0[δki(μbcλbλc)+4λ(kμi)j[image: there is no content]].



(46)




We can now prove that, as a consequence of this equation, we have:



β0=0.



(47)





Solution of the Conditions on [image: there is no content]**k

Let us consider the Taylor expansion of [image: there is no content]**k around the state with [image: there is no content]; Equation (46) at the order one with respect to this state is:



0=2λj∂[image: there is no content]2**k∂[image: there is no content]+3β0[δki(μbcλbλc)+4λ(kμi)j[image: there is no content]],



(48)




where [image: there is no content]2**k is the homogeneous part of [image: there is no content]**k of second degree with respect to [image: there is no content]. Thanks to the representation theorems, it has the form:


[image: there is no content]2**k=f1([image: there is no content])μkaμab[image: there is no content]+f2([image: there is no content])μllμkaλa+f3([image: there is no content])(μbcλbλc)μkaλa+[image: there is no content][f4([image: there is no content])(μll)2+f5([image: there is no content])(μbcλbλc)2+f6([image: there is no content])(μbcλbλc)μll+[image: there is no content]([image: there is no content])μbcμbc+f8([image: there is no content])μbaμacλbλc)],








where [image: there is no content]=λa[image: there is no content]. By substituting this into Equation (48), we obtain:


0=2λjf1δk(iμj)b[image: there is no content]+f1μk(iλj)+f2δijμkb[image: there is no content]+f2μllδk(iλj)+f3[image: there is no content]λjμkb[image: there is no content]+f3(μbcλbλc)δk(iλj)+[image: there is no content]2f4μllδij+2f5(μbcλbλc)[image: there is no content]λj+f6[image: there is no content]λjμll+f6(μbcλbλc)δij+2[image: there is no content][image: there is no content]+2f8λ(iμj)b[image: there is no content]+3β0δki(μbcλbλc)+4λ(kμi)j[image: there is no content],








that is,


0=f1δki(μbcλbλc)+2f1λ(kμi)bλb+f1[image: there is no content][image: there is no content]+2f2λiμkbλb+f2μllδki[image: there is no content]+f2μllλkλi+2f3[image: there is no content]λiμkbλb+f3(μbcλbλc)δki[image: there is no content]+f3(μbcλbλc)λkλi+λk4f4μllλi+4f5(μbcλbλc)[image: there is no content]λi+2f6[image: there is no content]λiμll+2f6(μbcλbλc)λi+4[image: there is no content]μijλj+2f8λi(μbcλbλc)+2f8[image: there is no content]μibλb+3β0[δki(μbcλbλc)+4λ(kμi)jλj].








The skew-symmetric part of this relation, with respect to i and k, is:



0=λ[kμi]bλb(-2f2-2f3[image: there is no content]+4[image: there is no content]+2f8[image: there is no content]),








from which we obtain:


4[image: there is no content]=2f2+2f3[image: there is no content]-2f8[image: there is no content].



(49)




By taking into account this value of [image: there is no content], the remaining part of our condition becomes:



0=δkif2μll[image: there is no content]+(f1+f3[image: there is no content]+3β0)(μbcλbλc)+f1[image: there is no content][image: there is no content]+λ(kμi)bλb(2f1+4f2+4f3[image: there is no content]+12β0)+λkλiμll(f2+4f4+2f6[image: there is no content])+(μbcλbλc)(f3+4f5[image: there is no content]+2f6+2f8).








In this relation, the coefficients of [image: there is no content] and [image: there is no content] give, respectively, [image: there is no content] and [image: there is no content]. After that, the coefficient of [image: there is no content] gives [image: there is no content], which, calculated in [image: there is no content], gives the above-mentioned Equation (47).

This result transforms Equation (46) into:



0=2λj∂[image: there is no content]**k∂μij.



(50)




Now, we proceed to find the general solution of this last equation, and we prove that it is:



[image: there is no content]**k=λkF([image: there is no content],G1,G2),



(51)




where:


G1=[image: there is no content]δbcμbc-μbcλbλc,G2=[image: there is no content]μbcμbc-2μbcμcaλb[image: there is no content]+2(δbcμbc)(μbcλbλc)-[image: there is no content](δbcμbc)2








and F is an arbitrary function of its variables.
In fact, if [image: there is no content], from the representation theorems, we know that [image: there is no content]**k=0, just as in Equations (51) and (50), is an identity.

If [image: there is no content], we can define the projector into the subspace orthogonal to [image: there is no content], that is:



hij=δij-1[image: there is no content][image: there is no content]λj,



(52)




from which it follows hij[image: there is no content]=0, as is obvious. By taking as independent variables [image: there is no content], [image: there is no content], μ˜i=hijμja[image: there is no content], [image: there is no content]=hia[image: there is no content]hbj,
Equation (50) becomes:



0=2[image: there is no content]∂[image: there is no content]**k∂μ˜[image: there is no content]λj+∂[image: there is no content]**k∂μ˜bhb(jλi)+∂[image: there is no content]**k∂μ˜abha(ihj)b=2[image: there is no content]∂[image: there is no content]**k∂μ˜[image: there is no content]+∂[image: there is no content]**k∂μ˜b[image: there is no content]hbi.








By contracting this relation with [image: there is no content] and with [image: there is no content], we obtain, respectively:



∂[image: there is no content]**k∂μ˜=0,∂[image: there is no content]**k∂μ˜a=0.



(53)




It follows that [image: there is no content]**k may depend only on [image: there is no content] and [image: there is no content]. However, [image: there is no content]λj=0, so that, for the representation theorems, we have that [image: there is no content]**k is proportional to [image: there is no content], as in Equation (51); moreover, the coefficient F can be a scalar function of [image: there is no content], [image: there is no content]=δij[image: there is no content], [image: there is no content].

Now, we have:



[image: there is no content]=δij[image: there is no content]=hij[image: there is no content]=δij[image: there is no content]-1[image: there is no content][image: there is no content][image: there is no content][image: there is no content],[image: there is no content]=δijhibμbchcahadμdehej=hbeμbchcdμde=δbeμecδcdμde-2[image: there is no content]δbeμbc[image: there is no content]λdμde+1[image: there is no content]2μbcλbλc2.








However, an arbitrary function of [image: there is no content], [image: there is no content], [image: there is no content] is also an arbitrary function of [image: there is no content], [image: there is no content] and of:



[image: there is no content]-([image: there is no content])2=μecμec-2[image: there is no content]μdeμecλd[image: there is no content]+2[image: there is no content](δij[image: there is no content])([image: there is no content][image: there is no content]λb)-(δij[image: there is no content])2








and an arbitrary function of [image: there is no content], [image: there is no content], [image: there is no content]-([image: there is no content])2 is also an arbitrary function of [image: there is no content], [image: there is no content][image: there is no content], [[image: there is no content]-([image: there is no content])2][image: there is no content], and this completes the proof of Equation (51)2,3. These last passages have been done with the end result being to have a function defined also in [image: there is no content], without going too far from equilibrium.



6. Conclusions

We can now collect all of our results. By substituting [image: there is no content]2**k from Equation (51) into Equation (45), we obtain [image: there is no content]*k; by substituting this and Equation (47) into Equation (42), we obtain the expression of [image: there is no content]k. Thanks to this expression and Equation (41), taking also into account Equation (47), we can rewrite the expression for [image: there is no content] in Equation (36); finally, we can substitute this new expression and that of Equation (41) for [image: there is no content] into Equation (35). In this way, we obtain:



ΔH=∑p,q,s0⋯∞∑[image: there is no content]1p!1q!1r!1(s+1)!ϑp,q,r,s(λ)μs+1δ(i1⋯iph1k1⋯hqkqj1⋯jr)



(54)






[image: there is no content]⋯μip[image: there is no content]⋯μhqkq[image: there is no content]⋯λjr+










+μ∑r∈I01(r+2)![image: there is no content]δ(j1⋯jr+2)[image: there is no content]⋯λjr+2-∑r=1∞2λ2r+3r!(λa[image: there is no content])r+1[image: there is no content]++∑r=1∞2r+3r!(λa[image: there is no content])r[image: there is no content]μik[image: there is no content][image: there is no content]+










+∑p,q0⋯∞∑[image: there is no content]1(p+2)!1q!1r!ϑp,q+1,r,0δ(i1⋯ip+2h1k1⋯hqkqj1⋯jr)[image: there is no content]⋯μip+2[image: there is no content]⋯μhqkq[image: there is no content]⋯λjr+12[image: there is no content][image: there is no content]∑r=1∞2r+3r!(λa[image: there is no content])r[image: there is no content][image: there is no content]λj++[image: there is no content][image: there is no content]F([image: there is no content],G1,G2)-54β14(μbcλbλc)μidλd+[image: there is no content](μbcμbc)(λa[image: there is no content])+2[image: there is no content]λbμacμcb+










+∑r∈I01(r+1)!λδ(ij1⋯jr+1)-12r+3r+2δ(ikjj1⋯jr+1)μkj[image: there is no content][image: there is no content]⋯λjr+1++∂∂[image: there is no content]∑r=1∞2r+3r![image: there is no content](λa[image: there is no content])rλμbcλbλc-λ2[image: there is no content]λb+-μidλd(μbcλbλc)∑r=2∞2r+3r![image: there is no content](λa[image: there is no content])r-1-14[image: there is no content](μbcλbλc)2∑r=2∞(2r-3)2r+3r![image: there is no content](λaλa)r-2+-[image: there is no content](μbdμdcλbλc)∑r=2∞2r+3r![image: there is no content](λa[image: there is no content])r-1+[image: there is no content]([image: there is no content],λ,[image: there is no content]).








We recall that in this expression, F([image: there is no content],G1,G2) is an arbitrary function, [image: there is no content] and [image: there is no content] are arbitrary constants, while [image: there is no content] are constrained by Equations (28)–(30), Equation (40), (16)1 and (16)2. The presence of the arbitrary function [image: there is no content]([image: there is no content],λ,[image: there is no content]) is obvious, since it is not constrained by Equation (13), because it does not depend on μ, nor on [image: there is no content]. Consequently, it is not necessary to impose the condition [image: there is no content](0ab,λ,0c)=0, which comes out from Equations (14), (16)2 and (54).

The sum of the expression Equation (54) for [image: there is no content] and of the expression Equation (10) for [image: there is no content] gives the general solution for the unknown function H. Let us substitute it into the equations:



[image: there is no content]=∂2H∂[image: there is no content]∂[image: there is no content],[image: there is no content]=∂2H∂[image: there is no content]∂[image: there is no content]



(55)




which are a subset of the Equation (3). We obtain that [image: there is no content]-Δ[image: there is no content] and [image: there is no content]-Δ[image: there is no content] are symmetric tensors, with Δ[image: there is no content] and Δ[image: there is no content] defined by:


Δ[image: there is no content]=[image: there is no content]∂F([image: there is no content],G1,G2)∂[image: there is no content]-54β1[4(μbcλbλc)δk(iλj)+[image: there is no content](2[image: there is no content](λa[image: there is no content])-4λ(iμj)b[image: there is no content])]



(56)






+2∑r=1∞2r+3r![image: there is no content](λa[image: there is no content])rλδk(iλj)-δk(iλj)(μbcλbλc)∑r=2∞2r+3r![image: there is no content](λa[image: there is no content])r-1,










Δ[image: there is no content]=∑r=1∞2r+3r!(λa[image: there is no content])r[image: there is no content][image: there is no content]μi+[image: there is no content]∂F∂G1∂G1∂[image: there is no content]+[image: there is no content]∂F∂G2∂G2∂[image: there is no content]-5β1[image: there is no content]μicμcb[image: there is no content]



(57)






-2[image: there is no content]μkdλd(μbcλbλc)∑r=2∞2r+3r!(r-1)[image: there is no content](λa[image: there is no content])r-2-[image: there is no content]μidλd(μbcλbλc)∑r=2∞(2r-3)2r+3r![image: there is no content](λa[image: there is no content])r-2-2[image: there is no content]μidμdc[image: there is no content]∑r=2∞2r+3r![image: there is no content](λa[image: there is no content])r-1.








It follows that the eventual non-symmetric parts for [image: there is no content] and [image: there is no content] may come only from Δ[image: there is no content] and Δ[image: there is no content], respectively. However, from (51)2,3, we see that ∂G1∂[image: there is no content] is a tensor at least of second order with respect to equilibrium and ∂G2∂[image: there is no content] is a tensor at least of third order with respect to equilibrium. Consequently, from Equation (56), it is clear that [image: there is no content] up to second order with respect to equilibrium is a symmetric tensor; its eventual non-symmetric parts may appear only from the third order with respect to equilibrium. This result is different from its counterpart in [24], where a non-symmetric part appeared also at first order with respect to equilibrium. We shall see in Appendix 3 that from the equations of that paper, it follows that this non-symmetric part is proportional to a constant; consequently, here, we have proven that this constant is zero and that this further constraint follows by imposing the equations up to order higher than one with respect to equilibrium. This is not a problem, because the authors of [24] assumed (for example, in the first three lines of Subsection 7.2) that the integration constants vanish and furnished reasons for this assumption based on the kinetic theory approach.

Similarly, from (51)2,3, we see that ∂G1∂[image: there is no content] is a tensor of second order with respect to equilibrium and ∂G2∂[image: there is no content] is a tensor at least of third order with respect to equilibrium. Consequently, from Equation (57), it is clear that [image: there is no content] up to second order with respect to equilibrium is a symmetric tensor; its eventual non-symmetric parts may appear only from the third order with respect to equilibrium. This result agrees with its counterpart in [24].
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Appendix 1. The Particular Solution [image: there is no content]

Let us prove that [image: there is no content], with [image: there is no content] given by Equation (10) and [image: there is no content] constrained by Equation(11), is a particular solution of Equations (8) and (9).

In fact, by substituting Equation (10) in (8)1, we obtain:



[image: there is no content]








which surely holds because [image: there is no content], thanks to Equation (11).
By substituting Equation (10) into (8)2, we obtain:



[image: there is no content]








which is an evident identity.
It is more delicate to verify Equation (9). To do it, let us substitute Equation (9) with its derivatives with respect to [image: there is no content], ⋯ , [image: there is no content], [image: there is no content], ⋯ , [image: there is no content], [image: there is no content], ⋯ , [image: there is no content]; let us substitute Equation (10) into the resulting equation, and let us calculate the last form at equilibrium. We obtain:



0=Pδii1¯δ(i2⋯iP¯kh1k1⋯hQkQj1⋯jR)(P+2Q+R+1)!!P+2Q+R+1∂R+P+1∂λR∂μP+1-12λQ+P+R2ψP+R2+2Qδih1¯δ(k1h2k2⋯hQkQ¯ki1⋯iPj1⋯jR)(P+2Q+R+1)!!P+2Q+R+1∂R+P+1∂λR∂μP+1-12λQ+P+R2ψP+R2+2λδ(kih1k1⋯hQkQi1⋯iPj1⋯jR)(P+2Q+R+1)!!∂R+P+1∂λR∂μP+1-12λQ+1+P+R2ψP+R2+2Rδ(kih1k1⋯hQkQi1⋯iPj1⋯jR)(P+2Q+R+1)!!∂R+P∂λR-1∂μP+1-12λQ+1+P+R2ψP+R2+Rδij1¯δ(j2⋯jR¯kh1k1⋯hQkQi1⋯iP)(P+2Q+R+1)!!P+2Q+R+1∂R+P+1∂λR∂μP+1-12λQ+P+R2ψP+R2+δkiδ(i1⋯iPh1k1⋯hQkQj1⋯jR)(P+2Q+R+1)!!P+2Q+R+1∂R+P+1∂λR∂μP+1-12λQ+P+R2ψP+R2,








where overlined indexes denote symmetrization over those indexes, after that, the other one (round brackets around indexes) has been taken.
Now, the first, second, fifth and sixth term can be put together, so that the above expression becomes:



0=δii1¯δ(i2⋯iPkh1k1⋯hQkQj1⋯jR¯)(P+2Q+R+1)!!∂R+P+1∂λR∂μP+1-12λQ+P+R2ψP+R2+(P+2Q+R+1)!!δ(kih1k1⋯hQkQi1⋯iPj1⋯jR)2λ∂R+P+1∂λR∂μP+1-12λQ+1+P+R2ψP+R2+2R∂R+P∂λR-1∂μP+1-12λQ+1+P+R2ψP+R2,








which is satisfied as a consequence of the property [image: there is no content] and of the identity:


∂R∂λR-12λQ+P+R2ψP+R2=∂R∂λR-2λ-12λQ+1+P+R2ψP+R2=-2λ∂R∂λR-12λQ+1+P+R2ψP+R2-2R∂R-1∂λR-1-12λQ+1+P+R2ψP+R2.








This completes the proof that [image: there is no content] is a particular solution of Equations (8) and (9).



Appendix 2. Proof of Property 1

Let us prove it with the iterative procedure, and let [image: there is no content] denote the homogeneous part of [image: there is no content] of order n with respect to equilibrium. We have,


	Case [image: there is no content]: The equation (13)3 at equilibrium, thanks to Equation (14), becomes [image: there is no content] from which we have that [image: there is no content] can depend only on μ, [image: there is no content], λ, [image: there is no content]; but the representation theorems show that no scalar function of order one with respect to equilibrium can depend only on these variables. It follows that [image: there is no content]=0, so that [image: there is no content] is of degree zero with respect to μ, and the property is verified for this case.


	Case [image: there is no content]: Let us suppose, for the iterative hypothesis that [image: there is no content] up to order [image: there is no content] with respect to equilibrium is a polynomial of degree [image: there is no content] in the variable μ; we proceed now to prove that this property holds also with [image: there is no content] instead of n.




In fact, Equation (13)1 up to order [image: there is no content] gives ∂2ΔHn∂μ∂[image: there is no content]=∂2ΔH[image: there is no content]∂[image: there is no content]∂[image: there is no content] from which we have:



ΔH[image: there is no content]=[image: there is no content]+ΔHi[image: there is no content](μ,[image: there is no content],λ,[image: there is no content])μi+ΔH0[image: there is no content](μ,[image: there is no content],λ,[image: there is no content])



(58)




where [image: there is no content] is a polynomial of degree [image: there is no content] in μ and which is at least quadratic in [image: there is no content].
After that, Equation (13)2 up to order n gives ∂2ΔH[image: there is no content]∂μ∂[image: there is no content]=∂2ΔH[image: there is no content]∂λ∂[image: there is no content], which, thanks to Equation (58), becomes:



∂2[image: there is no content]∂μ∂[image: there is no content]+∂2ΔHj[image: there is no content]∂μ∂[image: there is no content][image: there is no content]+∂2ΔH0[image: there is no content]∂μ∂[image: there is no content]=∂2[image: there is no content]∂λ∂[image: there is no content]+∂ΔHi[image: there is no content]∂λ.



(59)




This relation, calculated in [image: there is no content]=0, gives:



∂2ΔH0[image: there is no content]∂μ∂[image: there is no content]=∂ΔHi[image: there is no content]∂λ



(60)




because [image: there is no content] is at least quadratic in [image: there is no content].
The derivative of Equation (59) with respect to [image: there is no content], calculated then in [image: there is no content]=0, is ∂2ΔHj[image: there is no content]∂μ∂[image: there is no content]=∂3[image: there is no content]∂[image: there is no content]∂λ∂[image: there is no content][image: there is no content]=0 from which ∂ΔHj[image: there is no content]∂[image: there is no content]=P[image: there is no content]ij with P[image: there is no content]ij a polynomial of degree [image: there is no content] in μ. By integrating this relation, we obtain ΔHi[image: there is no content]=P[image: there is no content]i+f[image: there is no content]i(μ,[image: there is no content],λ,) where P[image: there is no content]i is a polynomial of degree [image: there is no content] in μ. However, for the representation theorems, a vectorial function, such as f[image: there is no content]i, is zero, because it depends only on scalars and on a second order tensor. It follows that:



ΔHi[image: there is no content]=P[image: there is no content]i.



(61)




By using this result, Equation (60) can be integrated and gives:



∂ΔH0[image: there is no content]∂[image: there is no content]=[image: there is no content]



(62)




with [image: there is no content] a polynomial of degree n in μ.
Now, we impose Equation (13)3 at order n and see that its first, second, fifth and sixth terms are of degree [image: there is no content] in μ, so that we have



2∂2ΔH[image: there is no content]∂μ∂μkiλ+2∂2ΔH[image: there is no content]∂[image: there is no content]∂[image: there is no content][image: there is no content]=Q[image: there is no content]








with Q[image: there is no content] a polynomial of degree [image: there is no content] in μ. This relation, thanks to Equation (58), becomes


2λ∂2ΔHa[image: there is no content]∂μ∂μkiμa+2λ∂2ΔH0[image: there is no content]∂μ∂μki+2[image: there is no content]∂2[image: there is no content]∂[image: there is no content]∂[image: there is no content]+2[image: there is no content]∂∂[image: there is no content]ΔHk[image: there is no content]=Z[image: there is no content]








with Z[image: there is no content] a polynomial of degree [image: there is no content] in μ. This relation, calculated in [image: there is no content]=0, thanks to Equation (61) and to the fact that [image: there is no content] is at least quadratic in [image: there is no content], gives


2λ∂2ΔH0[image: there is no content]∂μ∂μki=Q¯[image: there is no content]ki








with Q¯[image: there is no content]ki a polynomial of degree [image: there is no content] in μ. It follows that


∂ΔH0[image: there is no content]∂μki=[image: there is no content]








with [image: there is no content] a polynomial of degree n in μ. This result, jointly with Equation (62), gives that:


ΔH0[image: there is no content]=P˜n+f(μ,λ).



(63)




However, a function depending only on μ and λ cannot be of order [image: there is no content] with respect to equilibrium; it follows that [image: there is no content].

Consequently, Equations (58), (61) and (63) give that ΔH[image: there is no content] is a polynomial of degree n in μ, and this completes the proof.



Appendix 3. A Further Integration in the Framework of the Initial Article

A further integration is possible for one combination of Equation (44) of the paper [24].

In fact, the integrability condition on [image: there is no content] of that paper allows us to obtain:



∂∂ρh4=-2T2∂ε∂T∂p∂ρ-2T3ρ2∂p∂T2=-2∂ε∂T2Tρh2+5T2p3ρ.



(64)




(Here, and in the sequel, we use the notation of [24]. For example, the scalars [image: there is no content], [image: there is no content] are different from the constants with the same name of the present paper).
After that, by using [image: there is no content] and the present Equation (64), we obtain:



∂∂ρ[image: there is no content]-56[image: there is no content]-4h2+103pTε+pρ=0.



(65)




Consequently, [image: there is no content]-56[image: there is no content]-4h2+103pTε+pρ may depend only on temperature.

Similarly, from [image: there is no content] and the present Equation (64), we obtain:



∂∂T[image: there is no content]-56[image: there is no content]-4h2+103pTε+pρ=-1T[image: there is no content]-56[image: there is no content]-4h2+103pTε+pρ,



(66)




which is a differential equation for the unknown [image: there is no content]-56[image: there is no content]-4h2+103pTε+pρ, whose solution is:


[image: there is no content]-56[image: there is no content]-4h2+103pTε+pρ=constantT.



(67)




However, in [26], it has been shown that [image: there is no content] is symmetric if and only if [image: there is no content], as can be seen also from [image: there is no content] of [24]. This equation, for [image: there is no content] and [image: there is no content] of [24], means that the left-hand side of the present Equation (67) is zero. Consequently, we have the symmetry of [image: there is no content] at first order, if and only if the constant arising from integration on the right-hand side of the present Equation (67) is zero! On the other hand, [image: there is no content] at first order is already symmetric; eventually, its skew-symmetric parts may appear at higher orders with respect to equilibrium. This result is in agreement also with Chapter 5 of the book [38], where the symmetricity of [image: there is no content] and [image: there is no content] at first order has been discussed.
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