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Abstract: Besides its importance in statistical physics and information theory, the 

Boltzmann-Shannon entropy S has become one of the most widely used and misused 

summary measures of various attributes (characteristics) in diverse fields of study. It has also 

been the subject of extensive and perhaps excessive generalizations. This paper introduces 

the concept and criteria for value validity as a means of determining if an entropy takes on 

values that reasonably reflect the attribute being measured and that permit different types of 

comparisons to be made for different probability distributions. While neither S nor its relative 

entropy equivalent S* meet the value-validity conditions, certain power functions of S and S* 

do to a considerable extent. No parametric generalization offers any advantage over S in this 

regard. A measure based on Euclidean distances between probability distributions is 

introduced as a potential entropy that does comply fully with the value-validity requirements 

and its statistical inference procedure is discussed. 

Keywords: entropy; relative entropy; generalized entropies; entropy validity; 

Euclidean entropy 

 

1. Introduction 

Consider that 1
1

,..., ,  with 1,
n

n i
i

p p p
=

= are the probabilities of a set of n quantum states accessible to a 

system or of a set of n mutually exclusive and exhaustive events of some statistical experiment. Thus,  
pi  is the probability of the system being in state i or of event i occurring ( i = 1,..., n ). The entropy (of 

the system or set of events) is then defined as: 
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S = −k pi
i=1

n

 log pi  (1)

where k is some positive constant and where the logarithm is the natural one. In statistical mechanics, k 

may be Boltzmann’s constant, while, in information theory, k = 1/ log2 so that S = − pi log2 pi
i=1

n

  and 

the unit of measurement becomes bits as introduced by Shannon [1]. When deriving Equation (1) 

axiomatically from some basic required properties (axioms), k becomes an arbitrary constant  

(e.g., [2,3]). For convenience, we shall set k = 1 throughout this paper. 

The entropy S, which provides a link between statistical mechanics and information theory, is 

interpreted somewhat differently in the two fields. In statistical mechanics, entropy is often considered 

to be a measure of the disorder of a system, although it may be argued that a more appropriate measure 

of disorder is the following dimensionless relative entropy [3] (pp. 366–357): 

S* = S

logn
= − pi logn pi ∈[0,  1]

i=1

n

  (2)

In information theory, S is typically interpreted as a measure of the uncertainty, information content, or 

randomness of a set of events, while S*  in (2) is considered as a measure of efficiency of a noise-free 

communication channel and 1− S*  as a measure of its redundancy [4] (pp. 109–110). 

Boltzmann [5] had used the function S in Equation (1) (or its continuous analog), but what  

Shannon [1] “did was to give a universal meaning to the function − pi log pi  and thereby make it 

possible to find other applications [6] (p. 476)”. This function has indeed proved to be remarkably 

versatile and used as a measure of a variety of attributes in various fields of study, ranging from 

ecology (e.g., [7]) to psychology (e.g., [8]). It has also resulted in literally infinitely many alternative 

entropy formulations and generalizations such as the parameterized families of entropies given in 

Table 1 and for each of which the S in Equation (1) is a particular member. The real utility or 

contributions of those generalization efforts may be questioned, with some calling them “mindless 

curve-fitting” and stating that “The ratio of papers to ideas has gone to infinity” [9]. 

This paper is concerned with the use and misuse of S and S*  in Equations (1) and (2) and other 

proposed entropies. Whatever an entropy measure is being used for, it is not uncommon for 

comparisons to be made between differences in entropy values and for statements or implications to 

occur about the absolute and relative values of the attributes (characteristics) being measured by means 

of the entropy. This can lead to incorrect and misleading results and conclusions unless certain 
conditions are met as discussed in this paper. If, using a simplified notation, e1,e2,...denote the values 
of a generic entropy E  for the probability distributions Pn = (p1,...pn ) , Qm = (q1,..., qm ),...,  the various 

types of potential comparisons may be defined as follows: 

Size (order) comparison: e1 > e2  (3a)

Difference comparison: e1 − e2 > e3 − e4  (3b)

Proportional difference comparison: e1 − e2 > c(e3 − e4 )  (3c)

where c is a constant. 

In particular, we shall address the following fundamental questions: Which conditions on an 

entropy are required for the comparisons in Equation (3) to be valid or permissible? Does S or S*  in 
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Equations (1) and (2) meet such valid comparison conditions, and if not, are there functions of S or S*  

that do? Do any of the entropy families in Table 1 have members that are superior to S in this regard? 

If none of those entropies meet such conditions, is there an alternative entropy formulation that does? 

Table 1. Parameterized families of entropies. 

Formulation Parameter Restrictions Source 

S1 = 1

1−α
log pi

α

i=1

n

   α > 0 Rényi [10,11] 

S2 = 1

21−α −1
pi

α −1
i=1

n

( )  α > 0 Havrda and Charvát [12] 

S3 = k

1−α
pi

α −1
i=1

n

( )   −∞ < α < ∞, k constant  Tsallis [13] 

S4 = 1

δ −α
log

pi
α

i=1

n



pi
δ

i=1

n



















  α,δ > 0  Kapur [14], Aczél and Daróczy [15] 

S5 = α
1− α

pi
α

i=1

n

( )1/α

−1








  α > 0  Arimoto [16] 

S6 = 1

21−β −1
pi

α

i=1

n

( )(β −1)/(α −1)

−1








  α, β > 0  Sharma and Mittal [17] 

S7 = 1

21−α −1

pi
α +δ −1

i=1

n



pi
δ

i=1

n


−1

















 α > 0,α + δ −1 > 0  Rathie [18] 

S8 = λ
pi

α

i=1

n



pi
δ

i=1

n



















β

−1



















 0 < α < 1 ≤ δ,  βλ > 0;  or,

0 ≤ δ ≤ 1 < α,  βλ < 0 Kvålseth [19–21] 

S9 = α
2β −1

(2βS1 −1) α,  β > 0  Morales et al. [22] 

S10 = pi
α

i=1

n

 (− log pi )
β  α,  β  positive integers  Good [23] 

S11 = − 1

pi
α

i=1

n


pi

α

i=1

n

 log pi
 

 Aczél and Daróczy [15] 

Notes: The Greek letters used for the parameters differ from some of those used by the authors.  When 
indeterminate forms 0/0 occur from certain parameter values (e.g, α = 1 for S1  or β = 1 for S6 ), the 

entropies are defined in their limits (e.g., as α →1 or β →1) using L’Hôpital’s rule. 

2 Entropy Properties 

2.1. Properties of S 

Although the properties of S(Pn ), or simply S, in Equation (1) are discussed in various textbooks 

(e.g., [2–4,10,24]), they will be briefly outlined here so that we can conveniently refer to them 

throughout this paper. Some of the most important ones are as follows: 
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(P1) S is a continuous function of all its arguments p1,..., pn  (so that small changes in some of the 

pi 's  result in only a small change in the value of S). 

(P2) S is (permutation) symmetric in the pi (i = 1,..., n) . 

(P3) S is zero-indifferent (expansible), i.e., the addition of some state(s) or event(s) with zero 
probability does not change the value of S, or formally: 

S(p1,..., pn, 0,..., 0) = S(p1,..., pn )  

(P4) S attains its extremal values for the two probability distributions: 

Pn
0 = (1,  0,...,  0),  Pn

1 = 1

n
,...,

1

n






 (4)

so that, for any distribution Pn = (p1,..., pn ): 

S Pn
0( ) ≤ S(Pn ) ≤ S(Pn

1)  

(P5) S(Pn
1) is strictly increasing in n for Pn

1  in Equation (4). 

(P6) S is strictly Schur-concave and hence, if Pn  is majorized by Qn  (denoted by ): 

 

with strict inequality unless Qn  is simply a permutation of Pn . 

(P7) S is additive in the following sense. If {pij }  in the joint probability distribution for the 

quantum states for two parts of a system or for the events of two statistical experiments, with 

marginal probability distributions {pi+}  and {p+ j}  where pi+ = pij
j=1

m

  and p+ j = pij
i=1

n

  for 

i = 1,..., n  and j = 1,..., m , then, under independence: 

S({pij}) = S({pi+ p+ j}) = S({pi+}) + S({p+ j})  (5)

Most of these properties would seem to be necessary and desirable for any entropy. One could 
argue about the absolute necessity of Property P7 (e.g., [25]) and among the families of entropies in 
Table 1, only S1  and S4  have this property. The essential Property P6 is a precise way of stating that 

the value of S increases as components of a probability distribution become “more nearly equal”, i.e., 
S(Pn ) > S(Qn ) if the components of Pn  are “more nearly equal” or ”less spread out” than those of Qn . 

In terms of majorization, and by definition [26], if the components of Pn  are ordered such that: 

p1 ≥ p2 ≥ ... ≥ pn  (6)

and similarly for Qn , then: 

 (7)

with pi
i=1

n

 = qi
i=1

n

 = 1. Of course, not all Pn  and Qn  are comparable with respect to majorization. 

2.2. Valid Comparison Conditions 

If an entropy has the above Properties P1–P6, there would seem to be no particular reason to doubt that 

size (order) comparisons are reasonable or permissible. Thus, for S and Equation (1) with k = 1 and for, 
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say, P3
(1) = (0.90, 0.05, 0.05) and P2

(2) = (0.70,  0.30) so that S(P3
(1) ) =0.39 and S(P2

(2) ) = 0.61, it would be 

reasonable to conclude that the disorder or uncertainty is greater in the second case than in the first. 
However, for the additional probability distributions P2

(3) = (0.8, 0.2)  and P4
(4) = (0.70, 0.15, 0.10, 0.05), 

the result S(P2
(2) )− S(P3

(1) ) = 0.22 and S(P4
(4) )− S(P2

(3) ) = 0.41 simply states that the difference in S-values 

of 0.22 is less than that of 0.41. There is, however, no basis for assuming or suggesting that this result 

necessarily reflects the true differences in the disorder of the four systems or the uncertainty of the four sets 

of events. For such comparisons to be valid, additional conditions need to be imposed. We shall determine 

such validity conditions in a couple of different ways. 

In measurement theory, “Validity describes how well the measured variable represents the attribute 

being measured, or how well it captures the concept which is the target of measurement” [27] (p. 129). 

While there are different forms of validity, we shall use value validity and define it as follows:  

Definition: A measure has value validity if all its potential values provide numerical representations 

of the size (extent) of the attribute being measured that are true or realistic with respect to some 

acceptable criterion. 

To determine the conditions for an entropy to have value validity, we shall use the recently 

introduced lambda distribution defined as: 

Pn
λ = 1− λ + λ

n
,  

λ
n

,...,
λ
n







,  λ ∈[0,  1]  (8)

where λ  is a parameter that reflects the uniformity or evenness of the distribution [28]. The Pn
0  and 

Pn
1  in Equation (4) are particular (extreme) cases of this distribution. In fact, Pn

λ  is a weighted mean of 

Pn
0  and Pn

1 , i.e.,: 

Pn
λ = λPn

1 + (1− λ)Pn
0  (9)

For a generic entropy E that is (strictly) Schur-concave (Property P6), and from the majorization 
 for any given Pn  as is easily verified from Equations (6) and (7), it follows that: 

E(Pn ) = E(Pn
λ ) for a unique λ  (10)

Consequently, validity conditions on E(Pn )  can equivalently be formulated in terms of E(Pn
λ ). 

By considering Pn
λ ,  Pn

0,  and Pn
1 as points (vectors) in n-dimensional space, Euclidean distances are 

then the logical choice as the basis of a criterion for the value validity of entropy E. Then, the 

following ratio equality presents itself as the natural and obvious requirement: 

E(Pn
1)− E(Pn

λ )

E(Pn
1)− E(Pn

0 )
:= d(Pn

λ, Pn
1)

d(Pn
0, Pn

1)
=1− λ

 
(11)

Besides the standard Euclidean distance function d used in Equation (11), the same result 1− λ  would 
be obtained for all members of the Minkowski class of distance metrics. With E(Pn

0 ) = 0 since there is 

no disorder or uncertainty when one pi = 1 (and the other pi 's  equal 0) or when n = 1, (11) can be 

expressed as:  

E(Pn
λ ) = λE(Pn

1) (12)

and, in terms of the relative entropy: 
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E*(Pn
λ ) = E(Pn

λ )

E(Pn
1)

= λ  (13)

for all n and λ . This formulation is also an immediate consequence of (9), i.e.: 

E(Pn
λ ) = E[λPn

1 + (1− λ)Pn
0 ] = λE(Pn

1) + (1− λ)E(Pn
0 ) = λE(Pn

1) for E(Pn
0 ) = 0 (14)

If we accept E(Pn
1) = logn  as a reasonable maximum entropy for any given n, which is that of S in 

Equation (1) (with k = 1), then Equation (12) would become: 

E(Pn
λ ) = λ logn  (15)

However, a reasonable and justifiable alternative would clearly be E(Pn
1) = n −1 so that Equation (12) 

becomes: 

E(Pn
λ ) = (n −1)λ  (16)

Of course, both expressions in Equations (15) and (16) give E(Pn
λ ) = 0 for n = 1 as is only reasonable. 

The E(Pn
1) = n −1  and Equation (12) also follow from simple functional equations. With 

E(Pn
1) = f (n), it seems reasonable and most intuitive to suggest that increasing n by an integer value m 

(m < n) should result in the same absolute change in the value of the function f as when n is reduced by 

the same amount m, i.e.,: 

f (n + m) − f (n) = f (n) − f (n − m)  (17)

The general solution to this functional equation is:  

f (n) = a + bn  (18)

where a and b are arbitrary real constants [29] (p. 82). Also, Equation (18) is the solution of Jensen’s 

functional equation for integers ([29] (p. 43), i.e.,: 

f
n + m

2






= f (n) + f (m)

2
 (19)

Since f(1)=0, Equation (18) becomes f (n) = b(n −1) and hence E(Pn
1) = n −1 for b = 1. 

If, instead of Equation (17), one proposes: 

f (nm) = f (n) + f (m) (20)

then the most general solution would be f (n) = a logn  with arbitrary constant a [29] (p. 39). By setting  

a = 1 and hence E(Pn
1) = logn , then, instead of Equation (16), Equation (12) becomes Equation (15). 

Similarly, for any given (fixed) n, E(Pn
λ )  becomes a function g of λ  only and for which it is 

proposed that: 

g(λ + μ) − g(λ) = g(λ) − g(λ − μ) (21)

where μ  is such that 0 ≤ λ + μ ≤1 and 0 ≤ λ − μ ≤ 1, with the general solution of Equation (21) being: 

g(λ) = c + dλ  (22)
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with arbitrary constants c and d [29] (p.82). Since E(Pn
0 ) = g(0) = 0 and E(Pn

1) = g(1) = d , Equation (22) 

results in Equation (12). 

Consequently, different lines of reasoning lead to Equations (12) and (15) or Equation (16) as 

conditions for an entropy E to have value validity and therefore making the difference comparisons in 

Equations (3b) and (3c) permissible. The basis for those conditions are the distance criterion in 

Equation (11), the mean-value relationship in Equation (14), and the difference relationships 

represented by the functional equations in Equations (17), (19)–(21). Those functional equations also 

directly support the validity of the comparisons in Equations (3b) and (3c). 

3. Value-Valid Functions of S and S* 

It is immediately apparent that neither S in Equation (1) nor S*  in Equation (2) meet those validity 

conditions. It is found that S and S*  consistently overstate the true extent of the attribute being 

measured, i.e., the attribute of system disorder or event uncertainty. Consider, for example, the lambda 
distribution in Equation (8) with λ  = 0.5 and n = 4, i.e., 0.5

4 (0.625, 0.125, 0.125, 0.125)P =  for which  

S = 1.07 and S* = 0.77, which are, respectively, substantially greater than the values (0.5) log 4 0.69=  and 

0.5 as required by Equations (15) and (13). Each element of the distribution 0.5
4P  has the same distance 

from each element of Pn
1 = (0.25, 0.25, 0.25, 0.25)  as it does from each element of Pn

0  = (1, 0, 0, 0), i.e.,
0.5

4P is the midpoint between P4
0  and P4

1 . Clearly, the midrange (0 + log4) / 2 = 0.69 would be the only 

reasonable entropy value and the midrange (0+1)/2 = 0.5 the only reasonable relative entropy value, 
which are consistent with Equations (15) and (13). Also, one distribution P4  for which 0.5

4 4( ) ( )S P S P=  

as in Equation (10) is found by trial and error to be P4 = (0.6, 0.2, 0.14, 0.06).  

As another simple example, consider P3 = (0.8, 0.15, 0.05) for which S = 0.61 and S*= 0.56. Since 

this P3 -distribution is much closer to P3
0 = (1,  0,  0)  than it is to P3

1 = (1/3, 1/3, 1/3)  and since 

S ∈[0,  1.10] for n = 3 and since S* ∈[0,  1], these values of S = 0.61 and S* = 0.56 are unreasonably 

large. By comparison, for S(0.8,  0.15, 0.5) = S(P3
λ ) in Equation (10), it is found that λ = 0.282  so that, 

from Equations (13) and (15), 0.282log3 = 0.31 and 0.28, respectively, would have been appropriate 

values, rather than 0.61 and 0.56, had the entropy (with upper bound log n) had value validity. When 

comparing the results from these two examples with the respective S-values of 1.07 and 0.61, it would 

not be a valid inference that the disorder (uncertainty) in the first case was about 75% greater than in 

the second case (i.e., as a particular case of Equation (3c)). This result would only apply to the  

S-values themselves and not to the attribute that S is supposed to measure (i.e., the disorder or 

uncertainty). The appropriate and valid comparison should be between the above entropy values of 

0.69 and 0.31, showing a 123% increase in disorder (uncertainty). Even though S and S*  do not meet 

the conditions for valid difference comparisons, perhaps some functions of S and S*  do. We shall 

address this next. 

3.1. The Case of S 

In order to satisfy the validity requirement in Equation (15), we shall explore if there exists a 

function (or transformation) f such that: 
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S(Pn
λ ) = f (λ logn) (23)

from which a transformed entropy ST  could be obtained as: 

ST (Pn
λ ) = λ logn = f −1[S(Pn

λ )] = g[S(Pn
λ )] (24)

where Pn
λ  is again the distribution defined in Equation (8). From the graphs of S(Pn

λ ) versus λ logn 

for some different values of n as shown in Figure 1, it is clear that no such function f exists for all λ  

and n. It is also evident from Figure 1 that S overstates the degree of disorder (uncertainty) throughout 

the range from 0 to log n and for different n. The absolute extent of such overstatement or lack of value 

validity appears to be greatest when S roughly equals (4/3) log n. 

Figure 1. Relationships between λ( )nS P , with S being the entropy in Equation (1) with  

k = 1 and λ
nP  being the probability distribution in Equation (8), and λ log n  for n = 2 (lowest 

curve), n = 5, n = 20, and n = 100. The diagonal line corresponds to an entropy E that would 

satisfy the value-validity condition in Equation (15). 

 

Nevertheless, it would appear from Figure 1 that at least a reasonable degree of approximation 

could be achieved from Equations (23) and (24) if we restrict those functions to cases when, say, 

S ≤ 0.8logn , or S* ≤ 0.8for all n. When the function (model) S = α(λ logn)β is fitted to the different 

values of n and λ  in Table 2 for S* ≤ 0.8 , regression analysis results in the parameter estimates 

α̂ =1.52and β̂ = 0.78 . When these estimates are replaced with the nearest fraction (for convenience) 

3/2 and 4/5 and when this fitted function is then inverted as in Equation (24), we obtain the 

transformed entropy: 

ST (Pn
λ ) = 2

3







S(Pn

λ )










5/4

 for S*(Pn
λ ) ≤ 0.8 (25)

so that, for any probability distribution Pn = (p1,..., pn )  and from Equation (10): 
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ST (Pn ) = 2

3






S(Pn )







5/4

for *( ) 0.8nS P ≤  (26)

Table 2. Values of S in Equation (1) (with k = 1), *S in Equation (2), TS in Equations (25)–(26) 

and *
TS in Equation (28) for the lambda distribution λ

nP  in Equation (8) with varying  and λn . 

n  λ λ log n S S* ST ST
*

 
2 0.1 0.07 0.20 0.29 0.08 0.10 
2 0.3 0.21 0.42 0.61 0.20 0.31 
2 0.5 0.35 0.56 0.81 - 0.51 
2 0.7 0.49 0.65 0.94 - 0.72 
2 0.9 0.62 0.69 0.99 - 0.88 
5 0.1 0.16 0.39 0.24 0.19 0.09 
5 0.3 0.48 0.88 0.55 0.51 0.29 
5 0.5 0.80 1.23 0.76 0.78 0.50 
5 0.7 1.13 1.46 0.91 - 0.71 
5 0.9 1.45 1.59 0.99 - 0.92 

10 0.1 0.23 0.50 0.22 0.25 0.09 
10 0.3 0.69 1.18 0.51 0.74 0.28 
10 0.5 1.15 1.68 0.73 1.15 0.50 
10 0.7 1.61 2.04 0.89 - 0.71 
10 0.9 2.07 2.27 0.98 - 0.90 
20 0.1 0.30 0.59 0.20 0.31 0.08 
20 0.3 0.90 1.44 0.48 0.95 0.28 
20 0.5 1.50 2.09 0.70 1.51 0.49 
20 0.7 2.10 2.60 0.87 - 0.71 
20 0.9 2.70 2.93 0.98 - 0.92 
50 0.1 0.39 0.70 0.18 0.39 0.08 
50 0.3 1.17 1.75 0.45 1.21 0.28 
50 0.5 1.96 2.60 0.66 1.99 0.48 
50 0.7 2.74 3.29 0.84 - 0.70 
50 0.9 3.52 3.80 0.97 - 0.92 

100 0.1 0.46 0.78 0.17 0.44 0.08 
100 0.3 1.38 1.97 0.43 1.41 0.28 
100 0.5 2.30 2.97 0.64 2.35 0.49 
100 0.7 3.22 3.80 0.83 - 0.72 
100 0.9 4.14 4.44 0.96 - 0.91 

The values of ST (Pn
λ )  in Equation (25) for various λ  and n as given in Table 2 are quite 

comparable with the corresponding values of λ log n. In fact, the coefficient of determination, when 

properly computed [30], is found to be R2 =1− [λ logn − ST (Pn
λ )]2 / (λ logn − λ logn )2 = 0.998 , 

showing that about 99% of the variation of λ logn  is explained (accounted for) by the model  

in Equation (25). 
The entropy ST  has all of the same Properties P1–P6 as does S, but it does not have the additivity 

Property P7. Of course, ST  has the limitation that it is defined for the restricted range from 0  

to [(2 / 3)(.8logn)]5/4 . However, ST  in Equation (26) does approximately meet the requirement in 
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Equation (15) for its limited range so that difference comparisons as in Equations (3b) and (3c) are 

reasonably valid. 

3.2. The Case of S* 

For the relative entropy S* ∈[0,  1] in Equation (2), and in order to meet the validity condition in 

Equation (12) with E(Pn
1) = 1, a function f is needed such that S*(Pn

λ ) = f (λ, n)  and from which a 

transformed relative entropy ST
* ∈[0,  1] follows as: 

* *( ) [ ( ),  ]T n nS P g S P nλ λ= λ =  (27)

It is apparent from Figure 1 that the functions f and g have to have the integer n as a variable.  

By exploring alternative functions or models for different n and λ, using regression analysis, and 

expressing parameter estimates as convenient fractions, the following result is obtained: 
* * 4/3 α 1/91 [1 ( ) ] ,  α (1/ 2)( 1)TS S n= − − = −  (28)

where S*  stands for either * λ *( ) or ( )n nS P S P  and the corresponding ST
*  stands for either 

* λ *( ) or ( )T n T nS P S P . 

This function (model) in Equation (28) does indeed provide excellent fit to different data points 
(n,  λ) as seen from the results in Table 2. The values of ST

* (Pn
λ ) are nearly equal to the values of λ  for 

different n. The small residuals λ − ST
*  in Table 2 have no clear pattern that would indicate any particular 

inadequacy with Equation (28). The coefficient of determination, when properly computed [30], is found 
from Table 2 to be R2 =1− (λ − ST

* )2 / (λ − λ )2 = 0.997 , indicating that nearly all of the variation in 

the chosen λ -values is explained by Equation (28). 
While the ST  in Equations (25) and (26) is only defined for S* ≤ 0.8 , the ST

*  in Equation (28) is 

appropriate for all ST
*  and S* . Being a strictly increasing function of S* = S / logn  for any given n, ST

*  

has some of the same properties as S given in Section 2.1 with some obvious exceptions. However, ST
*  

has the important advantage over S * of satisfying, to a high degree of approximation, the condition in 
Equation (12) with ST

* (Pn
1) = 1 , making difference comparisons as in Equations (3b) and (3c) 

reasonably valid for ST
* . Of course, neither ST

*  nor S*  are zero-indifferent (Property P3) unless n is 

replaced by n+  where n+  is the number of positive elements of Pn = (p1,..., pn ) , or formally stated: 

n+ = #{1 ≤ i ≤ n : pi > 0} (29)

It may also be noted that log2 n+  is frequently referred to as Hartley’s measure or entropy ([24], 

Chapter 2) after Hartley [31]. 

For the interesting binary case; Equation (28) simplifies to: 

ST
* = 1− 1− (S*)4/3  for n = 2 (30)

and noting that: 

S*(P2 ) = − pi log
i=1

2

 pi / log2 = − pi log2 pi
i=1

2

  
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Figure 2 shows a comparison between ST
*  and S*  for distribution P2

λ = (1− λ / 2,  λ / 2)  (upper 

graph) and for P2 = (1− p, p)  (lower graph), with the latter form of the distribution typically being 

used for depicting binary entropies (e.g., [4,24]). The dashed lines represent the entropy requirement 

for value validity in Equation (13), which, for the upper and lower graphs becomes, respectively: 
* λ *

2( ) λ,  (1 ,  ) 1 |1 2 |E P E p p p= − = − −  (31)

Note that, while the derivative of E*(1− p,  p)  with respect to p in Equation (31) does not exist at  

p = 0.5, E*(1−p, p) is continuous at p = 0.5 (Property P1). 

Figure 2. Upper graph: relative entropy values S*(P2
λ )  in Equation (2) (upper curve) and 

ST
* (P2

λ ) in Equation (30) (lower curve) as functions of λ Lower graph: S*(p,  1− p)  and 

ST
* (p,  1− p) as functions of p. The dashed lines in the two graphs represent Equation (31). 

  

It may perhaps be tempting to use ST
*  in Equation (28) to propose the following entropies: 

ST
' = (logn)ST

*,  ST
'' = (n −1)ST

*  (32)

which would, respectively, comply with Equations (15) and (16), at least to a high degree of 
approximation. If, instead of n, the n+  in Equation (29) is used in Equation (32) and for ST

*  in 

Equation (28), then those two potential entropies ST
'  and ST

"  would also be zero-indifferent  

(Property P3). However, neither ST
' nor ST

"  can be acceptable entropies as exemplified by the two 

distributions P4 = (0.40,  0.35,  0.24,  0.01)  and Q4 = (0.40,  0.35,  0.25,  0)  for which S(P4 ) = 1.12 and 
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S(Q4 ) = 1.08  whereas, from Equations (32) and (28) using n+ , ST
' (P4 ) = 0.76, ST

' (Q4 ) = 0.94,  
ST

" (P4 ) =1.50,  and ST
" (Q4 ) =1.72. That is, in spite of the majorization  when any reasonable 

entropy should be greater for P4  than for Q4  (Property P6), both ST
'  and ST

''  give the opposite result. It 

is easy to find other examples with the same results. 

4. Assessment of Entropy Families 

For a parameterized family of entropies Si , such as those defined in Table 1, to be viable beyond 

being an interesting mathematical exercise or a generalization for its own sake, one could certainly 

argue that Si would need to meet some conditions lacking by S  in Equation (1). First, Si  should have 

some properties that may be considered important or desirable and that S  is lacking. Second, the 

flexibility provided by the incorporation of one or more parameters into the formulation of Si  should 

be justifiable by the parameter(s) having some meaning or interpretation relative to the characteristic 

(attribute) that Si  is supposed to measure. 

With respect to the first condition, it is rather obvious from the expressions in Table 1 that none of 

those entropy families would be favored over S in Equation (1) in terms of their properties. In fact, 

some of those entropies are even lacking the essential Schur-concavity property (Property P6 in 
Section 2.1). The entropy S3  in Table 1, which is a particular subset of S8  with 

β = δ = 1 and λ = k / (1−α ), and which was defined for all real α , is strictly Schur-concave only for 

α ≥ 0 . This follows immediately from the fact that, with the pi 's  ordered as in Equation (6), the 

partial derivative ∂S3 / ∂pi = k[α / (1−α )]pi
α −1 is increasing in i = 1,…, n only if α > 0and strictly so if 

the inequalities in Equation (6) are all strict [26] (p.84). For the limiting case when α → 0, S3  reduces 

to (1), which is strictly Schur-concave [26] (p. 101). Similarly, S10  was defined by Good [23] for  

non-negative integer values of α  and β , but is not Schur-concave for all such α  and β  values. 
Baczkowski et al. [32] extended S10  to permit α  and β  to take on real values and determined the 

rather restrictive (α, β ) regions for the Schur-concavity of S10 . 

A brief comment is warranted about the potential case when the probability distribution 

Pn = (p1,..., pn )  is possibly incomplete, i.e., when pi ≤ 1
i=1

n

  [10,11]. Then, setting λ = k / (1−α )  for 

some constant k and β = δ = 1, the S8  in Table 1 becomes: 

1
8

1

1 ,  0
1

n

i
i

n

i
i

p
k

S
p

α

=
α

=

 
 
 = − α >

− α  
 
 




 (33)

In the limiting case when α 1→ , and using L’Hôpital’s rule, Equation (33) reduces to: 

S8,0 = −k( pi )
−1 pi log pi

i=1

n


i=1

n

  (34)

The entropy in Equation (34) was first proposed by Rényi [11] for k = 1/log2, or equivalently, for  

k = 1 and the base-2 logarithm in Equation (34). In particular, when the probability distribution consists 

of a single probability p ∈(0,  1), then Equations (33) and (34) become: 

S8α = k(1−α )−1(pα −1 −1),  S8,0 = −k log p  
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It is rather apparent from the expressions in Table 1 that none of those entropy families or individual 

members, including those in Equations (33) and (34), meet the validity conditions in Section 2.2. Clearly, 

none of them satisfy Equations (15) and (16) or the weaker condition in Equation (12). There appears to be 

no reason for preferring any of those entropies or their relative (normed) forms over S or *S  in  

Equations (1) and (2) because of any substantial superiority with respect to value validity. 
With respect to the flexibility provided by such generalized entropies, one could argue that the entropy 

parameters may potentially be selected to best fit some given situation or problem [2] (p. 185)  

[33] (pp. 298–301). However, any parameter selection has to have some meaningful basis or 

explanation, which is sorely lacking in the published literature. Of the various families of entropies in 

Table 1, Rényi’s entropy S1 has attracted the most attention in information theory and in physics where 

it is being used, for example, as a generalized measure of fractal dimension in chaos theory  

[34] (pp. 686–688) [35] (pp. 203–223). 

Furthermore, such flexibility can alternatively be achieved by simply considering strictly increasing 
functions of S in Equation (1). As an example, consider Rényi’s entropy 1S  in Table 1 with 2α = , i.e., 

2

1

log
n

i
i

p
=

−  . For the lambda distribution { }n iP pλ λ=  in Equation (8) and the values of n and λ  in Table 2, 

and based on regression analysis, the following model is obtained: 

2 1.16 2

1

log ( ) 0.58[ ( )] ,  0.84
n

i n
i

p S P Rλ λ

=

− = =  (35)

It then follows from Equation (10) that the same type of relationship as in Equation (35) should hold 

approximately for any probability distribution Pn = (p1,..., pn ) . 

5. The Euclidean Entropy 

Since neither S in Equation (1) nor any of the entropies in Table 1 meet the validity condition in 

Equation (12) or in Equations (15) and (16), we shall search for an entropy that does. The most logical 

starting point is clearly the Euclidean distance relationship in Equation (11). Thus, for any distribution 
Pn = (p1,..., pn ) , we can define: 

SE
* (Pn ) = 1− d(Pn, Pn

1)

d(Pn
0, Pn

1)
∈[0,  1] (36)

where Pn
0  and Pn

1  are those in Equation (4). With Pn = Pn
λ  in Equation (8), it is immediately apparent 

that this SE
*  satisfies the validity condition in Equation (13). Then, an entropy that satisfies condition 

Equation (16) can be defined in terms of Equation (36) as: 

SE = (n+ −1)SE
* ∈[0,  n+ −1] (37)

where n+  is defined in Equation (29). It seems appropriate to call this SE  as the Euclidean entropy 

since it is based purely on Euclidean distances. The n+  instead of n is used in the definition of SE  to 

ensure that it is zero-indifferent (Property P3 in Section 2.1). 
The SE  can be expressed as: 
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1/2

2

1

2 1/2

1
1

( 1) 1 1 1     
1

    1 [( 1)( 1)] ( 1)(1 )

n

E i
i

n

i n
i

n
S n p

n

n n n p n n s +

+
+

+
=

+ + + + +
−

=

    = − − − −   −     

= − − − − = − −




 (38)

where s
n+ −1

 is the standard deviation of the n+  positive probabilities using n+ −1 instead of n+  as a 

divisor. From the first expression in Equation (38), we see that, for any given n+ , SE  is also a strictly 

increasing function of the so-called quadratic entropy 1− pi
2

i=1

n

  studied in [36]. Note also that SE
*  in 

Equations (36) and (37) is the coefficient of nominal variation introduced by [37] as measure of 

variation for nominal categorical data. Also, from the Lagrange identity (e.g., [38] (p.3)) and the 
second expression in Equation (38), SE  and SE

*  can be expressed in terms of pairwise differences 

between probabilities as: 

SE = n+ −1−[(n+ −1) 
1≤i< j≤n+  

(pi − pj )
2 ]1/2,  SE

* =1−


1≤i< j≤n+
(pi − pj )

2

n+ −1















1/2

 

The SE  can be seen to have all of the properties of S in Equation (1) as outlined in Section 2.1 

except for the additivity Property P7. It is strictly Schur-concave (Property P6) since (a) pi
2

i=1

n

  is strictly 

Schur-convex and (b) SE  is a strictly decreasing function of pi
2

i=1

n

  for any given (fixed) n+  from 

Equation (38) [26] (Chapter 3). The SE  avoids the limitation pointed out for the potential entropies 

ST
'  and ST

''  in Equation (32). That is, the implication under Property P6 also holds when some of the 
elements of Pn  or Qn  are zero. For example, for P4 = (0.40,  0.35,  0.24,  0.01)  and 

Q4 = (0.40,  0.35,  0.25,  0), SE (P4 ) = 1.96 > SE (Q4 ) = 1.74, which is an appropriate result since , 

but for which ST
'  and ST

''  gave the opposite and unacceptable result. 

To prove this last property of SE , it is sufficient to show that, for the distribution 

Pn = (p1,..., p
n+ , 0,..., 0) and using n instead of n+  in the formula in Equation (38) and denoting this by 

SE (Pn;n), the value of SE (Pn;n) for this Pn  is strictly increasing in n for given (fixed) n+ . Treating n 

as a continuous variable (for mathematical purposes), we obtain from Equation (38) the following 

partial derivative: 

∂SE (Pn;n)

∂n
= 1− 1

2






n pi
2 −1

i=1

n+








1/2

(n −1)1/2 − 1

2






(n −1)1/2 pi
2

i=1

n+



(n pi
2

i=1

n+

 −1)1/2

= 1− A − B  (39)

The first term A ≤ 1/ 2 since pi
2

i=1

n+

 ≤ 1 . The term B ≤ 1/ 2 if (n −1) pi
2

i=1

n+








2

≤ n pi
2

i=1

n+

 −1 , i.e., if 

(n −1) pi
2

i=1

n+

 −1 ≥ 0, which holds since pi
2

i=1

n+

 ≥ 1/ n+ . For pi
2

i=1

n+

 = 1/ n+ , when B = 1/2 for n = n+ +1, A < 1/2 
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so that ∂SE (Pn;n) / ∂n > 0  in Equation (39) for all n ≥ n+ +1 , which complete the proof. Thus, if 

Qn = (q1,..., qn ) for all qi > 0  is majorized by Pn = (p1,..., p
n+ , 0,..., 0), then SE (Qn ) > SE (Pn;n) > SE (p1,..., p

n+ ). 

Most importantly, and the reason for introducing SE  and SE
*  , is that they satisfy the validity 

requirement in Equations (16) and (13), respectively. For Pn
λ  in Equation (8), the expressions for 

SE  and SE
*

 in Equations (37) and (38) become SE (Pn
λ ) = (n −1)λ  and SE

* (Pn
λ ) = λ . The SE

*  in  

Equation (36) also has an appealing interpretation: it is the relative extent to which the distance 

between Pn  and Pn
1  is less than that between Pn

0  and Pn
1 . Such interpretation can also be made in terms 

of max
Pn

d(Pn, Pn
1) , which equals d(Pn

0, Pn
1) since d(Pn, Pn

1) is strictly Schur-convex in . 

6. Statistical Inferences 

We shall also consider the situation when the probability distribution Pn = (p1,..., pn )  consists of 

multinomial sample estimates pi = ni / N  for i = 1,…, n and sample size N = ni
i=1

n

 , with the 

corresponding population distribution being Πn = (π1,...,π n ) . For a generic entropy E, our interest may 

then be in making statistical inferences, especially confidence-interval construction, about the 
unknown population entropy E(Πn ) based on the sample distribution Pn  and the sample size N. From 

the delta method of the large sample theory ([39], Chapter 14), the following convergence to the 

normal distribution holds: 

N [E(Pn ) − E(Πn )] d⎯→ Normal(0,  σ 2 ) (40)

In other words, for large N, E(Pn )  is approximately normally distributed with mean E(Πn )  and 

variance Var[E(Pn )] = σ 2 / N  or standard error SE = σ / N  and where σ 2  is given by:  

σ 2 = π i
i=1

n


∂E(Πn )

∂π i







2

− π i

∂E(Πn )

∂π i





i=1

n












2

 (41)

The limiting normal distribution in Equation (40) still holds when, as is necessary in practice, the 
estimated variance σ̂ 2  is substituted for σ 2  by replacing the population probabilities π i  in Equation (41) 

with their sample estimates pi,  i = 1,..., n , yielding the estimated standard error SE
∧

= σ̂ / N . 

In the case of S in Equation (1) with k = 1, it is easily found from this procedure, starting with 

Equation (41), that the estimated standard error of S is given by: 

SE
∧

(S) = N −1 pi (log pi )
2 − ( pi log pi )

2

i=1

n


i=1

n
















1/2

 (42)

(see, e.g., [40] (p. 100)). The estimated standard error for the transformed ST  in Equation (26) is then 

derived from SE
∧

(S)  in Equation (42) as: 

SE
∧

(ST ) = dST

dS






SE
∧

(S) = 5

6






2

3






S







1/4

SE
∧

(S) (43)

Similarly, for ST
*  in Equation (28): 
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SE
∧

(ST
* ) = dST

*

dS







SE
∧

(S) = 4α
3logn







[1− (S*)4/3 ]α −1(S*)1/3 SE
∧

(S)  (44)

where α  is defined in Equation (28). 
In the case of SE  in Equation (38) and assuming n+ = n , by (a) taking the partial derivatives 

∂SE (Πn ) / ∂π i  for i = 1, …, n; (b) inserting those partial derivatives into Equation (41); and (c) substituting 

sample pi  for the population π i  (i = 1,…, n), the following estimated standard error is obtained: 

SE
∧

(SE ) = n2 (n −1)

N n pi
2 −1

i=1

n

( ) pi
3 − pi

2

i=1

n

( )2

i=1

n




























1/2

 (45)

As a simple illustrative example of the potential use of these statistical results, consider the sample 
distribution P4 = (0.60,  0.20,  0.15,  0.05)  based on a multinomial sample of size N = 100. The 

following entropy values from Equations (1) (with k = 1), (26), (28), and (38) as well their 
corresponding standard errors from Equations (42)–(45) are then computed for this P4 -distribution as: 

S = 1.06, SE
∧

(S) = 0.07;  ST = 0.65,  SE
∧

(ST ) = 0.06;  ST
* = 0.50,  SE

∧
(ST

* ) = 0.06;  SE =1.55,  SE
∧

(SE ) = 0.18.  

While these standard errors do provide some indication of how accurately the entropy estimates reflect 

the corresponding unknown population entropies, such information is more appropriately provided in 

terms of confidence intervals and because of the limiting distribution in Equation (40). Therefore, in 
this example, an approximate 95% confidence interval for S(Π4 ) is obtained as 1.06 ±1.96(0.07), or 

[0.92, 1.20]. Similarly, an approximate 95% confidence interval for the population entropy SE (Π4 ) 

becomes 1.55±1.96(0.18) , or [1.20, 1.90]. For ST (Π4 ) and ST
* (Π4 ) , approximate 95% confidence 

intervals become [0.53, 0.77] and [0.38, 0.62], respectively.  

7. Concluding Comments 

A number of conclusions may be made from this analysis using the concept of value validity of an 

entropy and based on the lambda distribution and criteria involving Euclidean distances and simple 

functional equations. Equations (12)–(16) provide the additional conditions that an entropy E has to meet 

for E to have the value-validity property so that difference comparisons as in Equations (3b) and (3c) may 

be permissible. While neither the Boltzmann-Shannon entropy in Equation (1) nor any of the proposed 
entropy families in Table 1 satisfy those conditions, the transformed entropy ST  in Equation (26) does 

for S(Pn ) / logn ≤ 0.8 and also the relative entropy ST
*  in Equation (28) does to a reasonable degree  

of approximation. 

Since no members of the generalized entropies in Table 1 has the advantage of value validity over 

S, and some may lack other properties of S as outlined in Section 2.1, one may question the need for 

what seems to have become almost an embarrassment of riches of entropies. One justifiable exception 

would be if the parameter(s) of a generalized entropy could be shown to have some particular meaning 

or interpretation that would be useful for explaining some phenomenon or result. However, such 

flexibility that may be provided by a parameterized family of entropies can also potentially be 

achieved by considering functions of S in Equation (1) as exemplified by Equation (35). 
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Whether an entropy E is used as a measure of disorder of a system in physics, uncertainty 

(information content) of a set of events in information theory, or of some other attribute or 

characteristic, the concern is with what types of comparisons can be made between values of E. If we 

argue that an E, such as S in Equation (1), should only be used for size (“greater than”) comparisons as 

in Equation (3a), such advice will not always be heeded as demonstrated in the published literature, 

resulting in invalid and misleading conclusions and interpretations. Such a misuse problem is avoided 

and more informative results can be obtained if E has the value-validity property permitting difference 
comparisons in Equations (3b) and (3c) to be made. The Euclidean entropy SE  in Equation (38) is 

proposed as one such more informative entropy. 

As with any measure that summarizes a set of data into a single number, it is advisable that the 
results be used or interpreted with some caution and an entropy is no exception. Even though the SE  in 

Equation (38) has the value-validity property and a number of other desirable properties so that it can 

be used for all the comparisons in Equations (3a)–(3c) as reasonable indications of the attribute 

(characteristic) being measured, this does not necessarily imply that another entropy with all the same 

properties would produce exactly the same results. Even S in Equation (1) and some member of 
Rényi’s family S1 in Table 1 such as α = 2, which both have the same Properties P1–P7 (Section 2.1), 

do not necessarily order their values in the same way for all probability distributions unless the 

distributions are comparable with respect to majorization. 
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