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Abstract: In this paper, a new color image encryption algorithm based on a fractional-order 

hyperchaotic system is proposed. Firstly, four chaotic sequences are generated by a 

fractional-order hyperchaotic system. The parameters of such a system, together with the 

initial value, are regarded as the secret keys and the plain image is encrypted by performing 

the XOR and shuffling operations simultaneously. The proposed encryption scheme is 

described in detail with security analyses, including correlation analysis, histogram analysis, 

differential attacks, and key sensitivity analysis. Experimental results show that the proposed 

encryption scheme has big key space, and high sensitivity to keys properties, and resists 

statistical analysis and differential attacks, so it has high security and is suitable for color 

image encryption. 
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1. Introduction 

With the rapid development of the Internet and multimedia technology, multimedia communication 

has become an important issue. According to the statistics of the US National Security Agency, image 

information accounts for over 70% of the total information, and it is the principal means of information 

exchange between people, therefore, the security and confidentiality of image information are becoming 

increasingly important, and image encryption has become a research hotspot in the field of information 

security. Each pixel of an original color image is composed of three basic colors—R, G, and B. Compared 

with gray images, color images provide more information and attract more attention. 

Chaos arises from deterministic nonlinear systems. As is well known, chaotic systems possess several 

intrinsic characteristics, such as extreme sensitivity to initial conditions, broadband power spectrum, and 

random-like behaviors. Owing to the abovementioned characteristics, chaos has been applied to a variety 

of disciplines and the most promising application of chaos is in secure communication. In recent years,  

a number of scholars have proposed several image encryption methods based on chaotic systems [1–6]. 

However, as the authors in [7,8] pointed out, low-dimensional chaotic sequences have many 

problems, for example, the password cycle is short and low accuracy, and therefore, the security of the 

image encryption algorithm is difficult to guarantee. A hyperchaotic attractor can show richer dynamic 

phenomena, and the randomness is higher compared with the chaotic attractor. Therefore, encryption 

algorithms based on hyperchaotic systems have become a research focus in recent years [9–15] On the 

other hand, fractional chaotic systems have potential applications in chaotic secure communication. 

Compared with integer-order chaotic systems, fractional chaotic systems show higher nonlinearity and 

more degrees of freedom in the models due to the existence of fractional derivatives. Thus, a fractional 

chaotic system has a bigger key space and an encrypted system using a fractional-order chaotic attractor 

is more difficult to copy [6,16]. 

A neural network system is substantially a nonlinear dynamical system that possesses complex 

chaotic characteristics. Moreover, the fractional-order hyperchaotic neural network system has the 

advantages of complex structure, large secret key space, etc. [17]. Motivated by the abovementioned 

reasons, a new color image encryption algorithm on the basis of a fractional-order hyperchaotic neural 

network system is proposed in this paper. In the traditional image encryption methods, the image cannot 

fully diffuse among the keys, however, the newly-proposed encryption algorithm can overcome this 

shortcoming. The algorithm can effectively resist statistical attacks, brute force attacks and possesses 

higher security. 

This paper is organized as follows: in Section 2, the fractional-order hyperchaotic neural network 

system is introduced. A new color image encryption algorithm is developed in Section 3. The 

experimental results, analysis, and comparison are presented in Section 4. Finally, Section 5 concludes 

the paper. 
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2. Hyperchaotic System 

The model of a fractional-order four-cell neural network system is described by [17]: 
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where ( ) (| 0.4 | | 0.8 | | 0.4 | | 0.8 |)g w w w w w w= − − − − − + + +  , ( )t iD x tα   represents the fractional 

derivative which is defined by Caputo definition [18–20] and α  represents the derivative order. The 

numerical method used for solving system (1) is described in [21]. 
The initial value is set as (0.1,0.1, 0.1,0.1)T− . When 0.97α = , the Lyapunov exponent of system (1) 

can be calculated as LE1 = 0.2187, LE2 = 0.0828, LE3 = 0, LE1 = −85.2329. The two positive Lyapunov 

exponents show that system (1) is hyperchaotic, and the hyperchaotic attractors are shown in Figure 1. 

 

Figure 1. Phase portraits of system (1) when 0.97α = . 

3. Encryption Algorithm 

In this paper, the plain image is the color image which is 256 256 3× × , denoted by E . The color 

image is composed of three primary colors R, G, B, which are expressed by the three monochromatic 
images, denoted by RE , GE , BE , and (:,:,1)RE E= , (:,:, 2)GE E= , (:,:,3)BE E= . The encryption 

process can be described by the following step-by-step procedure: 

Step 1: Produce four chaotic sequences n n n{ } {y } {z } {w }nx , , ,  with the hyperchaotic system (1), where 

1, 2, 3, ,n M N= × , M N×  represents the numbers of pixels to be encrypted. Update n{w }  by: 

( )10 1010 10i i iw w Round w= × − ×  (2)

where the function ( )Round ⋅  is to rounded to the nearest integer. 
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Step 2: Expand RE , GE , BE  to one-dimensional row vectors ER , EG , EB  with length M N× . Let

( )14= 10 mod 6iselE x × , ( )14= 10 mod3iselLen z × . Local scrambling rules depend on the values of 

( )selE i . For example, if ( ) =3selE i , the pixel value beginning from pos  with length in ER  is replaced 

by the corresponding value in EB . Similarly, the pixel value beginning from pos with length in EG  is 

replaced by the corresponding value in ER ; the pixel value beginning from pos  with length in EB  is 

replaced by the corresponding value in EG . The replacement rules are shown in Table 1, where R, G, 

B represent the diagram layers of the color components of the plain image. 

Table 1. The local scrambling replacement rules. 

 
 
 

According to the above rules, the length of next local scrambling (1 64length≤ ≤ ) is determined by 

the value of ( )selLen i  as follows: 

( )( )( )= : 1 mod 64 1length sum ER pos pos length+ − + , if ( ) =0selLen i ; 

( )( )( )= : 1 mod 64 1length sum EG pos pos length+ − + , if ( ) =1selLen i ; 

( )( )( )= : 1 mod 64 1length sum EB pos pos length+ − + , if ( ) =2selLen i . 

Step 3: Continue to step 4 if 1pos length M N+ − ≤ × , otherwise, execute step 6. 

Step 4: Sort the M N×   values of chaotic sequences n{y } in descending order. Use IY   to denote the 

positional index of the corresponding elements in the original chaotic sequence. Chaotic sequences 

n n{z } {w },  can be handled in the same way, and we use IZ , IW  to record the positional index in the 

original chaotic sequences. Rearrange the elements of , ,ER EG EB , by using , ,IY IZ IW . Namely, ER(j) 

= ER(IY(j)), EG(j) = EG(IZ(j)), EB(j) = EB(IW(j)), where j = 1, 2, 3,…, M N× . The scrambling of plain 

images is thus completed. 
Step 5: Let SX = round((xi) × 1014)mod256, SY = round((yi) × 1014)mod256, SZ = round((zi) × 1014)mod256. 

Use SX , SY , SZ  to execute diffusion transformation for pixel values after scrambling: 

( ) ( ) ( ) ( ){ } ( )mod 256 1HR k SX k ER k SX k HR k= ⊕ + ⊕ −    

( ) ( ) ( ) ( ){ } ( )mod 256 1HG k SY k EG k SY k HG k= ⊕ + ⊕ −    

( ) ( ) ( ) ( ){ } ( )mod 256 1HB k SZ k EB k SZ k HB k= ⊕ + ⊕ −    

where ( )ER k , ( )EG k , ( )EB k  are pixel values after scrambling encryption. ( )HR k , ( )HG k , ( )HB k  

are pixel values after diffusion transformation. ( )-1HR k , ( )-1HG k , ( )-1HB k  are values after diffusion 

transformation of the former pixel. ( ) ( )0CR SX M N= × , ( ) ( )0CG SY M N= × , ( ) ( )0CB SZ M N= × , 

1, 2,3, ,k M N= × . 

Step 6: Replace the three vectors HR  , HG  , HB   with length MN   into three M N×   matrices HR′  , 

HG′  , HB′  , ( )3, , ,M cat HR HG HB′ ′ ′=   and combine the three two-dimensional images into a three-

dimensional image. Thus, M  is the encrypted image. The decryption process is just the reverse of the 

encryption process, therefore, we do not describe it. 

( ) 0selE i = , ,R R G G B B→ → → ( ) 3selE i = , ,R B G R B G→ → →
( ) 1selE i = , ,R R G B B G→ → → ( ) 4selE i = , ,R G G B B R→ → →
( ) 2selE i = , ,R G G R B B→ → → ( ) 5selE i = , ,R B G G B R→ → →
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4. Experimental Analysis 

In this section, we provide some experimental results to illustrate the performance of the proposed 
encryption algorithm. We select secret keys with the initial values 300ft = , 0.97α = , 0.005h = , 

0 [0.1,0.1, 0.1,0.1]Tx = − . According to the proposed algorithm, we encrypt the Lena image, and the plain 

image and the corresponding cipher image are depicted in Figure 2a,b. 

 

Figure 2. Experimental results. (a) Plain image (b) Cipher image. 

In order to show that the proposed image encryption algorithm is secure against the most common 

attacks, security analyses are performed, including the correlation between adjacent pixels, distribution 

histogram, differential attack analysis, and the sensitivity of the secret key. 

4.1. Correlation of Adjacent Pixels 

We choose vertical and horizontal directions of the plain image and its ciphered image, and randomly 

select 3000 pairs of adjacent pixels in the opposite angle direction to test the correlation between adjacent 

pixels before and after the encryption. The following formulas are adopted: 

( )
1

1 N

i
i

E x x
N =

=  , (3)

( ) ( ) 2

1

1
( ) ,

N

i
i

D x x E x
N =

= −  (4)

( ) ( )( ) ( )( )
1

1
cov ,

N

i i
i

x y x E x y E y
N =

= − − , (5)

( )
( ) ( )

cov ,
xy

x y

D x D y
ρ = . (6)

( )E x  is the estimation of mathematical expectations of x , ( )D x  is the estimation of variance of x , x  

and y  are the values of two adjacent pixels in the image, N  is the total number of pixels selected from 

the image. Each pixel in an ordinary image is highly correlated with its adjacent pixels either in 
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horizontal or vertical. An ideal encryption design should produce cipher images with no such correlation 

to the adjacent pixels. We compute the correlation coefficients for horizontally and vertically adjacent 

pixels, respectively. Figure 3 shows the correlation of the plain image and the cipher image. It can be 

easily found that the correlation of the initial image is an obvious linear relationship, whereas the 

correlation of the cipher image shows a stochastic relationship. Table 2 shows the vertical and horizontal 

correlation of the plain image and the cipher image. The results show that the correlation coefficients of 

the plain image are all close to 1. However, the correlation coefficients of the cipher image is close to 0. 

This indicates that the proposed encryption algorithm possesses high security against statistical attacks. 

 

Figure 3. Horizontal and vertical correlation of the plain image and the cipher image. (a) 

horizontal correlation of the plain image (R); (b) horizontal correlation of the cipher image 

(R); (c) horizontal correlation of the plain image (G); (d) horizontal correlation of the cipher 

image (G); (e) horizontal correlation of the plain image (B); (f) horizontal correlation of the 

cipher image (B). 
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Table 2. Correlation coefficients of the plain image and cipher image. 

Direction 
Plain image Cipher image 

Red Green Blue Red Green Blue 

Horizontal 0.9420 0.9406 0.8971 0.0085 −0.0157 0.0054 

Vertical 0.9669 0.9725 0.9450 0.0079 0.0002 0.0072 

Diagonal 0.9185 0.9120 0.8517 0.0167 0.0081 0.0034 

4.2. Histogram of the Image 

The comparison of the distribution histogram before and after the encryption is as follows. From 

Figure 4, we can see that the histograms of the encrypted image are fairly uniform and significantly 

different from the histograms of the original image and hence they do not provide any clues that could 

be employed for any statistical analysis attack on the encrypted image. 

 

Figure 4. Histogram of the plain image and the encrypted image. (a)‒(c) Histograms of the 

plain R, G and B images, respectively; (d)‒(f) Histograms of the cipher R, G and B images, 

respectively. 

4.3. Differential Attack Analysis 

In order to obtain the correlation of the plain image and the cipher image, an attacker often makes a 

small alteration in the plain image to observe the change in the resulting cipher image. This attack is 

called the differential attack. If an encryption algorithm can guarantee that the cipher image undergoes 

a substantial change if the plain image undergoes a small change, then such an encryption algorithm 

would be good against differential attacks. Number of Pixels Change Rate (NPCR) [22] and Unified 

Average Changing Intensity (UACI) [23] are two common quantitative measures, which are defined as: 
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where M and N mean the width and height of the image, ( ), , ,R G BC i j   and ( ), , ,R G BC i j′   are the initial 

ciphered image and the ciphered image that is changed some grey level of the pixels. Matrix ( ), , ,R G BD i j  

is defined as: if ( ) ( ), , , ,, ,R G B R G BC i j C i j′= , then ( ), , , =0R G BD i j , otherwise, ( ), , , =1R G BD i j . 

The test results of NPCR and UACI are shown in Table 3. They indicate that compared with  

some existing algorithms, the proposed algorithm could effectively resist plain text attacks and 

differential attacks. 

Table 3. NPCR and UACI for different encryption algorithms. 

Encryption algorithm NPCR(%) UACI(%) 

The proposed algorithm  99.6013 33.4134 
Ref. [24] 99.5207 26.7948 
Ref. [25] 99.5946 33.3756 
Ref. [26] 99.2173 33.4055 

4.4. Key Sensitivity Analysis 

A good cryptosystem should be sensitive to the secret keys. That is to say, if the attacker uses two 

slightly different keys to decrypt the same plain image, the two encrypted images should be completely 

independent of each other. We test the key sensitivity by using one of the keys, which is a little different 
from the original one. If we take 0 0.10000000001x =  to decipher and 0 0.10000000000y = , 

0 0.10000000000z = − , 0 0.10000000000w =  remain the same. 

 

Figure 5. Wrong decryption result. 

The resulting decrypted image is shown in Figure 5. Obviously, the decrypted image produced by 

using a slightly different key is completely different from the original one shown in Figure 2a. When the 

decryption operator has only 1010−  deviation, the decryption result has a great deviation with the original 
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image. The key space for this encryption algorithm is ( )7010O , which is greater than that of the 

algorithm proposed in [6,26]. For a computer with a computation speed of 1 quadrillion operations per 

second, the decryption time would be 54 4610 3.17 10s ≈ ×  years. Therefore, large-scale exhaustive 

searches are useless for this kind of encryption algorithm. This suggests that the proposed algorithm has 

higher security. 

5. Conclusions 

In this paper, a novel encryption algorithm based on a fractional-order hyperchaotic system which 

can effectively enhance the cryptosystem security is presented. The scheme is described in detail. 

Security analyses, including correlation analysis, histogram analysis, and key sensitivity analysis are 

carried out to verify the security of the proposed encryption scheme. The experimental results 

demonstrate that the encryption algorithm has high security. 
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