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Abstract: The 14 moments model for dense gases, introduced in the last few years by
Arima, Taniguchi, Ruggeri and Sugiyama, is here extended up to 18 moments. They have
found the closure of the balance equations up to a finite order with respect to equilibrium; it
is also possible to impose for that model the entropy and Galilean relativity principles up to
whatever order with respect to equilibrium, but by using Taylor’s expansion. Here, the exact
solution is found, without expansions, but a bigger number of moments has to be considered
and reasons will be shown suggesting that this number is at least 18.
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1. Introduction

A new model for dense gases is here considered in the framework of extended thermodynamics. Some
of the original papers on this subject are [1,2] (see, also, the book [3] for a complete description), while
more recent papers are [4–18], and the theory has the advantage of furnishing hyperbolic field equations,
with finite speeds of propagation of shock waves and very interesting analytical properties.

It starts from a given set of balance equations, where some arbitrary functions appear; restrictions on
this arbitrariness are obtained by imposing the entropy principle and the relativity principle.
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This model was applied also to dense gases, for example, by Kremer [19–26], by imposing, up to a
finite order with respect to equilibrium, the conditions that come from the above principles; subsequently,
in [27,28], an exact non approximated solution of these same conditions has been found for the 14
moments model. A model with an arbitrary number of moments has been considered in [11], where the
form of the closure was suggested by the non-relativistic limit of the corresponding relativistic model,
and also in this case, an exact non-approximated solution of these same conditions has been found. An
interesting aspect of that solution is that, ifwe try a transition to subsystems, following the procedure of
[29], then the result will be different from that obtained by starting from the beginning in that subsystem.
To be more precise, for every possible choice of two integer numbers,N andM , the article [11] describes
a possible model; for a particular choice of M and N , the resulting model is the 14 moments one, but
this does not mean that it is a subsystem. It would be a subsystem only if, starting from greater values of
M and N and, then, putting to zero the last Lagrange multipliers, we could obtain the 14 moments one.

In [30], it was supposed that this was a consequence of a bad choice of the hierarchy structure of
the balance equations, and another hierarchy was formulated. In the present article, we adopt the same
hierarchy of [30], but obtain the same consequence, that is no continuity in the transition to subsystems.
However, we think that this is not a defect of the theory, but only a property of the general solution that
we find. It may be interpreted as a resistance of nature to the transition to subsystems, in the sense that if
we start from a particular subsystem, then it is necessary to remain in that subsystem; but this may seem
metaphysical, so we prefer to refrain from expressing this convincement.

We only want to remark that this is a property of the present non-approximated solution and not of the
model; in fact, if we look for the Taylor’s expansion of the solution around equilibrium, then the passage
can be obtained by the Taylor’s expansion of the closure for subsystems.

Obviously, it is now necessary to speak about the new model [30], which inspired many other
subsequent articles, a restricted part of which are [31–41].

In the previous formulation of the theory, the restrictions imposed by the entropy principle and the
Galilean relativity principle were so strong, to allow only particular state functions; for example, the
function p = p(ρ, T ) relating the pressure p with the mass density ρ and the absolute temperature T was
determined, except for a single variable function, so that it was adapted to describe only particular gases
or a continuum.

This drawback has been overcome in [30] by considering two blocks of balance equations; for
example, in the 18 moments case, which we treat here, they are:

∂tF
N + ∂kF̃

kN = PN , (1)

∂tG
E + ∂kG̃

kE = QE (2)

where FN = (F, F i, F ij, F ill), GE = (G,Gi, Gll), F̃ kN = (F k, F ki, F kij, F kill),

G̃kE = (Gk, Gki, Gkll), PN = (0, 0, P ij, P ill), QE = (0, Qi, Qll).
The first two components of PN are zero, because the first two components of Equation (1) are

the conservation laws of mass and momentum; the first component of QE is zero, because the first
component of Equation (2) is the conservation law of energy. The whole block (2) can be considered an
“energy block”, and it was not considered in the previous version of extended thermodynamics.
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The difference between the two blocks, F and G, can be better understood by considering their
counterparts in the kinetic theory of polyatomic gases, as described in [31]. It can be synthesized as
follows: In the previous models, the distribution function was considered to depend on position, time
and velocity; the moments were obtained by multiplying it by polynomial functions of the velocity and
then integrating with respect to velocity in the phase space. Here, it depends also on the internal energy
I of a molecule, and integration is necessary also over I for I ∈] − ∞ , +∞[. By multiplying it by
polynomial functions of the velocity and then integrating it in that four-dimensional space, we obtain the
block (1) for the variables F . By multiplying it by 2I and the power of the velocity and then integrating,
we obtain new variables V E; after that, the block (2) is constituted by GE = V E + F llE (the necessity
of this sum lies in the fact that, for example, we have the conservation of total energy, that is internal
energy and kinetic energy).

The importance of many moments lies in the fact that the moments theory truncated at a given number
of moments can be considered as an approximation of the Bhatnagar–Gross–Krook (BGK) equation
(which is similar to the Boltzmann equation); consequently, extending the number of moments increases
the goodness of the approximation.

The 14 moments model of [30] considers only a part of Equations (1,2), avoiding considering those
for F ill and Gll. However, if we want to extend to this model the methods of [11], we have to consider as
the last equation a scalar one, such as that forGll. On the other hand, the closure of the balance equations
cannot be chosen arbitrarily, but according to the Galilean relativity principle, in the manner suggested
in Section 4 of [31]. A consequence of this fact is that we cannot consider an equation for Gll without
considering an equation also for F ill. In effect, the principle would not be violated if we consider also
an equation for F ppll, but in this case, we would obtain a 19 moments model. Therefore, if we want to
put together the necessities of the method used in [11] with the restrictions of [31], we have to consider a
number of moments that is at least 18. Furthermore, with six moments, we can obtain an exact solution,
but this is already known in the literature.

At this moment, it is convenient to clarify the differences between some of the above mentioned
models. The 14 moments system of [11] is the same as that introduced by Kremer [19–22], except that
in [11], the solution of the conditions is an exact solution not using Taylor’s expansions. All of them
belong to the time when the two-block hierarchy of [30] was not introduced or was not fully known.
Therefore, they are completely different from the 14-moment system of [30].

Now, for the sequel, it is useful to rewrite Equations (1,2) in a more compact form as:

∂tF
A + ∂kF̃

kA = PA, (3)

where FA = (FN , GE), F̃ kA = (F̃ kN , G̃kE), PA = (PN , QE).
In the whole set (3), FA are the independent variables, while F̃ kA, PA are constitutive functions.

Restrictions on their generalities are obtained by imposing:

(1) The entropy principle, which guarantees the existence of an entropy density h and an entropy flux
hk, such that the equation:

∂th+ ∂kh
k = σ ≥ 0, (4)

holds whatever is the solution of Equation (3).
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Thanks to Liu’s theorem [42], this is equivalent to assuming the existence of Lagrange multipliers
µA, such that:

d h = µAdF
A, (5)

d hk = µAd F̃
kA (6)

σ = µAP
A ≥ 0 . (7)

An idea conceived by Ruggeri is to define the four-potentials h′, h′k as:

h′ = µAF
A − h, h′k = µAF̃

kA − hk, (8)

so that Equations (5, 6) become:

d h′ = FAd µA, d h′k = F̃ kAd µA ,

which are equivalent to:

FA =
∂h′

∂µA
, (9)

F̃ kA =
∂h′k

∂µA
, (10)

if the Lagrange multipliers are taken as independent variables. A nice consequence of Equations
(9, 10) is that the field equations assume the symmetric form.
We note that (7) is the only condition that we have for the production terms PA in the framework
of a macroscopic approach, apart for the fact that they are zero at equilibrium. For example, we
may write their expressions at the first order with respect to equilibrium; after that, (7) will give
the sign of the coefficients.

In the framework of kinetic theory, they can be obtained with integrations involving the distribution
function; to this regard, we refer to [30–33], because we have nothing more to say than those
results, in this regard.

Other restrictions are given by

(2) The symmetry conditions, that is the second component of FN is equal to the first component of
F̃ kN and the second component of F̃ kN is a symmetric tensor.

More restrictive conditions may be to impose that the flux in an equation becomes a density in the
next equation, but this will lead to less general results, so we prefer not to impose it, as also other
authors have done so in the past. In any case, they can be imposed subsequently if requested by the
particular physical application under consideration. Similarly, we may impose also the symmetry
of the tensors F̃ kij and G̃ki, but this has not been imposed in [30] in order to obtain more general
results; so, we do the same thing.

Thanks to Equations (9,10), the above-mentioned symmetry conditions, which we want to impose,
assume the form:

∂h′

∂µi
=
∂h′i

∂µ
, (11)

∂h′[i

∂µj]
= 0 , (12)
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where we have assumed the decomposition µA = (µ, µi, µij, µill, λ, λi, λll) for the Lagrange
multipliers. Moreover, µij is a symmetric tensor.

The next conditions come from

(3) The Galilean relativity principle.

We prefer to devote an entire section, the next one, to describe how to impose this principle. We only
remark here that we impose it, combined with the entropy principle, not in the common way [3], but
using the methods described in [43]. Therefore, the present article proves also that those methods can be
naturally extended to the new two-block set of balance equations.

The result will be that the four-potentials h′ and h′k must satisfy the following set of linear partial
differential equations:

∂h′

∂µ
µi + 2

∂h′

∂µa
(µai + δaiλ) +

∂h′

∂µab
(2δi(aµb)ll + µillδab + 2λ(aδb)i) + (13)

+2
∂h′

∂µill
λll +

∂h′

∂λ
λi + 2

∂h′

∂λi
λll = 0 .

∂h′k

∂µ
µi + 2

∂h′k

∂µa
(µai + δaiλ) +

∂h′k

∂µab
(2δi(aµb)ll + µillδab + 2λ(aδb)i) + (14)

+2
∂h′k

∂µill
λll +

∂h′k

∂λ
λi + 2

∂h′k

∂λi
λll + h′δik = 0 .

In Section 3 of the present article, we find the general solution of the condition (13,14).
In Section 4, we will see the general solution of the condition (11,12).

2. The Galilean Relativity Principle

There are two ways to impose this principle. One of these is to decompose the variables FA, F̃ kA,
PA, µA in their corresponding non-convective parts F̂A, ˆ̃F kA, P̂A, µ̂A and in velocity-dependent parts,
where the velocity is defined, in terms of the field FA, by:

vi = F−1F i. (15)

This decomposition can be written as:

FA = XA
B(~v)F̂

B, F̃ kA − vkFA = XA
B(~v)

ˆ̃F kB, PA = XA
B(~v)P̂

B, (16)

h′ = ĥ′, h′k − vkh′ = ĥ′k, µ̂A = µBX
B
A(~v),

where:

XA
B(~v) =



1 0 0 0 0 0 0

vi δia 0 0 0 0 0

vivj 2v(iδ
j)
a δi(aδ

j
b) 0 0 0 0

v2vi v2δia + 2viva 2δi(avb) + viδab δia 0 0 0

v2 2va 0 0 1 0 0

v2vi v2δia + 2viva 2δi(avb) 0 vi δia 0

v4 4v2va 4vavb + v2δab 2va v2 2va 1


. (17)
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After that, all of the conditions are expressed in terms of the non-convective parts of the variables.
This procedure is described in [1,3] for the case considering only the block (1) and is followed in [30]

for the whole set (1,2).
Another way to impose this principle leads to easier calculations; it is described in [43] for the case

considering only the the block (1) (but, it was already used in [44–46]), and here, we show how it is
adapted also for the whole set (1,2).

First of all, we need to know the transformation law of the variables between two reference frames
moving with respect to each other with a translational motion with constant translational velocity ~vτ . To
know it, we may rewrite (16) in both frames, that is:

FA
a = XA

B(~va)F̂
B, (18)

F̃ kA
a − vkaFA

a = XA
B(~va)

ˆ̃F kB, (19)

h′a = ĥ′, (20)

h′ka − vkah′a = ĥ′k, (21)

µ̂A = µaBX
B
A(~va), (22)

FA
r = XA

B(~vr)F̂
B, (23)

F̃ kA
r − vkrFA

r = XA
B(~vr)

ˆ̃F kB, (24)

h′r = ĥ′ (25)

h′kr − vkrh′r = ĥ′k, (26)

µ̂A = µrBX
B
A(~vr), (27)

where index a denotes quantities in the absolute reference frame and index r denotes quantities in the
relative one; F̂B, ˆ̃F kB, ĥ′, ĥ′k, µ̂B do not have the index a, nor the index r, because they are independent
of the reference frame.

Now, we can use a property of the matrix XA
B(~v), which is a consequence of its definition (17) and

reads:

XC
A(−~v)XA

B(~v) = δCB . (28)

Therefore, we may contract (23,24) with XC
A(−~vr), so obtaining:

F̂C = XC
A(−~vr)FA

r ,
ˆ̃F kC = XC

A(−~vr)(F̃ kA
r − vkrFA

r )

which can be substituted in (18,19). The result is:

FA
a = XA

B(~va)X
B
C(−~vr)FC

r , F̃ kA
a − vkaFA

a = XA
B(~va)X

B
C(−~vr)(F̃ kC

r − vkrFC
r ) . (29)

Now, we use another property of the matrix XA
B(~v), which is a consequence of its definition (17) and

reads:

XA
B(~u)X

B
C(~w) = XA

C(~u+ ~w). (30)

Moreover, we use the well-known property:

~va = ~vr + ~vτ . (31)
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In this way, Equation(29) becomes:

FA
a = XA

C(~vτ )F
C
r , (32)

F̃ kA
a − vkaFA

a = XA
C(~vτ )F̃

kC
r − vkrXA

C(~vτ )F
C
r (33)

In Equation (33), we can substitute XA
C(~vτ )F

C
r from Equation (32), so that it becomes:

F̃ kA
a − vkτFA

a = XA
C(~vτ )F̃

kC
r . (34)

Finally, we deduce ĥ′, ĥ′k and µ̂A from (25,26,27) and substitute them in (20,21,22), so obtaining:

h′a = h′r, (35)

h′ka − vkτh′ = h′kr , (36)

µrC = µaBX
B
C(~vτ ), (37)

where, for the last one, we have also used a contraction with XA
C(−~vr).

Equations (32), (34), (35,36,37) give the requested transformation law between the two reference
frames, and it is very interesting that it looks like Equation (16).

Now, if the Lagrange multipliers are taken as independent variables, Equation (37) is only a change
of independent variables from µaB to µrC , while (32), (34), (35,36) are conditions, because they involve
constitutive functions:

FA
a = FA(µaB), (38)

F̃ kA
a = F̃ kA(µaB), (39)

h′a = h′(µaB), (40)

h′ka = h′k(µaB), (41)

FA
r = FA(µrB), (42)

F̃ kA
r = F̃ kA(µrB), (43)

h′r = h′(µrB) (44)

h′kr = h′k(µrB), (45)

where the form of the functions FA, F̃ kA, h′, h′k does not depend on the reference frame for the Galilean
relativity principle. If we substitute µaB from Equation (37) in (38,39,40,41) and then substitute the result
in (32), (34), (35,36), we obtain:

FA(µrCX
C
B(−~vτ )) = XA

C(~vτ )F
C
r , (46)

F̃ kA(µrCX
C
B(−~vτ ))− vkτXA

C(~vτ )F
C
r = XA

C(~vτ )F̃
kC
r (47)

h′(µrCX
C
B(−~vτ )) = h′r (48)

h′k(µrCX
C
B(−~vτ ))− h′vkτ = h′kr . (49)

These expressions calculated in viτ = 0 are nothing more than Equations (42,43,44,45), as we expected.
However, for the Galilean relativity principle, they must be coincident for whatever value of viτ ; this
amounts to saying that the derivatives of (46,47,48,49) with respect to viτ must hold.
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This constraint can be written explicitly more easily if we take into account that µrCX
C
B(−~vτ ) = µaB,

which can be written explicitly by use of (17) and reads:

µa = µr − µriviτ + µrijv
i
τv

j
τ − v2τviτµrill + λrv2τ − λriviτv2τ + λrllv

4
τ , (50)

µah = µrh − 2µrihv
i
τ + (v2τδ

i
h + 2viτv

τ
h)µ

r
ill − 2λrvτh + λri (v

2
τδ
i
h + 2viτvτh)− 4v2τv

τ
hλ

r
ll ,

µahk = µrhk − (2δi(hv
τ
k) + viτδhk)µ

r
ill − 2λrivτ(hδ

i
k) + (4vτhv

τ
k + v2τδhk)λ

r
ll ,

µahll = µrhll − 2vτhλ
r
ll ,

λa = λr − λriviτ + v2τλ
r
ll ,

λah = λrh − 2vτhλ
r
ll ,

λall = λrll ,

from which:

∂µa

∂viτ
= −µai ,

∂µah
∂viτ

= −2µaih − 2λaδhi,
∂µahk
∂viτ

= −2λa(hδk)i − 2δi(hµ
a
k)ll − µaillδhk, (51)

∂µahll
∂viτ

= −2δihλall ,
∂λa

∂viτ
= −λai ,

∂λah
∂viτ

= −2λallδhi ,
∂λall
∂viτ

= 0 .

Consequently, the derivatives of (48,49) with respect to viτ become (13,14), where we have omitted
index a denoting variables in the absolute reference frame, because they remain unchanged if we change
viτ with −viτ , that is if we exchange the absolute and the relative reference frames.
It is not necessary to impose the derivatives of (46,47) with respect to viτ , because they are consequences
of (13,14) and (9,10). Consequently, the Galilean relativity principle amounts simply to the two
equations, (13,14).

Therefore, we have to find the most general functions satisfying them. After that, we have to use
Equation (9) to obtain the Lagrange multipliers in terms of the variables FA. By substituting them in
(10) and in h′ = h′(µA), h′k = h′k(µA), we obtain the constitutive functions in terms of the variables
FA. If we want the non-convective parts of our expressions, it suffices to calculate the left-hand side of
Equation (9) in ~v = ~0, so that they become:

F̂A =
∂h′

∂µA
. (52)

>From this equation, we obtain the Lagrange multipliers in terms of F̂A (obviously, they will be µ̂A)
and, after that, substitute them in h′ = h′(µA), h′k = h′k(µA) (the last of which will in effect be ĥ′k) and
into ˆ̃F kA = ∂h′k

∂µA
, that is Equation (10) calculated in ~v = ~0.

It has to be noted that from (15) it follows F̂ i = 0, so that one of the equations (52) is 0 = ∂h′

∂µi
; this

does not mean that h′ does not depend on µi, but this is simply an implicit function defining jointly with
the other equations (52) the quantities µ̂A in terms of F̂A.

By using a procedure similar to that of the paper [43], we can prove that we obtain the same results
of the firstly described approach.
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3. The General Solution of the Conditions Translating the Galilean Relativity Principle

Now, we search the solution of the conditions (13,14), which are equivalent to the Galilean relativity
principle for our model.

By extending to our model the method used in [11] in a different context, we firstly define the
following functions of the Lagrange multipliers and of a generic vector wi:

η = µ+ µiw
i + µijw

iwj + µillw
iw2 + λw2 + λiw

iw2 + λllw
4, (53)

ηa = µa + 2µiaw
i + µill(w

2δia + 2wiwa) + 2λwa + λi(w
2δia + 2wiwa) + 4λllw

2wa,

ηab = µab + µill(2δ
i
(awb) + wiδab) + 2λ(awb) + λll(w

2δab + 4wawb),

ηall = µall + 2λllwa,

L = λ+ λiw
i + λllw

2 ;

It is clear that this definition is built by taking a linear combination of the Lagrange multipliers through
the first five columns of the matrix XA

B introduced in (17), but with (~w) instead of (~v).
As a consequence, from (53), we find the counterpart of (51), that is:

∂η

∂wr
= ηr,

∂ηa
∂wr

= 2ηar + 2L δar,
∂ηab
∂wr

= 2δr(aηb)ll + ηrllδab + 2λ(aδb)r + 4λllw(aδb)r , (54)

∂ηall
∂wr

= 2δarλll,
∂L
∂wr

= λr + 2wrλll .

Let us now insert in (53):

wj = −
λj
2λll

(55)

(we will discuss at the end of this section the presence of λll in the denominator), and let us consider the
result as a change of independent variables from µ, µa, µab, µall, λ, λa, λll to η, ηa, ηab, ηall, L, λa, λll.
Consequently, h′ will be a composite function h′ = H(~η(µA), λa, λll) from which, for the derivation rule
of composite functions, we obtain:

∂h′

∂λr
=
∂H

∂η

∂η

∂λr
+
∂H

∂ηa

∂ηa
∂λr

+
∂H

∂ηab

∂ηab
∂λr

+
∂H

∂ηall

∂ηall
∂λr

+
∂H

∂L
∂L
∂λr

+
∂H

∂λr
.

This expression can be rewritten by using (54) and remembering that ~η depends on λr, whether explicitly
or by means of wj given by (55); so, it becomes:

∂h′

∂λr
=
∂H

∂η

(
wrw2 + ηr

−1
2λll

)
+
∂H

∂ηa

[
w2δra + 2wrwa + (2ηar + 2δarL)

−1
2λll

]
+ (56)

+
∂H

∂ηab

[
2δr(awb) −

1

2λll
(2δr(aηb)ll + ηrllδab + 2δr(aλb) + 4λllδr(awb))

]
+

+
∂H

∂ηall
2λllδar

−1
2λll

+
∂H

∂L

[
wr − 1

2λll
(λr + 2wrλll)

]
+
∂H

∂λr
,
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where overlined terms cancel each other. Similarly, Equation (13) becomes:

0 = µr
∂H

∂η
+ 2(µair + δarλ)

(
∂H

∂η
wa +

∂H

∂ηa

)
+

+(2δr(aµb)ll + µrllδab + 2λ(aδb)r)

(
∂H

∂η
wawb + 2

∂H

∂ηa
wb +

∂H

∂ηab

)
+

+2λll

(
∂H

∂η
wawawr +

∂H

∂ηa
(wbwbδ

r
a + 2wrwa) +

∂H

∂ηab
(2δrawb + δabw

r) +
∂H

∂ηrll

)
+

+λr

(
∂H

∂η
wawa + 2

∂H

∂ηa
wa +

∂H

∂L

)
+ 2λll

∂h′

∂λr
,

with ∂h′

∂λr
given by (56). By using (53), we observe now that the coefficients of ∂H

∂η
, ∂H
∂ηa

, ∂H
∂ηab

, ∂H
∂ηall

, ∂H
∂L

are all zero. Therefore, from the above equations, there remains only ∂H
∂λr

= 0. We may conclude that
the general solution of (13) is:

h′ = H(~η(µA), λll) . (57)

Let us now consider Equation (14).
By defining Hk from:

h′k = Hk +
λk

−2λll
h′ , (58)

it becomes:

∂Hk

∂µ
µr + 2

∂Hk

∂µa
(µar + δarλ) +

∂Hk

∂µab
(2δr(aµb)ll + µrllδab + 2λ(aδb)r) + (59)

+2
∂Hk

∂µrll
λll +

∂Hk

∂λ
λr + 2

∂Hk

∂λr
λll = 0

(where we have taken into account that h′ satisfies (13)), which is like (13), but with Hk instead of h′.
Therefore, with a similar method, we obtain that the general solution of (14) is:

h′k =
λk

−2λll
H(~η(µA), λll) +Hk(~η(µA), λll) . (60)

Now, it is clear that the present general solution can be used only in the sub-manifold with λll 6= 0.
In order to avoid confusion in the terminology, we remark that this λll is different from that in [29].

In fact, in that article, only the block (1) was considered and λll was the trace of the Lagrange multiplier
with N = ij, and it was different from zero, because it was the Lagrange multiplier of the energy
conservation law. Now, we have two blocks, so that this conservation law is (2) with E = 0; in other
words, the variable λll of [29] corresponds to the variable λ of the present article.

It is not possible to choose λll 6= 0, which derives, as a subsystem, the 14-moment system [30]; in
fact, Equations (13, 14) calculated in the subsystem with µill = 0 become:

∂h′S
∂µ

µi + 2
∂h′S
∂µa

(µai + δaiλ) + 2
∂h′S
∂µai

λa +
∂h′S
∂λ

λi + 2

(
∂h′

∂µill
+
∂h′

∂λi

)
S

λll = 0 .

∂h′kS
∂µ

µi + 2
∂h′kS
∂µa

(µai + δaiλ) + 2
∂h′kS
∂µai

λa +
∂h′kS
∂λ

λi + h′Sδ
ik + 2

(
∂h′k

∂µill
+
∂h′k

∂λi

)
S

λll = 0 ,
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where the index S denotes a quantity calculated in the subsystem. The last term in both equations is not
present if we start from the beginning in the subsystem. Therefore, if λll 6= 0, the linear expression of h′

and h′k with respect to S plays an additional role.
Obviously, this problem does not exist in the case of the near equilibrium state of ETwith more

moments. For the same reason (λll 6= 0), we can say that the six-moment model has an exact solution, but
it cannot be deduced with the subsystems methodology from the present exact solution of the 18-moment
model.

Now, the condition λll 6= 0 is a problem if we try a transition to the subsystem λll = 0, µill = 0

in order to obtain the model in [30]. However, we think that this is not a defect of the theory, but only
a property of the general solution that we find. It exhibits a sort of resistance to be extended also to a
model with less field equations. Another possibility is that subsystems have to be defined in another way
and not simply by putting equal to zero the exceeding Lagrange multipliers; in fact, when people drop
the hierarchy of the balance equations, this does not mean that the subsequent equations are identically
satisfied, but simply that we are doing a necessary approximation. From this point of view, it may be
possible to recover a subsystem by considering the exceeding Lagrange multipliers as functions of the
remainder. However, this is an argument for future research, because it goes far beyond the scope of the
present article.

Another aspect to note is that the above-mentioned sub-manifold does not contain equilibrium if we
define equilibrium as the state with µij = 0, µill = 0, λi = 0, λll = 0. However, there is no necessity
to have λll = 0 at equilibrium!To this end, let us recall the definition of equilibrium in terms of the
Lagrange multipliers as that exposed in [2,3]. It starts from the entropy production σ in (7); now, the
productions PA are zero at equilibrium, so that σ has a minimum at equilibrium for Equation (4). If
we assume that P ij , P ill, Qi, Qll can be taken as part of the independent variables, then the derivatives
of σ with respect to them must be zero at equilibrium, and this implies that µij = 0, µill = 0, λi = 0,
λll = 0. However, it is this last assumption that may be wrong; for example, we may have that P ll

and Qll are proportional at first order with respect to the equilibrium, so that they are not independent
variables!This would imply that λll and µll are not necessarily zero at equilibrium, but only a linear
combination of them. Instead of this, the non-convective parts of µ<ij>, µill, λi are zero at equilibrium,
because this state can be defined also in terms of the moments, and in this case, there are only two scalar
independent variables (besides the velocity); and, for the representation theorems (see [47–55]), every
vectorial function depending on them must be zero, and every second order tensorial function must be
proportional to the identical matrix.

From this point of view, we find further grounds to appreciate the new idea of the two blocks of
equations, exposed in [30], because this allows the presence of two scalar Lagrange multipliers, λll
and µll. Obviously, there is much more to investigate in this aspect, and we leave it also for future
considerations.
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4. The General Solution of the Symmetry Conditions

Now, we search the general solution of the symmetry conditions (11,12). By using (57) and (60),
Equation (11) becomes:

∂H

∂ηB

∂ηB
∂µi

=
λi

−2λll
∂H

∂ηB

∂ηB
∂µ

+
∂H i

∂ηB

∂ηB
∂µ

,

which, by using (53), becomes:

∂H

∂η
wi +

∂H

∂ηi
=

λi

−2λll
∂H

∂η
+
∂H i

∂η
,

or ∂H
∂ηi

= ∂Hi

∂η
, because of Equation (55).

Similarly, by using (60), Equation (12) becomes:

∂H

∂ηB

λ[k

−2λll
∂ηB
∂µi]

+
∂H [k

∂ηB

∂ηB
∂µi]

= 0 ,

which, by using (53), becomes:

∂H

∂η

λ[k

−2λll
wi] +

∂H [k

∂η
wi] +

λ[k

−2λll
∂H

∂ηi]
+
∂H [k

∂ηi]
= 0 ,

or ∂H[k

∂ηi]
= 0, because of Equation (55).

Therefore, we have obtained that the symmetry conditions (11,12) expressed in terms of the new
variables and of the new functions H and Hk become:

∂H

∂ηi
=
∂H i

∂η
,

∂H [i

∂ηj]
= 0, (61)

which are very similar to (11,12). Similarly, if we would impose as a further symmetry condition that
the flux F̃ ij is equal to the density F ij of the subsequent equation, for Equations (9,10), this condition
amounts to:

∂h′

∂µij
=
∂h′i

∂µj
, (62)

which can be expressed in the new functions and new variables as:

∂H

∂ηij
=
∂H i

∂ηj
, (63)

where (61) has been used. Furthermore, in this case, Equations (62) and (63) are very similar. This
similarities were not foregone. In fact, if we would impose as a further symmetry condition that the flux
G̃i is equal to the density Gi of the subsequent equation, for Equations (9,10), this condition amounts to:

∂h′

∂λi
=
∂h′i

∂λ
, (64)

which, by using (57) and (60), becomes:

∂H

∂ηB

∂ηB
∂λi

=
λi

−2λll
∂H

∂ηB

∂ηB
∂λ

+
∂H i

∂ηB

∂ηB
∂λ

; (65)
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but ηB depends on λi both directly, rather than by means of wj; so, by using (53) and (54), we have:

∂η

∂λi
= wiw2 + ηi

−1
2λll

,
∂ηa
∂λi

= w2δia + 2wiwa + (2ηai + 2L δai)
−1
2λll

,

∂ηab
∂λi

= 2δi(awb) + [2δi(aηb)ll + ηillδab + 2λ(aδb)i + 4λllw(aδb)i]
−1
2λll

,

∂ηall
∂λi

= 2δaiλll
−1
2λll

,
∂L
∂λi

= wi + (λi + 2wiλll)
−1
2λll

.

By substituting these in the left-hand side of Equations (65) and (53), (61) and (63) in its right-hand side
(and by using also (55)), it becomes:

∂H i

∂L
=
−1
2λll

{
∂H

∂η
ηi +

∂H

∂ηa
(2ηai + 2δaiL) +

∂H

∂ηab
(2δi(aηb)ll + ηillδab) + 2

∂H

∂ηill
λll

}
, (66)

which is quite different from (64). Other possible symmetry conditions are:

F̃ ill = F ill , that is,
∂h′

∂µill
=
∂h′i

∂µrs
δrs , (67)

G̃ll = Gll , that is,
∂h′

∂λll
=
∂h′i

∂λj
δij , (68)

Symmetry of F̃ kij , F̃ kill and G̃ki, that is,
∂h′[k

∂µi]j
= 0 , (69)

∂h′[k

∂µi]ll
= 0 , (70)

∂h′[k

∂λi]
= 0 . (71)

With the usual passages, we obtain that (67, 69, 70) expressed in terms of the new variables and of the
new functions H and Hk become:

∂H

∂ηill
=
∂H i

∂ηrs
δrs , (72)

∂H [k

∂ηi]j
= 0,

∂H [k

∂ηi]ll
= 0, (73)

while (71, 68) (by using also (61), (63), (66), (72,73)) become:

∂H

∂η[k
ηi] + 2

∂H

∂ηa[k
ηi]a +

∂H

∂ηll[k
ηi]ll = 0 , (74)

∂H

∂ηa
ηa + 2

∂H

∂ηab
(ηab + Lδab) +

∂H

∂ηall
ηall + 2

∂H

∂λll
λll + 3H ++2

∂Ha

∂ηall
λll + 2

∂Ha

∂ηab
ηbll = 0,

where, for the last one, we have used ∂Hk

∂ηkb
= ∂H

∂ηbll
, which is a consequence of (72, 73).

We recall that the functions H and Ha do not depend on λi; it is interesting that also in their
coefficients, the contribution of λi to (61), (63), (66), (72,73), (74) disappeared automatically.
Now, we have enclosed the conditions (63), (66), (72,73), (74) for the sake of completeness, but as said
from the beginning, we avoid imposing them in order to not lose generality. Instead of this, the condition
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(61) is physically important; so we end this consideration by finding the solution, and it is easy to see
that it is:

H =
∂ψ

∂η
, Hk =

∂ψ

∂ηk
, (75)

with ψ(~η, λll), an arbitrary function; in fact, (61) is nothing more than the integrability conditions to
obtain ψ from (75).

5. Conclusions

We have considered a model following the new guidelines of two blocks of equations, obtaining a
non-linear and exact solution of the conditions arising from the entropy principle, the Galilean relativity
principle and the symmetry conditions, which consist of the angular momentum conservation and in the
fact that the flux in the conservation law of mass is the density in the conservation law of momentum.
Differently from [11], the new model based on the two blocks of equations introduced in [30] is defined
also in a neighborhood of equilibrium. There remains the resistance of the model to be confined in a
subsystem; but this is not a defect. In fact, in [3], it was shown that the number of moments to include
in a model is determined by the particular physical application under consideration: If a model with a
determined number of moments fits the experimental results better, then that is the correct number of
moments to be considered. From this point of view, it is not reasonable to force it to be described also
with one of the subsystems. Obviously, this may be the starting point of many other considerations and
research projects.
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