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Abstract: In this letter, we elaborate on some of the issues raised by a recent
paper by Neapolitan and Jiang concerning the maximum entropy (ME) principle and
alternative principles for estimating probabilities consistent with known, measured constraint
information. We argue that the ME solution for the “problematic” example introduced by
Neapolitan and Jiang has stronger objective basis, rooted in results from information theory,
than their alternative proposed solution. We also raise some technical concerns about the
Bayesian analysis in their work, which was used to independently support their alternative
to the ME solution. The letter concludes by noting some open problems involving maximum
entropy statistical inference.
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1. Introduction

In a recent paper, “A note of caution on maximizing entropy” [1], the authors considered the problem
of estimating a probability mass function given supplied constraint information. They identified as
“problematic” the maximum entropy solution for the example of a 3-sided die, where the given constraint
information is that the mean die value is two. For this example, maximum entropy (ME) solves the
following problem:

p
ME

= argmax
p
−

3∑
i=1

pi log pi
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subject to
3∑
i=1

ipi = 2 (1)

3∑
i=1

pi = 1.

In this case, one can easily show that the maximum entropy solution, consistent with the given
constraints, is the uniform distribution pi = 1

3
, i = 1, 2, 3.

In their paper, the authors propose an alternative “objectively-based” approach for solving this
problem. Specifically, they suppose that the probabilities are random variables, uniformly distributed
over their ranges, which are prescribed by the given constraints, i.e., p1 = p3 ∈ [0, 0.5] and p2 ∈ [0, 1].
Accordingly, they choose, as their estimated probabilities, the expected values of these (uniformly
distributed) random variables: p = (p1, p2, p3) = (1

4
, 1
2
, 1
4
). The authors argue on intuitive grounds

that their solution may be preferable to the ME solution, as they state: “p2 could be as high as 1,
while the other probabilities are bounded above by 0.5....[so] we may be inclined to bet on 2. Once
the information gives us reason to prefer one alternative over the others, it is troublesome to claim
that the probabilities...are equal.” They then also consider a Bayesian learning setting and show, under
particular stated assumptions, that Bayesian updating is consistent with their (1

4
, 1
2
, 1
4
) solution. Beyond

identifying what the authors call a “problematic” example for the maximum entropy principle, their paper
gives historical background on the interpretation of probability, including excerpts of Jaynes’ views on
maximum entropy and some of the multiple senses in which, based on Jaynes’ writings, one can construe
that the maximum entropy principle gives “objective” probabilities.

In this letter, we do not attempt to elucidate or specifically articulate Jaynes’ understanding of the
maximum entropy principle. The purpose of this letter is to elaborate further on the 3-sided die problem
from [1] (as well as related problems, where ME is often applied) in order to further understand and
explicate several statistically objective bases for preferring one set of probability assignments over
another. In so doing, we will argue that there is strong, objective support for the ME solution, as opposed
to the alternative solution proposed by Neapolitan and Jiang. We also identify some open problems in
maximum entropy statistical inference.

2. On Objective Bases For Preferring One Probability Assignment Over Another

2.1. “Most Probable” Interpretation of Maximum Entropy

In [2], Jaynes does provide a principled basis for preferring the maximum entropy solution over
alternative probability assignments. Specifically, let N be the number of repeated trials of an experiment
with K possible outcomes {ω1, ω2, . . . , ωK}, and with some constraint information, such as the mean
die value measured based on these N repeated trials. Note that the outcomes of the individual trials are
not known. Nor is it known the number of occurrences (Nk) of each distinct outcome, ωk. However,
suppose that we did know Nk, k = 1, . . . , K. For large N , by the weak law of large numbers,
e.g., [3], we know that Nk

N
→ pk with probability 1, where pk, k = 1, . . . , K are the true probabilities.

Thus, if (N1, N2, . . . , NK) were known, a good choice for the probability assignments would be the
frequency counts (N1

N
, N2

N
, . . . , NK

N
). Accordingly, estimating p = (p1, p2, . . . , pK) amounts to estimating
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(N1, . . . , NK). Let (x1, x2, . . . , xN), xi ∈ {ω1, . . . , ωK}, be a particular N -trial realization sequence
(microstate) for the experiment, with associated macrostate (counts) (N ′1, N

′
2, . . . , N

′
K) that agrees with

the given constraint information. Suppose all such microstates are a priori equally likely. Then the
probability of macrostate (N1, N2, . . . , NK) is:

P (N1, . . . , NK) =
1

KN

(
N

N1, ..., NK

)
, (2)

where the multinomial
(

N
N1,...,NK

)
is the number of distinct microstates that are consistent with

the (constraint-achieving) macrostate. Since, for any given realization sequence, with macrostate
(N1, . . . , NK), we would form the probability estimate as p = (N1

N
, . . . , NK

N
), P (N1, . . . , NK) is also

the probability that we form the probability assignment (N1

N
, . . . , NK

N
). Thus, if we choose (N1, . . . , NK)

to maximize (2), we are determining the probability mass function (p1, p2, . . . , pK) = (N1

N
, . . . , NK

N
)

that we are most likely to produce as an estimate, given the specified constraint information and the
number of die tosses. To maximize (2), one maximizes the multinomial coefficient

(
N

N1,...,NK

)
. Based

on Stirling’s approximation [4],
(

N
N1,...,NK

)
∼ eNH(

N1
N
,...,

NK
N

), with H(·) Shannon’s entropy function.
Accordingly, one can closely approximate maximizing (2) subject to, e.g., a mean value constraint
K∑
i=1

iNi = µ by maximizing Shannon’s entropy function H(N1

N
, . . . , NK

N
) subject to the constraint.

Allowing unconstrained probabilities, rather than fractions of N , this amounts to solving:

max
p1,p2,...,pK

−
K∑
i=1

pi log pi (3)

subject to
K∑
i=1

ipi = µ and
K∑
i=1

pi = 1.

Note, too, that since (2) or its approximate

P (p1, . . . , pK) =
eNH(p1,...,pK)

KN
(4)

is the probability of forming the estimate (p1, . . . , pK), we can use (4) to evaluate the relative likelihoods
of producing different candidate probability assignments, i.e., P (p1,...,pK)

P (p′1,...,p
′
K)

= eN(H(p1,...,pK)−H(p′1,...,p
′
K)).

Thus, the likelihood of the maximum entropy solution, relative to an alternative distribution, grows
exponentially with the entropy difference.

In [1], they acknowledged this statistically-based justification for the maximum entropy distribution,
as applied to the 6-sided Brandeis die problem. Moreover, they motivated the 3-sided die problem
by stating that “suppose a friend later tossed the die many times...”. Thus, their 3-sided die problem
genuinely does consider the scenario where the constraint information was accurately measured, based
on many repeated die tosses. Accordingly, the above interpretation should be applicable to their
3-sided die problem, just as it is to the Brandeis die problem. For the 3-sided die problem, we have
P ( 1

3
, 1
3
, 1
3
)

P ( 1
4
, 1
2
, 1
4
)
= 2N(log2(3)−1.5) ∼ 20.08N . For example, if N = 1000, the ME distribution is more than 1024

times more likely to be produced as the estimate than the proposed distribution from [1]. The only real
assumption in this analysis is that realization sequences (microstates) consistent with a given macrostate
are equally likely.
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In [1], they also stated that “since there is no reason to believe the die is fair, we could consider all
probability distributions that satisfy the constraints in the problem equally probable. That is, we apply
the principle of indifference to the probability values themselves”. While it is true that a priori there is
no reason to believe the die is fair, there is also no evidence to support that all probability distributions
are equally probable given that our only knowledge about the die is the mean value constraint. Applying
a principle of indifference in this way, by [1], imposes a further (rather strong and unjustified) constraint
which, as shown above, leads to a solution 1024 times less probable than the solution built on only the
available evidence. The “least presumptuous” strategy should only consider the mean value constraint
and not impose further constraints. Nevertheless, a different distribution than the ME solution may be
achieved if the principle of indifference is applied correctly; i.e., if it is supported by some evidence or
by available knowledge about the distribution for a particular application.

2.2. Asymptotic Equipartition Principle (AEP) Interpretation

Another related albeit somewhat different vantage point from which to evaluate the two candidate
distributions (1

3
, 1
3
, 1
3
) and (1

4
, 1
2
, 1
4
) is with respect to the asymptotic equipartition principle (AEP) [4].

The AEP considers N independent trials of random draws from a given distribution (p1, p2, . . . , pK).
It defines the ε-typical set A(N)

ε as the set of sequences (x1, . . . , xN) such that 2−N(H(X)+ε) ≤
P (x1, x2, . . . , xN) ≤ 2−N(H(X)−ε). One can show the following [4]:

(1) The cardinality of this set is approximately 2NH(p1,p2,...,pK).

(2) Each sequence in this set is approximately equally likely.

(3) The typical set accounts for nearly all the probability, i.e., the joint pmf P (x1, x2, . . . , xN) is very
nearly approximated as a uniform distribution on all typical sequences, with a zero probability
assignment on all non-typical sequences.

Note that not all sequences that are typical will precisely achieve the mean value constraint. However,
their deviation from the constraint is made arbitrarily small as N gets large. From the perspective of the
AEP, according to the (1

4
, 1
2
, 1
4
) model, there are roughly 21.5N equally likely realizations (each with

self-information very close to H(1
4
, 1
2
, 1
4
)). On the other hand, according to the ME distribution (1

3
, 1
3
, 1
3
),

there are 2N log2(3) equally likely realizations (typical sequences). Note that the sequences that are typical
for (1

4
, 1
2
, 1
4
) are not typical for (1

3
, 1
3
, 1
3
), and vice versa. Thus, in choosing between the distributions, one

is either rejecting 21.5N realizations typical of (1
4
, 1
2
, 1
4
) or 2N log2(3) realizations typical of (1

3
, 1
3
, 1
3
). Again,

forN = 1000, choosing (1
4
, 1
2
, 1
4
) means rejecting more than 1024 times the number of realizations than if

one chooses (1
3
, 1
3
, 1
3
). In the absence of additional information, it seems one should reject the hypothesis

that contains (far) fewer realizations that are (approximately) consistent with the measured constraints.
Again, from this vantage, the ME solution is preferred.

2.3. The Bayesian Learning Analysis from [1]

The authors in [1] sought to independently validate the (1
4
, 1
2
, 1
4
) distribution by considering a Bayesian

learning setting, starting from an uninformative Dirichlet prior on the probabilities. Here, they imposed
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the mean value constraint, fixed N1 = N3, and assumed all (N1, N2) configurations consistent with
satisfying the mean value constraint to be equally likely. They then let N → ∞ and evaluated the
conditional probability of die value 2, which they found to be 0.5. While this analysis does appear to
support the proposed (1

4
, 1
2
, 1
4
) distribution, a concern with this analysis is the consistency between letting

N → ∞ and the assumption that all (N1, N2) configurations meeting the constraint are equally likely.
Specifically, by the weak law of large numbers, as N →∞, N1

N
→ P1 and N2

N
→ P2 with probability 1,

i.e., the assumption of equally likely macrostate pairs appears to be incompatible with letting N →∞.

2.4. Encoding Additional Constraints

Objectively, it is of course possible that the true distribution (used to randomly generateN realizations
and achieve a mean value of 2) is the (1

4
, 1
2
, 1
4
) distribution. This would be revealed within the ME

framework if we imposed one additional constraint. Specifically, if, in addition to the mean value

constraint, we imposed the second moment constraint
3∑
i=1

i2pi = 4.5, the (unique) ME distribution is

indeed the (1
4
, 1
2
, 1
4
) distribution. Thus, ME is not incompatible with the (1

4
, 1
2
, 1
4
) distribution. It is simply

producing the “best” distribution given whatever accurate constraint information is made available.

3. Open Problems for Maximum Entropy

While we believe (as exposited here) that ME is an objectively supported method for estimating
probabilities given supplied constraints, one open problem is perhaps how to properly account for
inaccuracies that may exist in the measured constraints. Constraints in the ME framework are usually
in the form of expectations, but since in practice the true values of expectations are not known, they
are often estimated by sample averages from (observed) data. For example, in the problem discussed in
this letter, µ = E[X] is replaced by its sample-based estimate µ̂ =

∑
i i
Ni

N
. That is, expectations taken

with respect to the ME distribution are constrained to agree with empirical averages, rather than with
the true expectations. This may cause overfitting if the sample size is not large enough and, thus, if the
expectations are poorly estimated. [5] proposed a framework to address this problem by relaxing strict
constraint satisfaction. This approach may be problematic for applications where multiple constraints
of different orders are imposed, with each constraint estimated based on a different sample size. For
example, for a die experiment, the mean constraint is estimated based on the full set of N trials, whereas
a conditional probability constraint such as P (X = 6|X ≥ 3) would be based on a smaller sample
size. Consider also [6], where joint probability constraints, from pairwise probabilities up to fifth order,
were encoded, in learning ME conditional probability models. It appears that a principled framework,
properly accounting for varying degrees of constraint inaccuracy (based, e.g., on different sample sizes
used to measure the constraints) is still needed.

Another open problem for maximum entropy is to determine a systematic procedure to search over
all possible constraints and impose the most relevant ones for any particular problem. Especially for
high-dimensional problems and domains where there is a lack of expert knowledge of the most suitable
constraints, we need to objectively determine the relevant constraints to impose. There have been some
efforts to address this issue. For instance, [7] described an iterative procedure to decide which constraints
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to impose, applied to a natural language processing task. Also, [6] used the Kullback distance and the
Bayesian Information Criterion to choose relevant constraints and applied this approach to the analysis
of genome-wide association study. Nevertheless, it may be fruitful to further investigate alternative
approaches for this problem.

4. Conclusions

In this letter, we elaborated on some of the issues raised by a recent paper [1] concerning the maximum
entropy (ME) principle and alternative principles for estimating probabilities consistent with known,
measured constraint information. We have argued that the ME solution for the “problematic” example
introduced in [1] has stronger objective basis than their alternative proposed solution. We also noted
some open problems involving maximum entropy statistical inference.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Neapolitan, R.E.; Jiang, X. A note of caution on maximizing entropy. Entropy 2014, 16,
4004–4014.

2. E. T. Jaynes: Papers on Probability, Statistics and Statistical Physics; Rosenkrantz, R.D., Ed.;
D. Reidel: Dordrecht, The Netherlands, 1982.

3. Rotar, V. Probability and Stochastic Modeling; CRC Press: Boca Raton, FL, USA, 2013.
4. Cover, T.M.; Thomas, J. Elements of Information Theory; Wiley: New York, NY, USA, 2006.
5. Dudik, M.; Phillips, S.J.; Schapire, R.E. Performance guarantees for regularized maximum entropy

density estimation. In Proceedings of the 17th Annual Conference on Computational Learning
Theory, Banff, Canada, 1–4 July 2004; pp. 472–486.

6. Miller, D.J.; Zhang, Y.; Yu, G.; Liu, Y.; Chen, L.; Langefeld, C.D.; Herrington, D.; Wang, Y. An
algorithm for learning maximum entropy probability models of disease risk that efficiently searches
and sparingly encodes multilocus genomic interactions. Bioinformatics 2009, 25, 2478–2485.

7. Berger, A.L.; Pietra, V.J.D.; Pietra, S.A.D. A maximum entropy approach to natural language
processing. Comput. Linguist. 1996, 22, 39–71.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	On Objective Bases For Preferring One Probability Assignment Over Another
	``Most Probable'' Interpretation of Maximum Entropy
	Asymptotic Equipartition Principle (AEP) Interpretation
	The Bayesian Learning Analysis from Neapolitan
	Encoding Additional Constraints

	Open Problems for Maximum Entropy
	Conclusions

