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Abstract: In this work, we propose a Bayesian methodology to make inferences for the
memory parameter and other characteristics under non-standard assumptions for a class of
stochastic processes. This class generalizes the Gamma-modulated process, with trajectories
that exhibit long memory behavior, as well as decreasing variability as time increases.
Different values of the memory parameter influence the speed of this decrease, making this
heteroscedastic model very flexible. Its properties are used to implement an approximate
Bayesian computation and MCMC scheme to obtain posterior estimates. We test and validate
our method through simulations and real data from the big earthquake that occurred in 2010
in Chile.



Entropy 2015, 17 6577

Keywords: Gamma-modulated process; long memory; Bayesian inference; approximate
Bayesian computation; MCMC algorithm; e-value

1. Introduction

Diffusion processes have been a cornerstone of stochastic modeling of time series data, particularly
in areas such as finance [1] and hydrology [2]. Many extensions to the classic diffusion model have been
developed in recent years, addressing such diverse issues as asymmetry, kurtosis, heteroscedasticity and
long memory; see, for instance, [3].

In the simplest case, the increments of a diffusion model are taken as independent Gaussian random
variables, making the process a Brownian motion. In this work, by contrast, processes with long memory
and non-Gaussian increments are considered.

The proposed model is a generalization of the Gamma-modulated (G-M) diffusion process, in terms of
the memory parameter. This model was developed in [4] to address an asset market problem, extending
the ideas of the Black–Scholes paradigm and using Bayesian procedures for model fitting. In that work,
the memory parameter was assumed to be known and fixed, with some particular cases, such as the
standard Brownian motion and the Student process. The latter one is a generalization of the Student
process previously presented in [5], the marginals of which have a t-Student distribution with fixed
degrees of freedom and a long memory structure.

Here, we enlarge the parameter space considering that the memory parameter is also unknown,
provided we have a prior distribution on it.

This extension allows flexibility for the dependence structure of the process, where the Brownian
motion and the G-M process become particular cases.

Typically, the trajectories generated by this process exhibit heteroscedasticity, with higher variability
at the beginning, which we call “explosion at zero”. In addition, as time increases, the variability
decreases at a rate depending on the long memory parameter.

In particular, we will focus on estimation procedures for long-range memory stochastic models from
a Bayesian perspective. Other parameters, such as location and dispersion, are also considered.

For the location and scale parameters, we can straightforwardly find natural conjugate prior
distributions. However, the same does not occur for the memory parameter, as its marginal likelihood is
not workable analytically. This implies that methods used for obtaining a posterior distribution, such as
commonly-used likelihood-based solutions, are not suitable for this purpose.

In order to approximate the posterior distribution for the parameters involved, we propose a blended
approximate Bayesian computation ABC-MCMC algorithm. This family of ABC algorithms and its
very broad set of applications are well reviewed in [6]. In this work, the MCMC part is built for those
components with full conditional posterior distributions that are able to be dealt with, and the ABC
is implemented for the memory parameter. Grounded on previous results [7], for the ABC steps, an
appropriate summary statistic was defined, based on the path properties and on the m-block variances.
We obtain, by this proposal, very precise estimates for that parameter.
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After generating samples from the posterior, a by-product is the e-value, an evidence measure for
precise hypotheses, such as the Brownian motion and G-M cases. This measure was defined in [8] and
used afterward, for instance, in [9–11].

We test and validate our method through simulations and illustrate it with data from the big earthquake
that occurred in Chile in 2010.

The definition of the process and some properties are presented in Section 2. In Section 3, we describe
the ABC-MCMC algorithm. The simulated and real data results are shown in Section 4, and finally,
in Section 5, we give some final remarks.

2. Generalized Gamma-Modulated Process

Let us consider the standard Brownian motion, {Bt}t>0, and a Gamma process, {γt}t>0, as defined
in [4].

A Gamma process is a pure-jump increasing Lévy process with independent and stationary Gamma
increments for non-overlapping intervals. For this process, the intensity measure is given by κ(x) =

ax−1 exp(−bx), for any positive x. That is, jumps whose size lies in the interval [x, x + dx] occur as a
Poisson process with intensity κ(x)dx. The parameters involved in the intensity measure are a, which
controls the rate of jump arrivals, and b, the scaling parameter, which controls the jump sizes.

The marginal distribution of a Gamma process at time t is a Gamma distribution with mean at/b and
variance at/b2, allowing also the parametrization in terms of the mean, µ, and variance, σ2, per unit time,
that is, a = µ2/σ2 and b = µ/σ2.

For the one-dimensional distributions, we have that αγt(a, b) = γt(a, b/α) in distribution; E(γnt ) =

b−nΓ(at+n)/Γ(at), n ≥ 0, where Γ(z) is the Gamma function; E(exp(θγt)) = (1− θ/b)−at, for θ < b,
and its characteristic function, φγt(u) = E(exp(iuγt)), is:

φγt(u) =
(

1− u

b
i
)−at

.

Given times s < t, Corr (γs, γt) =
√
s/t, and given h > 0, the density, fh(y), of the increment

γt+h − γt is given by the Gamma density function with mean ah/b and variance ah/b2,

fh(y) =
yah−1bahe−by

Γ(ah)
.

In this work, we will consider a = b = 1/2.
Given a real value α ∈ [−1, 0], we define the generalized Gamma-modulated (G-M) process by:

αXt = Bt γ
α
t , for t > 0 . (1)

Figure 1 shows typical realizations of the generalized G-M process for different values of the
parameter α. In particular, the value α = 0 corresponds to the Brownian motion and α = −0.5 to the
Student process studied in [4].

The next subsections present some useful path characteristics of the process that could lead us to
choose this model as an appropriate one for a given problem and to help us make inferences about
its parameters, such as the presence of long memory, the variability profile and the variance of the
increment process.
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Figure 1. Realizations of the generalized Gamma-modulated (G-M) process for different
values of α. (a) α = −1; (b) α = −0.5; (c) α = 0.

2.1. Explosion at Zero

The graphs in Figure 1a,b, with α < 0, show that the process is highly variable near t = 0, but as
t → ∞, its variability decreases. We call this path property “explosion at zero” and prove it in the
next result.

Proposition 1. Let αXt be the generalized Gamma-modulated process as defined in Equation (1). Then,
for all M > 0, we have:

lim
s→0

P (|αXs| > M) =

1, if α < 0;

0, if α = 0.

Proof. Let us consider M > 0 and α < 0. Conditioning in γs, we obtain:

P
(
|Bs| > Mγ−αs

)
=

∫ ∞
0

1

Γ(s/2)

xs/2−1

2s/2
e−x/2P

(
|Bs| > Mx−α

)
dx

=

∫ ∞
0

1

Γ(s/2)

xs/2−1

2s/2
e−x/2

∫ ∞
Mx−α

2
e−u

2/2s

√
2πs

dudx

≥ e−As
−α/2 1

2s/2

∫ As−α

0

xs/2−1

Γ(s/2)

∫ ∞
MA

2
e−v

2/2

√
2π

dvdx

≥

(
MAe−(MA)2/2

1 + (MA)2

)
e−As

−α/2As/2s−αs/2

2s/2Γ(s/2)

2

s
,

with A > 0. The last quantity tends to one as s→ 0 for α < 0.
Let us consider now the case α = 0,

P (|Bs| > M) =

∫ ∞
M/
√
s

2
e−v

2/2

√
2π

dv ≤ e−M
2/2s

√
s

M
,

that tends to zero as s→ 0.
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2.2. The Increment Process

Let us now consider the increment process, ∆(αXt) = Btγ
α
t − Bt−1γ

α
t−1. The next results describe

the asymptotic behavior of the variance-covariance structure for these differences and, hence, for the
process itself, since αXt has zero expectation.

Proposition 2. For the increment process, ∆(αXt),

V ar(∆(αXt)) ∼ t2α.

Proof. Let us observe that the increment process, ∆(αXt) = Btγ
α
t − Bt−1γ

α
t−1, can be written as

∆(αXt) = Wt + Vt, where:

Wt = Bt(γ
α
t − γαt−1) , Vt = (Bt −Bt−1)γαt−1 .

Working out each term, we obtain:

V ar(Vt) = E((Bt −Bt−1)2 γ2α
t−1) = E(γ2α

t−1) ∼ t2α ,

V ar(Wt) = E(B2
t (γ

α
t − γαt−1)2) = t E((γαt − γαt−1)2) ∼ t2α−1 ,

and:
Cov(Vt,Wt) ∼ (t− 1)α(tα − (t− 1)α) ∼ t2α−1 .

This property leads us to consider the variance of the observed increment process, V ar(∆(αXt)) ∼
t2α, as informative for the parameter α and, therefore, helpful to implement the approximated simulation
for its marginal posterior.

In a data exploratory phase, we could examine the graph of the empirical variances of ∆(αXt) from t

to the end of the process, as a function of t in logarithmic scale. As t increases, that graph should become
linear with slope 2α. Figure 2 exhibit this result for some values of α. Observe that the asymptotic result
can be visualized from log t ≈ 3, that is from t ≈ 20, for α < 0.
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Figure 2. Sample distribution of V ar(∆(αXt)), for 1000 simulated trajectories of the
generalized G-M process, for different values of α. (a) α = −1; (b) α = −0.5; (c) α = 0.
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Proposition 3. The auto-covariance for lag n of the increment process, denoted by Mα(n), is of order
nα−1, if −1 < α < 0, and it is zero, if α = 0, as n increases.

Proof. Let us consider n ≥ 3, because of the explosion at zero. Then:

Mα(n) = E( ∆(αX3) ∆(αXn+3) )

Mα(n) = E((B3γ
α
3 −B2γ

α
2 )(Bn+3γ

α
n+3 −Bn+2γ

α
n+2))

= E(B3γ
α
3Bn+3γ

α
n+3)− E(B3γ

α
3Bn+2γ

α
n+2)

−E(B2γ
α
2Bn+3γ

α
n+3) + E(B2γ

α
2Bn+2γ

α
n+2)

= E(B3Bn+3)E(γα3 γ
α
n+3)− E(B3Bn+2)E(γα3 γ

α
n+2)

−E(B2Bn+3)E(γα2 γ
α
n+3) + E(B2Bn+2)E(γα2 γ

α
n+2)

= 3E(γα3 γ
α
n+3 − γα3 γαn+2)− 2E(γα2 γ

α
n+3 − γα2 γαn+2) .

Observe that:

E(γαt γ
α
s ) =

1

2t/2
1

Γ((t− s)/2)Γ(s/2)

∫ ∞
0

∫ γt

0

γαt γ
α+s/2−1
s (γt − γs)(t−s)/2−1e−γt/2dγsdγt

=
1

2t/2
1

Γ( t−s
2

)Γ(s/2)

∫ ∞
0

∫ γt

0

γαs (γt − γs)(t−s)/2−1γs/2−1
s dγsγ

α
t e
−γt/2dγt

=
1

2t/2
1

Γ( t−s
2

)Γ(s/2)

∫ ∞
0

∫ 1

0

zα+s/2−1(1− z)(t−s)/2−1dzγ
2α+t/2−1
t e−γt/2dγt

=
1

2t/2
1

Γ( t−s
2

)Γ(s/2)

Γ(α + s/2)Γ((t− s)/2)

Γ(α + t/2)

∫ ∞
0

γ
2α+t/2−1
t e−γt/2dγt

=
1

2t/2
1

Γ( t−s
2

)Γ(s/2)

Γ(α + s/2)Γ((t− s)/2)

Γ(α + t/2)

Γ(t/2 + 2α)

(1/2)t/2+2α

= 4α
Γ(α + s/2)Γ(2α + t/2)

Γ(s/2)Γ(α + t/2)
.

If −1 < α < 0, we can apply the Gautschi inequality [12], obtaining:

E(γαt γ
α
s ) ∼ (st)α ,

and then:
Mα(n) = E(γα1 γ

α
n+1)− E(γα1 γ

α
n )) ∼ nα−1 .

On the other hand, for α = 0, E(γαt γ
α
s ) = 1, and therefore, M0(n) = 0.

In other words, for α = 0, the process has no memory, and we recover the Brownian motion case
as already mentioned; for α < 0, the process is called anti-persistent. Recalling the Hurst parameter
H associated with the fractional Brownian motion, the relationship between H and α is α = 2H − 1;
see [4], for instance.
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3. ABC-MCMC Study

When dealing with non-standard posterior distributions, the usual procedure is to use Markov chain
Monte Carlo simulation to produce an approximate sample from this posterior. However, when the
likelihood function is intractable, MCMC methods cannot be implemented. The class of likelihood-free
methods termed, approximate Bayesian computation (ABC), can deal with this problem as long as we
are able to simulate from the probabilistic model and a suitable set of summary statistics is available.

The ABC idea was proposed by Pritchard et al. [13] and developed further in the last decade. In
particular, with respect to the choice of the summary statistics from among diverse options, in [14],
the authors consider a sequential test procedure for deciding whether the inclusion of a new statistic
improves the estimation. In [15], the discussion refers to the choice of informative statistics related to
the algorithmic properties.

In our case, in order to perform the ABC algorithm for the memory parameter, α, we have to be able
to generate a realization of the target process and we have to know which are the important observable
characteristics of the process that lead us to increase our information about α.

Observe that we already know, by Equation (1), how to simulate from the generalized G-M for each
value of the parameter. After obtaining a simulated trajectory, we can compare it then to the observed
trajectory through adequate statistics. Intuitively, if they are similar enough, the chosen value of the
parameter can be thought of as an appropriate one.

More concretely, suppose that we take the observed increments dt = ∆(xt) from a sample xt and
that for each α ∈ [−1, 0], we generate a realization from a Brownian motion bt and a realization from a
Gamma process γt, obtaining:

∆(αxt) = btγ
α
t − bt−1γ

α
t−1 .

For the ease of notation, set αyt = ∆(αxt). To compute the proximity between dt and αyt, we will
determine the distance between some statistics for each sample. The usual choices for the memory
parameter are, among others, the rescaled range R/S or the rescaled variance V/S, the periodogram,
quadratic variations, aggregated variances, Whittle estimator and functions, as the logarithm, inverse
or square root, of these ones [15,16]. In [7], we used those statistics to obtain approximate posterior
samples for the memory parameter for fractional self-similar processes.

We tried all of them in this work; however, their performance was not good enough, because of the
non-stationarity and the inherent heteroscedasticity of the process. To solve this situation, we considered
the slope of the regression of the sampling variance of m-size blocks on the time, regarding the results
in Section 2.2, and this solution worked much better than the former ones.

Let T ∗ denote the following statistic. Giving n observations and an integer m << n, we take
consecutive blocks of size m and obtain the sampling variance for each block, s2(k), for k =

1, . . . , bn/mc, where bξc is the integer part of ξ. Those values are used as estimates for the variances
at times m, 2m, . . . , bn/mcm. In log− log scale, the slope of the regression line obtained through the
points (km, s2(k)), k = 1, . . . , bn/mc, should be of order of 2α, as time increases. We define T ∗ as
this slope.

The ABC steps for α are then given by the following algorithm.
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Algorithm 1 ABC procedure for α.

1. Select α from a prior distribution π(α) ∼ Unif [−1, 0];
2. Generate a trajectory αyt for that value α;
3. Given ε > 0, if |T ∗(xt)− T ∗(αyt)| < ε, then select α for the sample Sα, otherwise, reject it;
4. Repeat Steps 1–3 until reaching an adequate sample size for the parameter α.

The sample Sα obtained in the last step is an approximate sample from the posterior distribution for
α, the goodness of which strongly depends on the choice of the statistics and the threshold ε in Step 3.

Note that if ε is too small, then the rejection rate is high, and the algorithm becomes too slow; on the
other hand, if ε is too big, the algorithm accepts too many values of α, giving a less precise approximate
sample. In general, what is done is to take a small percentile of the simulated distances, that is we select
those α’s giving the closest values to the observed one. In this work, after some trial, we used the first
percentile, as proposed by [17].

Let us consider now the more general model for the increments given by:

Yt = µ+
1√
τ

∆(αXt) , (2)

for µ, τ ∈ R and τ > 0, representing the precision of the fluctuations. As: ∆(αXt) =(
Btγ

α
t −Bt−1γ

α
t−1

)
, with Bt − Bt−1 ∼ N(0, 1), γt − γt−1 ∼ χ2(1) and Bt independent of γt, for

all t > 0, and following the theory associated with the Gamma-modulated process [4], it is possible to
assume a hierarchical representation.

We can rewrite the above model in a multivariate way as:

(Y1, . . . , Yn) | µ, τ, γ, α ∼ N
(
µ1, τ−1Σ(γ, α)

)
,

where, for i, j = 1, . . . , n,

Σii = i
(
γαi − γαi+1

)2
+ γ2α

i+1 ,

Σij =
(
γαj − γαj+1

) (
iγαi − (i+ 1)γαi+1

)
, for i < j.

As a final step, let us assume prior distributions given by:

µ | τ ∼ N(b0, g(τ)v0)

τ ∼ Γ(a0, d0),

and prior knowledge for α, π(α). Then, given 0 < γ1 < γ2 < . . . < γn+1, auxiliary random effects
distributed as:

π(γ1, . . . , γn) ∝
n+1∏
i=1

(γi − γi−1)−1/2e−γn+1/2 ,

and an observed trajectory y = (y1, . . . , yn), the posterior distribution can be computed from:

π(µ, τ, γ1, . . . , γn, α | y)

∝ π(γ1, . . . , γn) π(τ) π(α)τn/2 |Σ(γ, α)|−1/2 × exp
{
−τ

2
(y − µ1)′Σ(γ, α)−1(y − µ1)

}
.
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After straightforward computations and assuming that g(τ) = 1, the full conditional posterior
distributions for µ, τ are:

µ | y, τ, γ1, . . . , γn, α ∼ N (b1, v1) ,

τ | y, µ, γ1, . . . , γn, α ∼ Γ (a1, d1) , (3)

where:

b1 =
(
v0 + τ1′Σ(γ, α)−11

)−1 (
τ1′Σ(γ, α)−1y + v0b0

)
, v1 =

(
v0 + τ1′Σ(γ, α)−11

)
,

a1 = n/2 + a0, d1 = d0 + 0.5(y − µ1)′Σ(γ, α)−1(y − µ1) .

With this notation, for parameters (µ, τ, α), we propose the following ABC-MCMC procedure.

Algorithm 2 ABC-MCMC procedure for (µ, τ, α).

1. Apply the ABC proposal given by Algorithm 1, to obtain a posterior sample for α, Sα;
2. Sample uniformly from α ∈ Sα;
3. Generate a trajectory γ = (γ1, . . . , γn) from the Gamma process;
4. Sample (µ, τ) from the conditional posterior π(µ, τ | α,γ,y);
5. Repeat Steps 3–4 until the convergence is reached, which can be checked by the usual graphical

criterion for (µ, τ), and take their sampling mean;
6. Repeat Steps 2–5, for obtaining a complete posterior sample for (µ, τ, α).

The whole procedure is to then use the ABC algorithm for α and the MCMC scheme for µ, τ to
perform the Bayesian inference of our proposal.

3.1. Posterior Evidence for Sharp Hypotheses

As a by-product of the previous algorithm, we are able to compute approximately the so-called
e-value, an evidence measure defined in [8] for precise hypothesis testing, which we describe
briefly below.

Let us consider a hypothesis of interest H : α ∈ Ω0, and define the tangential set T0 to Ω0 as the set:

T0 = {(µ, τ, α) ∈ Ω : π(µ, τ, α | y) > π0}, where π0 = sup
Ω0

π(µ, τ, α | y).

In other words, the tangential set to Ω0 considers all points “more probable” than those in Ω0,
according to the posterior law.

The evidence measure e-value for the hypothesis H is defined as:

ev(Ω0) = 1−
∫
T0

π(µ, τ, α | y) dµ dτ dα. (4)

Therefore, if the tangential set has high posterior probability, the evidence in favor of H is small;
if it has low posterior probability, the evidence against H is small. For instance, suppose that we are
considering the sharp hypothesis H : α = α0. If the subset α = α0 has high density, that is it lies
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near the mode of π(µ, τ, α | y)), then the e-value must be large, giving high evidence for that sharp
hypothesis. Some interesting hypotheses are the precise ones defining the Brownian motion case, when
α = 0, and the G-M process, when α = −0.5.

In this work, we approximate empirically the integral in the e-value using the posterior sample
obtained by the previous algorithms. As usual, in the Bayesian paradigm, the predictive distribution
for the next steps can be computed using this ABC-MCMC sample and the model Equation (2).

4. Numerical Results

In this section, we present the main results after implementing our algorithms in the R-gui
software [18], using simulated and real data. Hence, we will show the performance of our proposal
and its use in practice.

4.1. Simulated Results

To illustrate the performance of our procedure, we simulate 500 replicates of length n = 1000, for a
grid with α ∈ [−1, 0] by 0.1, when µ = 0 and τ = 1 are fixed.

Figure 3 shows three trajectories for α = −0.8,−0.5,−0.2 and their respective approximate
posterior densities obtained by Algorithm 1, with posterior means (and 95% credible intervals) −0.835

(−0.939,−0.735), −0.495 (−0.579,−0.421), −0.217 (−0.278,−0.157).
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Figure 3. Realizations of the increments of the generalized Gamma-modulated process
for different values of α and the posterior density obtained by the approximate Bayesian
computation (ABC) algorithm for α.

In Figure 4, we see the sampling distribution of the posterior mean for α. Observe that the estimates
we obtained are fairly precise for all values in the interval [−1, 0].
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In order to confirm that precision, we obtained the e-values associated with the hypothesis α0 = −0.5,
when the nominal value for α varies in [−1, 0], as shown in Figure 5a. The boxplots show the sampling
distribution for these e-values from the 500 replicates for each α ∈ {−1,−0.9, . . . ,−0.1, 0}. Observe
that the obtained e-values are coherent with the previous estimates, giving high evidence to α0 = −0.5

when the nominal value is close to it and low evidence otherwise.
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Figure 4. Sampling distribution of the posterior mean for α.
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Figure 5. Sampling distribution of the e-value for: (a) α0 = −0.5; (b) α0 = 0.

In the case α0 = 0, shown in Figure 5b, even when the e-value is not as high for α = 0 as in the
previous case, it does allow for a good discrimination in favor of the null hypothesis.

In the general case, when µ and τ are unknown, we applied Algorithm 2, reporting the following
results for the nominal values µ = 10 and τ = 1, as illustrated in Figure 6. The numerical results were
very similar for other values in terms of precision and computational time.
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It is worth noting the symmetry of the sampling distribution of the posterior mean for µ, as well as
the asymmetry of the sampling distribution of the posterior mean for τ , as it was supposed to be by
Equation (3). Furthermore, the estimates are consistent around the nominal value.
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Figure 6. Sampling distribution of the posterior mean for: (a) µ; (b) τ .

The results suggest that, as α → −1, the data become more informative for the location parameter.
Inversely, for the precision parameter τ , the estimates seem to be less accurate as α goes to −1. Both
features are related to the behavior of the trajectories: as α decreases to −1, the increments stabilize
faster around zero than for α closer to zero, and consequently, we obtain more precise estimates for
µ. This very behavior explains the posterior for τ : the fast stabilization of the increments leads to
underestimating the variance, that is to overestimating the precision. The same results were observed for
other nominal values of µ and τ .

4.2. Earthquake Acceleration Data

Our proposal is illustrated extending the ideas in [4]. We analyze sequential data obtained from an
accelerometer recording the big earthquake in Southern Chile (27 February 2010), with the epicenter
in Cobquecura, approximately 335 km southwest of Santiago, which reached 8.8 on the Richter scale.
The dataset was obtained from the Hydrographic and Oceanographic Service of the Chilean Navy. The
time series was recorded at a rate of 50 observations per second, with n = 1653, as shown in Figure 7a.

A brief exploratory analysis of the data, summarized in Figure 7b–d, led us to believe that the proposed
model can be well fitted according to the properties described in Section 2.

The marginals for the posterior distribution are shown in Figure 8, with posterior means for the
parameters equal to α̂ = −0.975(±0.021), µ̂ = −0.0007(±0.007), τ̂ = 106305(±3800). Observe,
in the first scatterplot, the sharp and negative posterior correlation between α and τ , as expected by
Equation (3). Furthermore, the e-values for the hypotheses α0 = −0.5 and α0 = 0 are clearly zero, as
confirmed by both graphs.
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Figure 7. (a) Acceleration earthquake series, Xt (n = 1653 at 50 observations per second)
and exploratory graphics: (b) density of the raw data; (c) sample variance of the increment
process, V ar(∆(Xt)), in log-scale; (d) sample auto-covariance, M(n), in log-scale.
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5. Final Remarks

The model proposed here seems to be suitable for the phenomena under study. In particular,
interesting properties, including long memory and trajectory behavior, are discussed, on which our
inference methodology is grounded.

For the ABC algorithm, we considered at first a minimum entropy criterion for selecting the
approximate posterior sample, because that choice had a good performance in estimating the long
memory parameter for stationary non-Gaussian processes as, for instance, binary and the Rosenblatt
processes [7]. However, given the trajectory behavior of the G-M process, the most informative statistics
we found is the m-block variance statistic T ∗.

Our results show, firstly, a clear and easy way of implementing the ABC-MCMC algorithms in a
standard software. For the real data (n = 1653), the computational cost was moderate, obtaining a
posterior sample of a size of 500 from the ABC-MCMC proposal in one hour.

In our simulations, we obtained a very high precision in the estimates given by this procedure.
In addition, the estimates for the precision parameter, τ , are affected reasonably by scale changes.
For instance, for the rescaled data, z = c× y, we estimated τ as τ ∗ = τ̂ /c2, approximately.

The chosen parameterization allows for α ∈ (0, 1]. However, we did not study such a case, since that
process diverges as time increases, making the inference procedure harder for α. We recommend then to
treat this problem as a separate case.

Finally, we believe that this model has wider applications, mainly for its parsimony and the
straightforward interpretation of the parameters. For diagnostic purposes, for example, the predictive
series could be used to perceive the increasing fore-shocks before the arrival of a new earthquake.
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Appendix: Discussion of Other Models

Let us consider a complete filtered probability space (Ω,F ,P; {Ft}) that supports a Brownian
motion, {Bt}, a positive random variable, W , and a Gamma process {γt} with parameters α = 1/2,

β = 2. Suppose that all of the processes are adapted to the filtration {Ft} and are mutually independent.
Furthermore, assume that {Ft} is the right continuous filtration associated with (B,W, γ).

Consider the following three processes defined by:

1. ξt = Bt;
2. Tt = Bt/

√
W , where W is a positive random variable and;

3. Tt = Bt+1 γ
−1/2
t+1 .

The increment of the process {ξt} defines a random i.i.d. noise with a Gaussian distribution,
representing the most common noise used in the literature for regression models. The increments of
the second noise describe a perturbation of a Gaussian i.i.d. error in the distributional sense. This
process will be called t-homoscedastic, given that the increments remain independent and with the
same distribution, whose variance is related to the degrees of freedom of the independent variable W .
Specifically, we are interested in the case where W is a χ2 random variable with ν degrees of freedom.

Finally, the third noise is the Gamma-modulated process, as defined in [4].

A. Some Properties of the Models

A.1. Heteroscedastic t-Student Process

Proposition 4. The one-dimensional densities of Tt, ∆Tt = Tt − Ts and (∆Tt, Ts) for fixed 1 < s < t

are given by:

fTt(x) =

∫ ∞
0

φ

(
x; 0,

t

γ

)
dΓt(γ),

f∆T t(x) =

∫
φ (x; 0, g(γ1, γ2)) dΓt−s(γ1)dΓs(γ2),

f(∆T t,Tt)(x̄) =

∫
φ (x̄; 0,Σ) dΓt−s(γ1)dΓs(γ2),

where Γt is the cdf of γt, φ(x;µ, σ2) denote the univariate density at x of a normal distribution with
mean µ and variance σ2,

g(γ1, γ2) = s

(
1
√
γ2

− 1√
γ1 + γ2

)2

+
t− s
γ1 + γ2

,

and

Σ =

 t−s√
γ1

+ s
(

1√
γ1−
√
γ2

)2
s√
γ2

(
1√

γ1−
√
γ2

)
s√
γ2

(
1√

γ1−
√
γ2

)
s√
γ2

 .
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Proof. The densities are consequences of standard computation.

A.2. Homoscedastic t-Student Process

Proposition 5. The homoscedastic t-Student process is conditionally independent and has stationary
increments. Furthermore,

E(Tt) = 0 ,

E(T 2
t ) = tE(W−1), if E(W−1) <∞ ,

E(T kt ) = tk/2E(Zk)E(W−k/2), if E(W−1/2) <∞ ,

where Zis a standard Gaussian random variable with E(Zk) = 0, if k is odd, and E(Zk) =

2k/2Γ
(
k+1

2

)
/
√
π, if k is even.

Additionally, for s < t, the covariance is given by:

E(TtTs) = sE(W−1).

Finally, for given t, the density of Tt is:

fTt(x) =

∫ ∞
0

N(x; 0, t/W )dFW (w).

Proof. The proof is a consequence of algebraic calculations.

B. Diffusion Models

In this section, we will consider the Euler discretization of the linear stochastic differential equation:

dYt = µdt+ σdEt , (5)

where the noise Et has one of the following characteristics:

1. standard Brownian motion or Gaussian noise;
2. homoscedastic t-Student noise or;
3. Gamma-modulated process withheteroscedastic t-Student noise.

Then, the discrete version of Equation (5) is given by yi = µ∆(t) + σ∆Et. In each case, the
discretization of the errors can be represented as a combination of the scale and location parameters
in a Gaussian model.

B.1. Linear SDE with Gaussian Independent Errors

In this section, we will consider the following discretized model of Equation (5), when the noise is
given by the increment of a Brownian motion. In this case, yi, 1 ≤ i ≤ n, is a discrete version of
Equation (5), with (∆ = 1) given by:

yi = µ+ σ(Bi+1 −Bi),
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for i = 1, . . . , n. We will assume that (µ, σ2) is independent of {Bt}t≥0. Under this framework, the
conditional setting is given by:

y | µ, σ2,Σ ∼ Nn(µX, σ2Σ),

where Σ = In, X = 1n is the n-dimensional vector of ones, and µ = β.
Considering the following prior specification:

µ | σ2 ∼ N(b0, τ
2
0 )

σ2 ∼ IG(a0, d0),

where B0 = τ 2
0 and b0, a0, d0 and τ 2

0 are known, then it is straightforward to obtain the complete
conditional distributions. To approximate the posterior distributions, we need to sample from:

µ | σ2, y ∼ N(m, τ 2)

σ2 | µ, y ∼ IG(a, d),

wherem = (σ2b0 +τ 2
0 ȳn)/(σ2 +nτ 2

0 ), τ 2 = σ2τ 2
0 /(σ

2 +nτ 2
0 ), a = n

2
+a0 and d = 1

2

∑n
i=1(yi−µ)2 +d0.

B.2. Linear SDE with t-Student Homoscedastic Errors

In this model, we will consider fixed t-Student distributed errors, which means that we will
contaminate the noise with a fixed χ2 random variable with ν degrees of freedom. In this model, the
increments have a t-Student distribution with the same degrees of freedom, that is the increments are
stationary. Then, the discretized version of the t-Student homoscedastic model for the SDE Equation (5),
with ∆ = 1, is given by:

yi = µ+W 1/2σ(Bi+1 −Bi),

for i = 1, . . . , n, W ∼ IG(ν/2, ν/2), that is if G = W−1, then fG(g) = (ν/2)ν/2

Γ(ν/2)
gν/2−1e−g/2 for

w ≥ 0; and W is independent of {Bt}t≥0. We will also assume that the vector (µ, σ2) is independent of
W, {Bt}t≥0. As before, we adopt the conditional setting:

y | µ, σ2, ω ∼ Nn(µ, ωσ2In) ,

ω ∼ IG(ν/2, ν/2),

and

(µ, σ2) ⊥ ω.

It is straightforward to prove that if we integrate out W , we obtain:

y | µ, σ2 ∼ tn(µ1n, σ
2In, ν), (6)

where tn(µ,Σ, ν) denote the n-dimensional t distribution.
Thus, if we consider:

µ | σ2 ∼ N(b0, g(σ2)B0) ,

σ2 ∼ IG(a0, d0),
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and put Σ = ωIn, with ω ∼ IG(ν/2, ν/2), g(σ2) = 1, B0 = τ 2
0 and X = 1n, we obtain:

µ | σ2, ω, y ∼ N(m, τ 2)

σ2 | µ, ω, y ∼ IG(a, d)

ω | µ, σ2, y ∼ IG(a1, d1) ,

where m = (σ2b0w + ȳτ 2
0 )/(wσ2 + τ 2

0n), τ 2 = σ2wτ 2
0 /(wσ

2 + τ 2n), a = n
2

+ a0, d =
∑n

i=1(yi −
µ)2/(2w) + d0, a1 = (ν + n)/2 and d1 =

∑n
i=1(yi − µ)2/(σ2) + ν/2.

B.3. Gamma Modulated Process-t-Student Heteroscedastic Model

In this case, the discrete version of the process has the following representation:

yi = µ+ σ

(
Bi+1√
γi+1

− Bi√
γi

)
, (7)

for i = 1, . . . , n. Again, we assume (µ, σ2) independent of {Bt}t≥0, {γt}t≥0 and the prior distribution of
(µ, σ2) specified as before. Hence, the model is reduced to:

y | µ, σ2, γ ∼ N(µ1n, σ
2Σ(γ)),

where γ is a gamma process with parameters α = β = 1/2, Σ(γ) = A(γ)ΛA(γ)t, Λ is the covariance
matrix of B = (B1, . . . , Bn+1) given by λi,j = i ∧ j and A(γ) is the n× (n+ 1) matrix given by:

aij =


−γ−1/2

i if i = j,

γ
−1/2
i+1 if j = i+ 1,

0 otherwise.

Simple computation gives:

Σii = i

(
1
√
γi
− 1
√
γi+1

)2

+
1

√
γi+1

,

Σij =

(
1
√
γj
− 1
√
γj+1

)(
i
√
γi
− i+ 1
√
γi+1

)
for i < j .

On the other hand, the distribution of γ is computed from the fact that (γ1, γ2 − γ1, . . . , γn+1 − γn)

are independent χ2
1. Let T = tij the matrix defined by:

tij =

{
1, if i ≤ j

0, otherwise.

Then: 
γ1

γ2

...
γn

 = T


γ1

γ2 − γ1

...
γn − γn−1

 .
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By the independence of the increments, we obtain that the density of γ is proportional to:
n+1∏
i=1

(γi − γi−1)−1/2eγn+1/2, 0 < γ1 < γ2 < . . . < γn+1,

where we are assuming γ0 = 0. Hence, Model (7) can be specified as follows:

y | µ, σ2, γ ∼ N(µ1n, σ
2Σ(γ)) ,

µ | σ2, γ ∼ N(b0, g(σ2)B0) ,

σ2 | ∼ IG(a0, d0) ,

µ ⊥ σ2, (γ1, . . . , γn+1) ⊥ (µ, σ2) .

The distribution of Σ can be obtained running the Gibbs sampling on y, µ, σ2 and γ. Usual
calculations give the posterior distribution of (µ, σ2).

In this way, the conditional distributions needed to implement the Gibbs sampling are obtained as
usual by taking X = 1n, β = µ , g(σ2) = 1, B0 = ν2

0 and Σ = Σ(γ), such that:

µ | σ2, γ, y ∼ N(m, τ 2) ,

σ2 | µ, γ, y ∼ IG(a, d) ,

where:

m =

((
σ

ν0

)2

+
∑
i,j

Γi,j

)−1

×

((
σ

ν0

)2

b0 +
∑
i

∑
j

Γi,jyi

)
,

Γ = Σ−1 is a n× n matrix,

τ 2 = σ2

((
σ

ν0

)2

+
∑
i,j

Γi,j

)−1

,

a = (n/2 + a0 + 1), and d = 1
2
(y − µ)tΣ−1(y − µ) + d0.

Finally, the posterior distribution for the random vector γ = (γ1, . . . , γn+1) given µ, σ2, y =

(y1, . . . , yn), such that 0 < γ1 < γ2 < . . . < γn+1, is:

γ | µ, σ2, y ∼

(
n+1∏
i=1

(γi − γi−1)−1/2eγn+1/2

)
σ−n|Σ−n/2|exp((γ − µ)tσ−1Σ−1(γ)(γ − µ)).

C. Comparing the Models

In this section, we present two models in order to make a comparison between our proposal and
other noises.

C.1. Mixed Brownian Model

Consider the processes defined by Tt = Bt/
√
W , where W is a positive random variable and B is a

standard Brownian motion. It has stationary increments, and:

E(Tt) = 0 ,

E(T 2
t ) = tE(W−1), if E(W−1) <∞ ,

E(T kt ) = tk/2E(Zk)E(W−k/2), if E(W−1/2) <∞,
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where Z is a standard Gaussian random variable with E(Zk) = 0, if k is odd, and E(Zk) =

(2k/2Γ
(
k+1

2

)
/
√
π, if k is even.

Additionally, for s < t, the covariance is given by:

E(TtTs) = sE(W−1).

Finally, given t > 0, the density of Tt is:

fTt(x) =

∫ ∞
0

N(x; 0, t/W )dFW (w).

If W = 1 almost sure, we can recover the case of the Brownian motion. Let us consider the following
increments process:

Tαt = (Tt − Tt−1)tα.

This process has independent increments, but is not stationary. The first two moments of the process
are E(Tαt ) = 0, V (Tαt ) = t2α.

The covariance structure is given by:

COV (Tαt , T
α
s ) = E(Tαt T

α
s ) = (st)αE((Tαt − Tαt−1)(Tαs − Tαs−1)) = 0.

and finally, the memory of the process is given by:

E(Tα1 (Tαn+1 − Tαn )) = 0.

C.2. Fractional Brownian Motion

Fractional Brownian motion with Hurst parameter H ∈ (0, 1) is a centered Gaussian process
(BH

t )t∈[0,1], whose covariance function can be written as E(BH
t B

Hs) = 1
2

(
s2H + t2H − |t− s|2H

)
.

The family of processes {BH ;H ∈ (0, 1)} enjoys several nice properties:

• for H = 1/2, one recovers the classical Brownian motion;
• for any H ∈ (0, 1), the paths of BH are almost sure (H − ρ)-Hölder continuous for any arbitrarily

small ρ > 0. Specifically, we have:

|BH
t −BH

s | < F0|t− s|H−ρ

almost sure, t, s ∈ [0, T ], where F0 = F0(ω) is a positive random variable, such that E(F p
0 ) <∞,

for all p ≥ 1;
• the covariance of the increments of BH on intervals decays asymptotically as a negative power of

the distance between the intervals;
• the fractional Brownian motion is the only finite-variance process, which is self-similar (with index

H) and has stationary increments.

These characteristics have converted the fractional Brownian family into the most natural
generalization of the Brownian motion among the probability community, but also for practitioners,
in recent years.
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In this section, we will consider the following process related to the fractional Brownian motion with
Hurst parameter H ,

BH,α
t = (BH

t −BH
t−1)tα.

This process has two components. The first one is related to the long memory process and the second
one to the variance. The first two moments of the process are E(BH,α

t ) = 0 and V (BH,α
t ) = t2α.

The covariance structure is given by:

COV (BH,α
t , BH,α

s ) = E(BH,α
t BH,α

s ) = (st)αE((BH
t −BH

t−1)(BH
s −BH

s−1))

=
(st)α

2
((s− t+ 1)2H + (s− t− 1)2H − 2(s− t)2H)

Finally, the memory of the process is:

E(BHα
1 (BH,α

n+1 −BH,α
n )) = (st)αE((BH

t −BH
t−1)(BH

s −BH
s−1))

=
(n+ 1)α

2
((n− 1)2H + (n+ 1)2H − 2n2H).

By Taylor expansion, the last term is of order nα+2H−2. If α + 2H − 2 < 1/2 the process has
long memory.
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