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Abstract: In a previous study we provided analytical and experimental evidence that some 

materials are able to store entropy-flow, of which the heat-conduction behaves as standing 

waves in a bounded region small enough in practice. In this paper we continue to develop 

distributed control of heat conduction in these thermal-inductive materials. The control 

objective is to achieve subtle temperature distribution in space and simultaneously to 

suppress its transient overshoots in time. This technology concerns safe and accurate 

heating/cooling treatments in medical operations, polymer processing, and other prevailing 

modern day practices. Serving for distributed feedback, spatiotemporal μ/∞H  control is 

developed by expansion of the conventional 1D- μ/∞H  control to a 2D version. Therein 2D 

geometrical isomorphism is constructed with the Laplace-Galerkin transform, which extends 

the small-gain theorem into the mode-frequency domain, wherein 2D transfer-function 

controllers are synthesized with graphical methods. Finally, 2D digital-signal processing is 

programmed to implement 2D transfer-function controllers, possibly of spatial fraction-

orders, into DSP-engine embedded microcontrollers. 
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1. Introduction 

In the works [1,2] and the references cited therein, we learned that many materials possess measurable 

entropy-flow storage, and that heat conduction in these thermally inductive materials behaves as a 

standing wave whenever the heat conduction region is small enough to some extent of engineering 

practice. Known from modal decomposition of standing waves, modes of larger (smaller) variations in 

space have faster (slower) motions in time. Therefore, tracking of spatially subtle distributions of 

temperature under feedback control with pointed actuation will always be accompanied by temporally 

abrupt transients, resulting in unsafe or inaccurate heating/cooling treatments in medical operations, 

polymer processes, and other prevailing modern day practices. 

To remedy such a situation, this paper continues to develop distributed control for non-Fourier heat 

conduction, inasmuch as distributed sensors and actuators are well-developed nowadays [3–14]. 

Distributed control is capable of tracking precise local-temperatures with slow heating over the entire 

region of heat conduction, which is otherwise beyond the nature of pointed control. 

The systems & control literature documents several kinds of feedback technologies applicable to 

distributed control of non-Fourier heat conduction, which are collected in Table 1. Listed in the first 

entry are finite-dimensional feedback syntheses based on order-truncated plants, for examples [15–19], 

which in essence belong to 1D control methodology. For non-Fourier heat conduction, we consider them 

inadequate to track the robust performance specified both in space and in time. The second and third 

entries concern infinite dimensionality, wherein Grabowski, Desoer, Callier, Winkin [20–23], and others 

have adequately developed spectral factorization, algebra of transfer functions and semigroup theories 

applicable to control purposes. In practice, an infinite-dimensional transfer function from pointed input to 

pointed output can further be identified in the frequency domain with fraction order [24–28], serving for 1D-

H∞/µ feedback loopshaping. Unfortunately, these dimension-infinitely elegant tools were not originally 

developed for distributed sensing and actuation. 

The fourth entry is suitable for a distributed control strategy, where the nD state-space robust control 

[29–34] is extended from 1D robust state-space synthesis to an nD version in the space-time domain. 

Controllers from state-space syntheses have spatiotemporal orders close to that of the generalized plant, 

usually resulting in either order-overabundance or order-shortage in that feasible controllers merely exist 

in much lower orders or in higher orders, respectively. Since microcontrollers that implement feedback 

control have limited computation and memory capability, high-order controllers will retard on-line 

processing of dynamics. Partly for this reason, we develop distributed H∞/µ loopshaping to synthesize 

2D transfer-function controllers of proper orders, listed in the last entry of Table 1. In this method, the 

generalized plant composed of the nominal plant, performance weightings and modelling uncertainty 

bounds is identified or specified in a mode-frequency domain, served for 2D-µ loopshaping in the mode-

frequency domain for robust performance both in time and in space. It is extended from the conventional 

H∞/µ loopshaping [35] in the frequency domain to 2D version in mode-frequency domain, named 2D- 

H∞/µ loopshaping. 
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The so-called 2D transfer-function above is a functional representation of spatiotemporal dynamics 

through 2D integral transforms, with two independent variables representing the space and time, 

respectively. The systems & control literature documents several kinds of 2D integral transform, as listed 

in Table 2. Therein, the Double Laplace transform, for example in [36,37], and Double Fourier 

transform, for example in [15,17,19], were always applied for signal processing and feedback control in 

semi-infinite and infinite space regions, respectively. The Laplace-Galerkin transform [1,38–40] or 

Fourier-Galerkin transform [41,42] is justified to model the non-Fourier heat conduction and its 

controllers for bounded space regions that are of real concern in heat conduction practice. Such an 

integral transform is obtained through the composite of Laplace transform in time and modal 

decomposition in space. With the Laplace-Galerkin transform, Hong [42] developed the 2D-geometric 

isomorphism for 2D-µ loopshaping in mode-frequency domain. Later on, Hong et al. [2] applied 2D 

transfer-function modelling to prove that the time-delayed heat condition is an ill-posed description that 

contradicts the first law of thermodynamics. For convenient computation in 2D or 3D space regions, the 

2D transfer functions can be numerically treated as 3D or 4D transfer-functions, respectively. 

Table 1. Candidate types of control for non-Fourier heat conduction. 

Methodology Typical references Critical comments 

1D control 
technology 

Bamieh et al. [15] 
Stewart et al. [17] 
Gorinevsky et al. [19] 

‧Finite-dimensional controllers based on order-truncated 
plants; thus, it is hard to track robust performance imposed on 
the originally distributed parameter plants. 

Infinite transfer 
function 

Callier and Desoer [20] 
Callier and Winkin [21] 
Callier et al. [22] 
Grabowski and Callier [23] 

‧Having been theoretically well-developed for classical control 
systems with pointed sensing and pointed actuation. 

Fraction-order 
dynamics 

Podlubny [24] 
Valerio and Costa [25] 
Vinagre and Feliu [26] 
Monje et al. [27] 
Padula and Visioli [28] 

‧An attractively empirical tool for feedback loopshaping with 
pointed sensing and actuation; usually being used in 
conjunction with frequency-domain identification. 

‧Requiring further developments on internal stability issues. 

nD state space 

Valcher [29–30] 
Fornasini and Valcher [31] 
Shu et al. [34] 
Lancaster and Zaballa [32] 
Carlos and Anaya [33] 

‧Extension of 1D robust state-space synthesis upon nD 
discrete plant for nD discrete controller.  

‧Belonging to distributed control technique usually resulting in 
either overabundance or shortage of controller orders. 

Distributed 

μ/∞H  
loopshaping 

Hong [42] 

‧Being 2D-version loopshaping upon continuous nD plant for 
2D transfer function controllers. 

‧Graphically finding all feasible controllers with robust 
performance. 

‧Facilitating the identification of generalized plant in mode-
frequency domain. 
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Table 2. 2D transfer function modelling. 

Methodology Typical documents Critical comments 

Double Laplace 
transform 

Dahiya and Vinayagamoorthy [36] 
Eltayeb and Kilicman [37] 

‧Suiting for semi-infinite space regions with initial 

conditions in space and time.  

Double Fourier 
transform 

Bamieh et al. [15] 
Stewart et al. [18] 
Gorinevsky et al. [19] 

‧Being applicable to signal processing and feedback 

loopshaping in two-side infinite space regions. 

Laplace-Galerkin 
transform 

Rabenstein and Trautmann [38–39] 
Hong [42] 
Hong et al. [2] 

‧On bounded space regions has it been well justified to 

work. 

Fourier-Galerkin 
transform 

Hong [42] 
‧A 2D geometrical isomorphism for distributed μ/∞H  

loopshaping on bounded regions 

2. 2D Transfer-Function Modelling 

Consider the non-Fourier heat conduction in a bounded region Ω . It is governed by energy 

conservation: 

Q
t

T
Cv =⋅∇+

∂
∂ qρ , (1) 

and the non-Fourier law: 

T
t

LR −∇=
∂
∂+ qq , (2) 

where the thermal inductance L  is included to fulfill the electro-thermal analogy [1]. Apart from 

thermal inductance L , a differential volume of Ω  is of thermal resistance R  and thermal capacitance 

vCC ρ= , where ρ  stands for mass density and vC  for specific heat at constant volume. 

Substituting Equation (2) into Equation (1) yields a hyperbolic equation: 

( )
2

2

1 1T T Q
k T Q

t t C C t
τ τ∂ ∂ ∂ + − ∇⋅ ∇ = + ∂ ∂ ∂ 

. (3) 

wherein k stands for the thermal conductance, Rk /1≡ , and τ  for the relaxation time in heat diffusion 

RL /≡τ , with the following assumptions in practice: 

(A1) the first-order spatial derivative of the thermal conductance k  exists, and 

(A2) the nominal value of relaxation time in heat diffusion τ  is uniformly distributed over the 

operation region Ω . 

Let the temperature distribution and heat-rate source be scaled by a reference temperature T  as 
TT /≡ψ  and TCQq /≡ , and then we can rephrase the hyperbolic heat-conduction to be: 

( ) q
t

q
Tk

Ctt
+

∂
∂=∇⋅∇−

∂
∂+

∂
∂ τψψτ 1

2

2

, in +ℜ×Ω  (4) 

where q  represents the dimensionless entropy-rate flowing into the control region. The following 

boundary conditions are considered: 
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0ˆ =⋅∇+ nψβαψ  on Ω∂ , (5) 

with 0)()( ≥⋅ xx βα  for all Ω∂∈x , which includes von-Neumann, Dirichlet, and Robin homogeneous 

boundary conditions. 
The dynamics governed by Equations (3) and (4) involves the non-uniform operator A  defined over 

the set of spatial functions φ ’s )(2 Ω∈ L : 

)()/1( φφ ∇⋅∇−= kCA  in Ω ,  

0ˆ =⋅∇+ nφβαφ  on Ω∂ . 
(6)

Based on the Sturm-Liouville theory [43], the eigenvalues of the non-uniform operator A are all 
positive, and its eigenfunctions can constitute an orthonormal and complete basis of )(2 ΩL . In the 

sequel, we denote by Λ  the countable set of A ’s eigenvalues and by { } Λ∈λλφ  the set of corresponding 

eigenfunctions.  
With respect to the real, countable, feasible, orthonormal and complete eigenfunctions set { } Λ∈λλφ , 

the Laplace-Galerkin transform H  is defined by: 

dxdttxfxxCetxfsF st ),()()()],([),(
0 
∞

Ω

−
−

=≡ λφλ H . (7)

Here the domain of the one-side Laplace transform, denoted by Γ , is an infinite line parallel to the 

imaginary axis, where the integral in Equation (7) converges. Accordingly, the inverse Laplace-Galerkin 

transform 1−H  is: 


Λ∈

Γ
=≡

λ
λφλ

π
λ dsexsF

j
sFtxf ts- )(),(

2

1
)],([),( 1H . (8)

The Laplace-Galerkin transform H  is of the property: 

)],([),()],(),([ txfshtxfh t HDAH ⋅= λ , (9)

where h  is a ratio of two expressions of finite or some infinite length constructed from two independent 

variables, one standing for space and the other for time, allowing for the operations of addition, 

subtraction, multiplication, integer exponents in time, and fraction-order exponents in space. For 

example: 

),()],([
2/1

2/1

sF
s

s
txf

t

t λ
λ
λ

+
−=

+
−
AD
AD

H . (10)

Then, performing the Laplace-Galerkin transform H  on Equations (4) and (5) yields a functional 

representation of the non-Fourier heat conduction, named by the 2D transfer-function: 

λτ
τλ

++
+=
ss

s
sG

2

1
),( . (11)

As for the feedback controller C→Γ×Ω:K , it can be a more general dynamics: 

),(

),(
),(

sM

sN
sK

λ
λλ = , (12)
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where M  and are of temporal integral-order of s  and allow for spatial fraction-order of λ , but the 
temporal order of N  is not larger than that of M . The loop gain OL  of the feedback dynamics 

interconnected by the plant G  and the controller K  is defined as usual by ),(),(),( sGsKsLO λλλ ≡ .  

3. 2D Small Gain Theorem 

In this section, we abstract the contents in [42] as the theoretical background of the 2D-µ loopshaping. 

Therein, 2D geometric isomorphism was created to extend the H∞-norm and the small-gain theorem into 

the mode-frequency domain.  
Consider a proper dynamics P̂  with the 2D transfer function ),( sP λ  that is Hurwitz. The 2D-H∞ 

norm of P  is defined by: 

),(max
,

ωλ
ωλ

jPP
+ℜ∈Λ∈∞

≡ . (13)

For a matrix-valued dynamics P̂  with all entries being proper dynamics, the 2D-H∞ norm of P is 

defined by: 

)),((max
,

ωλσ
ωλ

jPP
+ℜ∈Λ∈∞

≡ , (14)

where σ  denotes the singular value of the underlying matrix. It can be proved that bounded 2D-H∞ 

norm implies exponential decay, passivity and dissipativity for any proper dynamics. 

Suppose a nominal dynamics M  is feedback-connected by an unstructured uncertainty Δ  bounded 
by 2D-H∞ norm, 1−

∞
≤Δ γ , as shown in Figure 1, then the closed-loop dynamics is guaranteed to be 

well-posed and internally stable if and only if γ<
∞

M . This is named 2D Small Gain Theorem.  

Figure 1. For 2D Small Gain theorem. 

 

4. Robust Performance 

Based on the 2D Small Gain theorem in Section 3, we will formulate in this section the sufficient and 

necessary condition of robust performance for the distributed control in mode-frequency domain.  

Accommodating some extent of model uncertainties, the mode-frequency responses can be curve-fitted 

in the mode-Bode plot as a dense set: 

{ }1:)1( 1110 ≤ΔΔ+
∞

WG . (15)

Therein 0G  stands for a nominal plant: 

+ 
d

θ+

e

y

M

Δ
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λτ
τλ

++
+=
ss

s
sG

2
0

0
0

1
),( , (16)

where the nominal value of heat-diffusion relaxation 0τ  is assigned to be uniformly distributed. The 2D 

robustness weighting 1W  envelops all multiplicative perturbations 11ΔW  in the mode-Bode magnitude 

plot. As such, the dense set in Equation (15) contains all mode-frequency responses considered in real 

operation. 
As shown in Figure 2a, the 2D controller K, pre- or post-composite to the plant, together with a 

negative unit feedback 1−  executes the feedback compensation. The controller K  is to guarantee 

specified performance for any member of the dense set in Equation (15), named Robust Performance. 

In 2L -gain control, the performance is specified by: 

   ΩΩ
<

TT
dtdxtxwxCdtdxtxzxC

0

2

2
2

0

2

2 ),(ˆ)(),(ˆ)( γ , ),0[ ∞∈∀T , (17)

where the exogenous disturbances 2w  comprises the slow-time reference command and sensor noises of 

higher frequencies, and the tracking error e  has been weighted by the performance weighting 2W , i.e., 

eWz 22 = . 

Figure 2. (a) Closed-loop demanding for robust performance; (b) Robust stability of Figure 

2a; (c) Fractional transformation of Figure 2b. 
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Tracing the path of signal flow in Figure 2a, one can transform the interconnection of blocks in Figure 

2a into the feedback-interconnection of three blocks: 

Generalized plant P : 
































=

















u

w

w

KGKG

WW

KGWKGW

y

z

z

2

1

00

22

0101

2

1

1

0

0

; (18)

External feedback: yu −= ; (19)

Internal feedback 1: 1, 1111 ≤ΔΔ=
∞

zw . (20)

Therein the internal disturbance 1w  and stability variable 1z  are induced from modelling uncertainty 1Δ
. Moreover, if we replace the 2L -gain performance in Equation (17) by an internal feedback such as: 

Internal feedback 2: 1, 2222 ≤ΔΔ=
∞

zw , (21)

then the robust performance of the original setting in Figure 2a is equivalent to the robust stability of the 

closed-loop system in Figure 2b. This equivalency is inferred from 2D Small Gain theorem in 

conjunction with the equivalence of 2L -gain to 2D- ∞H  norm. Substituting Equation (19) into Equation 

(18) yields the lower fractional transformation of Figure 2b, as shown in Figure 2c. It becomes the 

feedback-interconnection of two blocks: 









−
−

=
SWSW

TWTW
M

22

11  and 







Δ

Δ
=Δ

2

1

0

0
; 








=

2

1

z

z
z , 








=

2

1

w

w
w , (22)

where S  is the sensitivity function )1/(1 0KG+  and T is its complementary function, i.e., 1=+TS . The 

first requirement of the controller K  is to make the sensitivity function S  asymptotically stable. 

If the Δ -structured singular value Δμ  is defined by: 

{ }0)det(:)(min

1
)(

=Δ−Δ
=Δ MI

M
σ

μ , (23)

then based on Nyquist criterion, the robust 2D-stability of Figure 2c is guaranteed, so is robust 

performance of Figure 2a, if and only if: 

1)),(( ≤Δ ωλμ jM , for all +ℜ×Λ∈),( ωλ . (24)

Substituting Equation (22) into Equation (23) yields: 

{ }01:),max(min

1
)(

221121 =Δ−Δ+ΔΔ
=Δ SWTW

Mμ , (25)

which, after careful calculation, is explicitly shown to be: 

SWTWM 21)( +=Δμ . (26)

Therefore, the set of sensitivity functions with robust performance is: 

{ }+ℜ×Λ∈∀<+− ),(,1),(),()),(1)(,(: 21 ωλωλωλωλωλ jSjWjSjWS . (27)

Finally, we know that any feasible loop S  is a stable transfer-function and a member of Equation (27). A 

graphical interpretation of robust performance is shown in Figure 3, where the line segment of 1=+ TS  
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inside the diamond of 1)( =Δ Mμ  represents the set of all feasible loops S . In Figure 3, we also 

demonstrate the conservatism of singular value )(Mσ  and the risk of spectral radius )(Mρ  as metrics 

of robust performance. In fact, nD state-space robust control syntheses in the control literature always 

takes the singular value )(Mσ  as the metric of robust performance, therefore ensuring conservatism 

when numerically solving distributed control. 

Figure 3. Graphical interpretation of robust performance. 

 

5. 2D- μ  Manifolds 

The set of feasible loops S ’s at a fixed ),( ωλ : 

{ }1)1(: 21 <+− SWSWS , (28)

as shown in Equation (27), is an open, convex and complex-valued set. It appears as a plate in the 

Cartesian plane coordinated by )Re(S  and )Im(S , named µ-plate at ),( ωλ . The µ-plate is attributed to 

the following geometry: 

(P1) Every µ-plate is symmetric to the )Re(S  axis. 

(P2) If 21 WW ≥  and both are not greater than 1, the µ-plate is contained in the ellipse that has focuses 

)0,0(  and )0,1( , major-axis length 2/1 W , and minor-axis length 2

2

2 /1 WW− . 

(P3) If 12 WW ≥  and both are not greater than 1, the μ -plate is contained in the ellipse that has 

focuses )0,0(  and )0,1( , major-axis length 1/1 W , and minor-axis 1

2

1 /1 WW− . 

(P4) If 121 <= WW , the boundary of the µ-plate is just the ellipse described in (P2) or (P3). 

(P5) If 121 ≈= WW , the µ-plate degenerates into a line segment between )0,0( and (1,0). 

(P6) If 21 WW >> , the boundary of µ-plate is close to a circle of radius 1/1 W  centered at (1,0). 

(P7) If 12 WW >> , the boundary of ( 1W , 2W ) is close to a circle of radius 2/1 W  centered at (0,0). 

(P8) For 1W  and 2W  being both greater than 1 , the µ-plate degenerates into disappearance. 

 

2/1

)1,0( −

)0,1(

)1,0(

)0,1(−  TW1

SW2

1=Δμ  

1=ρ

1=σ
1=+ TS

1W

2W

Feasible loops
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The geometry of µ-plates reflects some trade-off principles in feedback design as follows. Firstly, a 

µ-plate tends to disappear as the robustness weighting 1W  and the performance weighting 2W  are 

simultaneously magnified. This reflects the trade-off between robust stability and nominal performance. 

Secondly, the uncertain perturbation 11ΔW  arising from insufficient information of thermal inductance 

is distributed in high-frequency domain, so 1W  is high-passed. Thus 2W  allows only for low-pass, 

meaning that the closed-loop system is unable to guarantee tracking of fast-time reference temperatures 

to some extent. This reflects the trade-off between system maneuverability and information 

insufficiency. Thirdly, for large 1W  and 2W , high-gain controller can diminish the sensitivity function to 

achieve feasibility in Equation (27), which requires powerful heater/cooler and high-bandwidth, low-

noises thermal couplers. This reflects the trade-off between hardware cost-down and robust performance.  

Figure 4. (a) Exemplary robustness and performance weightings; (b) The μ -manifold for 

Figure 4a; (c) Close view of Figure 4b. 

 
(a) 

(b) (c) 

The union of all µ-plates for all +ℜ∈ω  at fixed λ  becomes a manifold, named by λ -mode  
μ -manifold. For a graphical manifestation of the μ -plate geometry, here is plotted the μ -manifold of 

some λ -mode for weighting functions ( 1W , 2W ) shown in Figure 4a. Figure 4b shows the appearance of 

( λ -mode) µ-manifold that corresponds to the properties (P1)–(P8). For example, this µ-manifold has a 
narrow tunnel at frequency 5.31=ω  at which both 1W  and 2W  have magnitudes close to one, as 

indicated by (P5), the close view of which is shown in Figure 4c. 

The controller K  is proposed to take the form: 
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1
),(),(

0

2
0

0 +
++

=
s

ss
sKsK

τ
λτλλ , (29)

where the temporal order of 0K  is larger than that of the nominator at least by one for a physically 

existent dynamics K . With the help of the µ-manifold’s topology, we expand 1D loopshaping technique 

on 2D loopshaping in mode-frequency domain to synthesize all feasible 0K ’s. After the identification 

of 2D performance weighting 2W  and robust weighting 1W , every feasible controller K  has to guarantee 

that every λ -mode sensitivity function map a line inside the λ -mode μ -manifold for all Λ∈λ . In the 

sequel, we demonstrate the procedure of 2D-µ loopshaping for non-Fourier heat conduction in 

longitudinal direction. 

6. 2D- μ  Loopshaping 

As shown in Section 2, the 2D transfer-function G  of non-Fourier heat conduction is: 

λτ
τλ

++
+=
ss

s
sG

2

1
),( , (30)

the typical mode-frequency response of which is shown in Figure 5 as the modal-Bode magnitude plot. 

Figure 5 shows that non-Fourier heat conduction in a small region behaves like a standing wave, wherein 

larger (smaller) modes are of higher (lower) resonant frequencies.  

Figure 5. Mode-frequency response of the plant. 

 

That is, with pointed control, slower heating is able to result in moderate transience, but is unable to 

track subtle distribution of temperature in space. On the other hand, to track a spatial distribution with 

larger variation, fast heating has to be adopted, but it results in severe overshoot and rising time that 

could burn organic materials. Figure 6 shows the mode responses at different frequencies, which 

provides a clearer vision of this phenomenon, wherein the mode responses at different frequencies have 
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similar patterns to the frequency responses at different modes. This similarity prevents point control 

from reaching required temporal and spatial responses at the same time. To track precise  

local-temperatures and suppress the transience simultaneously, distributed control has to be developed. 

Figure 6. Mode response of the plant at different frequencies. 

 

In this section, the 2D-µ loopshaping in mode-frequency domain is developed to synthesize 2D 

transfer-function controllers served for distributed control. The 2D-µ loopshaping consists of two main 

steps as follows: 

Step 1. Construction of Generalized Plant 

Consider that modelling uncertainties result from non-uniform distribution of the relaxation time τ . 

Let the dense set of plants: 

{ }1:)1( 1110 ≤ΔΔ+
∞

WG  (31)

contain the set of mode-frequency responses accommodating empirical extent of the uncertainty, 
wherein 0G  stands for the nominal plant: 
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In Equation (31), ),(1 ωλ jΔ  accounts for the phase uncertainty for each mode, and the magnitude of 

the perturbation is specified by the 2D robustness weighting 1W . The perturbation satisfies: 
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with a preset range of τ , so the 2D robustness weighting 1W  is chosen as the envelop of all multiplicative 

perturbations 11ΔW  in the modal-Bode magnitude plot. By this way, a 2D robustness weighting 1W  can 

be curve-fitted out of mode-frequency responses, as shown in Figure 7.  

Figure 7. Robust and performance weightings at different modes ( 200/2nn =λ ). 

 

For [4.5, 20]τ ∈ , it is chosen as: 
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As for the 2D performance weighting 2W , it has to satisfy two requirements: (i) following the 2D-µ 

manifold’s rules (P5)–(P8) in Section 5 to guarantee feasibility; and (ii) being of high-pass in space and 

of low-pass in time to achieve the required performance- suppress temporally abrupt transience and 

simultaneously track subtle temperature distribution in space. Thereby, the 2D performance weighting 

2W  is chosen as: 
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Figure 8 shows the 2D performance weighting 2W  in the modal-Bode plot and Figure 7 shows its 

projection onto the mode axis, which demonstrates the requirement (ii). 
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Figure 8. Modal-Bode plot of 2D performance weighting. 

 

Step 2. Loopshaping Based on 2D-µ Manifold’s Rules 

Based on the principle of 1D-µ loopshaping in [35] and 2D- μ  manifolds rules in Section 5, every 

loop gain L  of the closed-loop at each mode should satisfy: 
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Accordingly, we plot two curves in Bode magnitude plot: first, the graph of )1/( 12 WW −  over the 

low-frequency range where 12 1 WW >> ; second, the graph of 12 /)1( WW−  over the high-frequency 

range where 21 1 WW >> . Then, the graph of L  lies above the first graph at low frequency and below 

the second curve at high frequency. Let it roll off at least as fast as does 0G  at very high frequency and 

do a smooth transition from low to high frequency, keeping the slope as gentle as possible near crossover, 

the frequency where the magnitude equals 1, to force the sensitivity function to lie inside the µ-manifold. 

By this way, the 2D loop-gain L  is synthesized to be: 

2
3

2
1

01.0

01.0
),(

λ
λλ

+
=

s
sL , (37)

which is shown in Figure 9. The 2D transfer-function controller K  achieving robust performance 

becomes: 
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which is designed to be proper not only in time but also in space on purpose of dealing with spatially 

discontinuous inputs.  

Figure 9. Synthesis of loop gain with 2D- μ  loopshaping ( 200/2nn =λ ). 

 

Figure 10 plots the graph of SWSW 21 )1( +− , which is not larger than 1 for all modes, indicating the 

feasibility of the controller K . Finally we check the reliability of the controller K  in achieving robust 

performance by the distance of the sensitivity function to the boundary of the µ-manifold. Figure 11 partly 

shows the reliability by plotting the sensitivity function lying inside the µ -manifold at 100λ . 

Figure 10. Feasibility of the 2D transfer function controller. 
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Figure 11. Sensitivity function and µ-manifold at a represented mode. 

 

7. Implementation of 2D Transfer-Functions Controllers 

Let a general 2D transfer-function controller K  be spatiotemporally discretized into some state-space 

realization:  

kkk evv Γ+Φ=+1  

kkk evu DC += , 
(39)

for on-line signal processing in an embedded controller or for computer simulation. 
Referring to Figure 12. Suppose there are n state variables in Step 3, p analog pins in the distributed 

temperature transducer and m metal contacts in the distributed heater. The microcontroller array 

comprises d  dsPICs; each of them provides multi-channeled ADC converter, multi-channeled PWM 

generators and CAN bus protocol in peripheral, and DSP engine in CPU. With this dsPIC array, the plant 

output is divided into dp /  channels and the plant input into dm /  channels. The state x  is then stacked 

up by dn /  columns, dn
ix /ℜ∈ , di ,,2,1 = . Accordingly, the system matrices ),,,( DCΓΦ  are 

partitioned into dd ×  blocks, where: 
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ij

// ×ℜ∈D . (40)

Each i th dsPIC for di ,,2,1 =  stores the i th column of present state ix  in RAM, has the matrices 

{ }djijijijij ,,2,1:),,,( =ΓΦ DC  as parameters in ROM, and performs the computing as: 
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to update state and decide control signals, where e stands for the distributed tracking error. The present 

states and sampled inputs distributed in the dsPIC array communicate with the built-in CAN bus 

peripherals. Most importantly, the Timer peripheral in every microcontroller sends interruption signals 
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at a fixed time identical to the sampling time T  set at the stage of computer simulation to let 

microcontrollers’ CPUs execute the DSP routines. In each Timer-interruption routine, temperatures in 

the distribution are sampled, the present states and measurements are communicated among 

microcontrollers, cloud matrix-iterated computation of Equation (41) updates the distributed states, and 

PWM outputs are sent to the distributed driver of the heating contacts. Such an interruption design is to 

guarantee that the controller under implementation is identical to that in the computer simulation. The 

distributed driver of the heater is an array of high-frequency switching buck choppers. 

For digital implementation of 2D transfer-function controllers with the above Cloud Matrix Iteration 

Time-fixed DSP program (MIT) on microcontroller array, there are the following exclusive merits: 

(1) We avoid a mechanical scanner for data acquisition and control output, which shortens sampling 

time to boost real-time fashion; 

(2) Distributed computing replaces one generous-purpose microprocessor auxiliary with 

microcontrollers functioning DAC, PWM, and communication, therefore dramatically reducing the 

cost of controller manufacture without sacrificing performance; and  

(3) The microcontroller array consists of the same dsPICs, which shortens the time for code 

development. 

Figure 12. Distributed controller implementation with cloud embedded computing. 
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8. Numerical and Experimental Study 

This section presents numerical and experimental investigation on the performance of the 2D transfer-

function controllers that are synthesized with Section 6 and implemented by Section 7. We will scrutinize 

whether the final design is capable of suppressing temporally transience and simultaneously track 

temperature distribution of highly spatial resolution. 

Here hotdog meat is chosen as the heat-conduction material of uniform thermal parameters in the 

longitudinal direction. The non-Fourier heat conduction is belonging to hyperbolic dynamics: 

u
t

u

xC

k

tt
+

∂
∂=

∂
∂−

∂
∂+

∂
∂ τψψψτ

2

2

2

2

 ],0[ ∈x , 0=ψ  at ,0=x . (42)

Therein, the meat is of length 5= mm , thermal conductivity is 8.0=k KmW ⋅ , mass density 

1230=ρ 3mkg , thermal capacitance at constant volume 66.4=vC KkgkJ ⋅ , and relaxing time 

16 sτ = . Accordingly, the 2D transfer-function of the plant is: 

λτ
τλ

++
+=
ss

s
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),( . (43)

During control synthesis with 2D-µ loopshaping in mode-frequency domain, we assume that 

modelling uncertainties arise from the parametric error of relaxing time ]20,5.4[∈τ , and the robust 

weighting is identified as above to be: 
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As for the performance weighting 2W , three cases are investigated: 

Case 1: 2.1),(2 =sW λ  that is spatiotemporally uniform; 

Case 2: 
01.0

012.0
),(2 +

=
s

sW λ  that is spatially uniform and temporally low-passed; and 

Case 3: 
2

1

2
1

2

01.0

012.0
),(

λ
λλ

+
=

s
sW  that is spatially high-passed and temporally low-passed. 

Following the procedures of 2D-µ loopshaping in Section 6, three 2D transfer-function controllers 

for these cases are calculated for comparison of their performances. 
The performance setup is to track pulse-width-modulated (PWM) temperature distribution, which is 

discontinuous in space. Here the temperature under tracking is uniformly distributed in 24  ≤≤ x . 

This kind of performance is needed for heat treatment in removing a tumor. Figure 13 shows the 

temperature distributions at steady state for three cases. Only Case 3 arrives at the requirement of 

precisely tracking the local temperatures in high resolution. Figure 14 shows the temporal responses at 

52=x  of three cases, wherein only Case 3 suppresses the overshoot that otherwise could damage the 

meat under operation. The spatiotemporal response of Case 3 is recorded in Figure 15 that demonstrates 

temperature snapshots evolved into the command temperature from the initial. 
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With these results, we verify the principle that distributed control of proper design is able to decouple 

temporal requirement from spatial requirement of the closed-loop performance. That is, temporal 

evolution and spatial distribution can be independently setup with distributed control technique 

developed in this paper. 

Figure 13. Temperature distributions at steady state of three cases. 

 

Figure 14. Temporal responses at 52=x  of three cases. 
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Figure 15. Temperature snapshots of Case 3. 

 

9. Recapitulation 

Via this paper, we work on the following issues about the distributed control of heat conduction in 

thermally inductive materials:  

(1) Verify the principle that, beyond the capability of pointed control, distributed control can 

simultaneously track the spatial distributions and temporal transients, which has overwhelming 

advantages in thermally inductive materials of modern days. 

(2) Extend the classical control to 2D version for non-Fourier heat conduction. 

(3) Implement the 2D transfer-function controller into the microcontroller array with cloud technology. 

(4) Develop 2D-µ loopshaping in mode-frequency domain for the synthesis of 2D transfer-function 

controllers. 
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