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Abstract: In this article, the local fractional Homotopy perturbation method is utilized
to solve the non-homogeneous heat conduction equations. The operator is considered
in the sense of the local fractional differential operator. Comparative results between
non-homogeneous and homogeneous heat conduction equations are presented. The obtained
result shows the non-differentiable behavior of heat conduction of the fractal temperature
field in homogeneous media.
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1. Introduction

Entropy in the thermodynamics is considered as the state function of a thermodynamic system. The
entropy production in one-dimensional heat conduction in the hard-particle gas was considered in [1].
The maximum and minimum entropy productions in heat conduction problems were presented in [2,3].
The entropy generation in one-dimensional conduction was discussed in [4].
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Recently, the entropy production via fractional order calculus [5–10] was suggested in [11]. The
entropy production in fractional diffusion equation was proposed in [12,13]. The entropy analysis
in fractional dynamical systems was presented in [14]. However, the above entropy process is
differentiable. There may be non-differentiable entropy production in heat conduction of the fractal
temperature field in homogeneous media [15]. Especially the non-homogeneous heat conduction
equation (NHEC) in fractal domain was written as follows [16]:

∂εΦ (µ, τ)

∂τ ε
− ∂2εΦ (µ, τ)

∂µ2ε
= Fε (µ) , τ > 0, µ ∈ R, 0 <ε <1, (1)

subject to the initial condition
Φ (µ, 0) = Hε (µ) , (2)

where Fε (µ) is heat generation rate and the time and space operators are considered in the sense of
local fractional differential operator (LFDO). The operator was applied to describe the non-differentiable
equations, such as Laplace [16], diffusion [17], oscillator [18], heat [16,19], Boussinesq [20],
wave [16,21], Burgers [22] and parabolic Fokker–Planck [23] defined on Cantor sets. The comparison
between diffusion problem via local fractional time- and space- derivative operators and classical one
was presented in [24]. The fractal heat conduction equation with the help of local fractional time- and
space- derivative operators was discussed by using the local fractional Laplace operator [25]. For more
applications in integral transforms and fluid mechanics, see [26–28].

More recently, the homotopy perturbation method via local fractional homotopy perturbation (LFDO)
method, proposed by authors in [29], was applied to solve the wave equations involving the Cantor sets.
The homotopy perturbation method, structured by He in [30], was applied to heat transfer [31], water
wave theory [32] and diffusion problems [33]. In this manuscript, we will implement the technology
to solving the NHCEs in fractal domain. The structure of this article is as follows. In Section 2,
we introduce the basic theory of LFDO with applications to special functions defined on Cantor sets.
In Section 3, the local fractional homotopy perturbation method is analyzed. The non-differentiable
solutions (NSs) for the NHCEs are given in Section 4. In Section 5 the comparison between NHCE
and homogeneous heat conduction equation (HHCE) is discussed. Finally, Section 6 is devoted to
the conclusions.

2. The LFDO

In this section, we present the basic theory of LFDO [16–29].
The LFDO of Θ (µ) of ε order (0 < ε ≤ 1) is defined by

∂εΘ (µ)

∂µε
|µ=µ0 = lim

µ→µ0

∆ε (Θ (µ)−Θ (µ0))

(µ− µ0)ε
, (3)

where ∆ε (Θ (µ)−Θ (µ0)) ∼= Γ (1 + ε) ∆ (Θ (µ)−Θ (µ0)).
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The properties of the LFDO are as follows [16]:

(a) D(ε) [Φ (µ)±Θ (µ)] = D(ε)Φ (µ)±D(ε)Θ (µ),
(b) D(ε) [Φ (µ) Θ (µ)] =

[
D(ε)Φ (µ)

]
Θ (µ) + Φ (µ)

[
D(ε)Θ (µ)

]
,

(c) D(ε) [Φ (µ) /Θ (µ)] =
{[
D(ε)Φ (µ)

]
Θ (µ)− Φ (µ)

[
D(ε)Θ (µ)

]}
/Θ2 (µ), provided Θ (µ) 6= 0.

The basic operations of the local fractional differential operators (LFDOs) of the non-differentiable
functions (NDFSs) defined on fractal sets are listed in Table 1.

Table 1. The basic operations of local fractional differential operator (LFDO) of
non-differentiable functions (NDFs) defined on fractal sets.

Φ (µ) D(ε)Φ (µ) Special functions defined on Cantor sets

C 0

µkε/Γ (1 + kε) µ(k−1)ε/Γ (1 + (k − 1) ε)

Eε (µε) Eε (µε) Eε (µε) =
∞∑
k=0

µkε

Γ(1+kε)

Eε (−µε) −Eε (−µε)

sinε (µε) cosε (µε) sinε (µε) =
∞∑
k=0

(−1)kµ(2k+1)ε

Γ(1+(2k+1)ε) ,
cosε (µε) =

∞∑
k=0

(−1)kµ2kε

Γ(1+2kε)

cosε (µε) − sinε (µε)

3. Analysis of the Method

In this section the local fractional homotopy perturbation method [29] will be presented as follows.
The NHCE is written in the form

Lε (Φε) = 0, (4)

where Lα is a LFDO.
A convex non-differentiable homotopy Ĥε (Φ, θ, ε) is structured as follows:

Ĥε (Φ, θ, ε) = Λε (Lε (Φε)− Lε (Φε
0)) + θεLε (Φε) , θ ∈ [0, 1] , (5)

where Λε = (1− θ)ε and Φ0 = Φε
0 is an initial approximation of Equation (5).

Setting Ĥε (Φ, θ, ε) = 0, we obviously have

Ĥε (Φ, 0, ε) = Lε (Φε)− Lε (Φε
0) , (6)

Ĥε (Φ, 1, ε) = Lε (Φε) . (7)

In the structure of non-differentiable homotopy, the non-differentiable deformation isLε (Φ)−Lε (Φ0)

and the non-differentiable homotopics is Lε (Φ).
With the help of the non-differentiable series [17], Φε can be expressed by

Φε =
n∑
j=0

θjεΦε
j .

(8)



Entropy 2015, 17 6756

Making use of Equations (5) and (8), we obtain

Ĥε (Φ, θ, ε) = Λε

(
Lε

(
n∑
j=0

θjεΦε
j

)
− Lε (Φε

0)

)
+ θεLε

(
n∑
j=0

θjεΦε
j

)
, (9)

where Λε = (1− θ)ε.
Expanding Lε (Φε) into a local fractional Taylor series, we have

Lε (Φε) = Lε (Φε
0) +

dε (Lε (Φε
0))

dΦε

(
n∑
j=0

θjΦj − Φ0

)ε

Γ (1 + ε)
+O

((
n∑
j=0

θjΦj − Φ0

)ε)

= Lε (Φε
0) +

dε (Lε (Φε
0))

dΦε

(
n∑
j=0

θjεΦε
j − Φε

0

)
Γ (1 + ε)

+O

((
n∑
j=0

θjΦj − Φ0

)ε)
. (10)

such that

Ĥε (Φ, θ, ε)

= (1− θ)ε (Lε (Φε)− Lε (Φε
0)) + θεLε (Φε)

= (1− θ)ε

Lε (Φε
0) +

dε(Lε(Φε
0))

dΦε

(
n∑

j=0
θjεΦε

j−Φε
0

)
Γ(1+ε)

+O

((
n∑
j=0

θjΦj − Φ0

)ε)
− Lε (Φε

0)


+θε

Lε (Φε
0) +

dε(Lε(Φε
0))

dΦε

(
n∑

j=0
θjεΦε

j−Φε
0

)
Γ(1+ε)

+O

((
n∑
j=0

θjΦj − Φ0

)ε) ,

(11)

which reduces to

Ĥε (Φ, 0, ε) = Lε (Φε)− Lε (Φε
0)

= Lε (Φε
0) +

dε (Lε (Φε
0))

dΦε

(
n∑
j=0

θjεΦε
j − Φε

0

)
Γ (1 + ε)

+O

((
n∑
j=0

θjΦj − Φ0

)ε)
− Lε (Φε

0)

= 0 (12)

and

Ĥε (Φ, 1, ε) = Λε (Lε (Φε)− Lε (Φε
0)) + θεLε (Φε)

= θεLε (Φε)

= θε

Lε (Φε
0) +

dε (Lε (Φε
0))

dΦε

(
n∑
j=0

θjεΦε
j − Φε

0

)
Γ (1 + ε)

+O

((
n∑
j=0

θjΦj − Φ0

)ε) .(13)

Adopting Equations (12) and (13), we obtain

θ0ε : Lε (Φε)− Lε (Φε
0) = 0, (14)



Entropy 2015, 17 6757

θ1ε : Lε (Φε
0) +

dε (Lε (Φε
0))

dΦε

Φε
1

Γ (1 + ε)
= 0. (15)

Here, Equation (15) is the Newton’s method of the LFDO and it is convergent.
Taking θ → 1, the approximate solution takes the form

Φε = lim
θ→1

∞∑
j=0

θjεΦε
j =

∞∑
j=0

Φε
j . (16)

4. On Solutions of the NHCEs

In this section, the NSs of the NHCEs are discussed.
Let us consider the following NHCE with heat generation of non-differentiable type

∂εΦ (µ, τ)

∂τ ε
− ∂2εΦ (µ, τ)

∂µ2ε
= Eε (µε) , τ > 0, µ ∈ R, (17)

subject to the initial condition
Φ (µ, 0) = Eε (µε) . (18)

We can structure the non-differentiable homotopy in the form:

∂εΦ (µ, τ)

∂τ ε
− ∂εΦ0 (µ, τ)

∂τ ε
= θε

(
∂2εΦ (µ, τ)

∂µ2ε
+ Eε (µε)− ∂εΦ0 (µ, τ)

∂τ ε

)
, (19)

and the solution series with non-differentiable terms is presented as follows:

Φ =
∞∑
j=0

θjεΦj. (20)

Submitting Equations (18) and (20) into Equation (19), we have

∂ε

∂τε

[
∞∑
j=0

θjεΦj (µ, τ)

]
− ∂εΦ0(µ,τ)

∂τε
= θε

(
∂2ε

∂µ2ε

[
∞∑
j=0

θjεΦj (µ, τ)

]
+ Eε (µε)− ∂εΦ0(µ,τ)

∂τε

)
(21)

such that
θ0ε :

∂εΦ0 (µ, τ)

∂τ ε
− ∂εΦ0 (µ, τ)

∂τ ε
= 0, Φ0 (µ, 0) = Eε (µε) , (22)

θ1ε :
∂εΦ1 (µ, τ)

∂τ ε
=
∂2εΦ0 (µ, τ)

∂µ2ε
+ Eε (µε)− ∂εΦ0 (µ, τ)

∂τ ε
, Φ1 (µ, 0) = 0, (23)

θ2ε :
∂εΦ2 (µ, τ)

∂τ ε
=
∂2εΦ1 (µ, τ)

∂µ2ε
, Φ2 (µ, 0) = 0, (24)

θ3ε :
∂εΦ3 (µ, τ)

∂τ ε
=
∂2εΦ2 (µ, τ)

∂µ2ε
, Φ3 (µ, 0) = 0, (25)

θ4ε :
∂εΦ4 (µ, τ)

∂τ ε
=
∂2εΦ3 (µ, τ)

∂µ2ε
, Φ4 (µ, 0) = 0 (26)

and so on.
Solving above systems, we present

Φ0 (µ, τ) = Eε (µε) , (27)
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Φ1 (µ, τ) =
2τ ε

Γ (1 + ε)
Eε (µε) , (28)

Φ2 (µ, τ) =
2τ 2ε

Γ (1 + 2ε)
Eε (µε) , (29)

Φ3 (µ, τ) =
2τ 3ε

Γ (1 + 3ε)
Eε (µε) , (30)

Φ4 (µ, τ) =
2τ 4ε

Γ (1 + 4ε)
Eε (µε) (31)

and so on.
When θ → 1, from Equation (20) we obtain

Φ (µ, τ) =
∞∑
j=0

Φj (µ, τ)

= 2Eε (µε)

(
τ ε

Γ (1 + ε)
+

τ 2ε

Γ (1 + 2ε)
+

τ 3ε

Γ (1 + 3ε)
+

τ 4ε

Γ (1 + 4ε)
+ ...

)
+ Eε (µε) .(32)

Using Equation (32), we obtain the NS in closed form

Φ (µ, τ) = Eε (µε)

(
2
∞∑
j=0

τ jε

Γ (1 + jε)
− 1

)
= Eε (µε) (2Eε (τ ε)− 1) (33)

and the corresponding plot with fractal dimension ε = ln 2/ ln 3 is shown in Figure 1.
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Figure 1. The solution for non-homogeneous heat conduction equation (NHCE) with heat
generation of non-differentiable type when ε = ln 2/ ln 3.
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We consider the following NHCE with heat sink of non-differentiable type

∂εΦ (µ, τ)

∂τ ε
− ∂2εΦ (µ, τ)

∂µ2ε
= − cosε (µε) , τ > 0, µ ∈ R, (34)

subject to the initial condition
Φ (µ, 0) = sinε (µε) . (35)

The non-differentiable homotopy is defined as follows:

∂εΦ (µ, τ)

∂τ ε
− ∂εΦ0 (µ, τ)

∂τ ε
= θε

(
∂2εΦ (µ, τ)

∂µ2ε
− cosε (µε)− ∂εΦ0 (µ, τ)

∂τ ε

)
. (36)

The solution series with non-differentiable terms takes the form:

Φ =
∞∑
j=0

θjεΦj. (37)

Submitting Equations (18) and (20) into Equation (19), we obtain

∂ε

∂τε

[
∞∑
j=0

θjεΦj (µ, τ)

]
− ∂εΦ0(µ,τ)

∂τε
= θε

(
∂2ε

∂µ2ε

[
∞∑
j=0

θjεΦj (µ, τ)

]
− cosε (µε)− ∂εΦ0(µ,τ)

∂τε

)
. (38)

Due to Equation (38), we can structure a set of local fractional partial differential equations

θ0ε :
∂εΦ0 (µ, τ)

∂τ ε
− ∂εΦ0 (µ, τ)

∂τ ε
= 0, Φ0 (µ, 0) = sinε (µε) , (39)

θ1ε :
∂εΦ1 (µ, τ)

∂τ ε
=
∂2εΦ0 (µ, τ)

∂µ2ε
− cosε (µε)− ∂εΦ0 (µ, τ)

∂τ ε
, Φ1 (µ, 0) = 0, (40)

θ2ε :
∂εΦ2 (µ, τ)

∂τ ε
=
∂2εΦ1 (µ, τ)

∂µ2ε
, Φ2 (µ, 0) = 0, (41)

θ3ε :
∂εΦ3 (µ, τ)

∂τ ε
=
∂2εΦ2 (µ, τ)

∂µ2ε
, Φ3 (µ, 0) = 0, (42)

θ4ε :
∂εΦ4 (µ, τ)

∂τ ε
=
∂2εΦ3 (µ, τ)

∂µ2ε
, Φ4 (µ, 0) = 0 (43)

and so on.
Solving above systems, we obtain

Φ0 (µ, τ) = sinε (µε) , (44)

Φ1 (µ, τ) = − τ ε

Γ (1 + ε)
[sinε (µε) + cosε (µε)] , (45)

Φ2 (µ, τ) =
τ 2ε

Γ (1 + 2ε)
[sinε (µε) + cosε (µε)] , (46)

Φ3 (µ, τ) = − τ 3ε

Γ (1 + 3ε)
[sinε (µε) + cosε (µε)] , (47)

Φ4 (µ, τ) =
τ 4ε

Γ (1 + 4ε)
[sinε (µε) + cosε (µε)] (48)
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and so on.
When θ → 1, with the help of Equation (37), we have

Φ (µ, τ) =
∞∑
j=0

Φj (µ, τ)

= sinε (µε) +

(
∞∑
j=1

(−1)jτ jε

Γ (1 + jε)

)
[sinε (µε) + cosε (µε)] . (49)

In view of Equation (49), we have the NS in closed form

Φ (µ, τ) =
∞∑
j=0

(−1)jτ jε

Γ (1 + jε)
[sinε (µε) + cosε (µε)]− cosε (µε)

= Eε (−τ ε) [sinε (µε) + cosε (µε)]− cosε (µε) . (50)

and the corresponding graph with fractal dimension ε = ln 2/ ln 3 is illustrated in Figure 2.
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Figure 2. The solution for non-homogeneous heat conduction equation (NHCE) with heat
sink of non-differentiable type when ε = ln 2/ ln 3.

5. Discussion

In order to present the novel technology, we will discuss comparison between the NHCE and HHCE.
The HHCE (local fractional diffusion equation [29]) in fractal domain

∂εΦ (µ, τ)

∂τ ε
− ∂2εΦ (µ, τ)

∂µ2ε
= 0 (51)

is considered. The initial value condition (IVC) of Equation (51) is presented as follows [29]:

Φ (µ, 0) = Eε (µε) . (52)
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The corresponding NS for the HHCE is presented as follows [29]:

Φ (µ, τ) = Eε (µε)Eε (τ ε) . (53)

Owing to the above, the comparative results for the NHCE and HHCE with the NSs are listed in
Table 2.

Table 2. The comparative results for the HHCE and NHCE.

PDEs NSs

HHCE ∂εΦ(µ,τ)
∂τε − ∂2εΦ(µ,τ)

∂µ2ε = 0 Φ (µ, τ) = Eε (µε)Eε (τε)

NHCE ∂εΦ(µ,τ)
∂τε − ∂2εΦ(µ,τ)

∂µ2ε = Eε (µε) Φ (µ, τ) = Eε (µε) (2Eε (τε)− 1)

IVCs Φ (µ, 0) = Eε (µε) Φ (µ, 0) = Eε (µε)

The comparative results for the NHCE and HHCE with initial value condition (IVCs) are depicted in
Figure 3.
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Figure 3. The non-differentiable solutions (NSs) for the homogeneous heat conduction
equation (HHCE) and non-homogeneous heat conduction equation (NHCE).

When changing the fractal dimension from ln 2/ ln 3 to 1, we have the conversational NHCE in
the form

∂Φ (µ, τ)

∂τ
− ∂2Φ (µ, τ)

∂µ2
= exp (µ) (54)

with the initial condition
Φ (µ, 0) = exp (µ), (55)

and the corresponding solution is written as follows:

Φ (µ, τ) = exp (µ) (2 exp (τ)− 1) . (56)
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The comparison between the HHCEs with LFDO and conversational differential operator (CDO) is
represented in Figure 4.
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Figure 4. The comparison between the homogeneous heat conduction equations (HHCEs)
within the different operators.

6. Conclusions

In our work we have utilized the local fractional homotopy perturbation method to implement
the NHECs with the help of the local fractional time- and space-derivatives. The NSs for NHECs
were presented and their charts of the special functions defined on Cantor sets with fractal dimension
ε = ln 2/ ln 3 were displayed. The comparative results for the NHCE and HHCE were also discussed.
The results illustrate the efficiency of the technology to solve the local fractional differentiable equations.
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