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Abstract: In high-pressure dynamic thermodynamic processes, the pressure is much higher 

than the air critical pressure, and the temperature can deviate significantly from the Boyle 

temperature. In such situations, the thermo-physical properties and pneumatic performance 

can’t be described accurately by the ideal gas law. This paper proposes an approach to 

evaluate the pneumatic performance of a high-pressure air catapult launch system, in which 

esidual functions are used to compensate the thermal physical property uncertainties of 

caused by real gas effects. Compared with the Nelson-Obert generalized compressibility 

charts, the precision of the improved virial equation of state is better than 

Soave-Redlich-Kwong (S-R-K) and Peng-Robinson (P-R) equations for high pressure air. In 

this paper, the improved virial equation of state is further used to establish a compressibility 

factor database which is applied to evaluate real gas effects. The specific residual 

thermodynamic energy and specific residual enthalpy of the high-pressure air are also 

derived using the modified corresponding state equation and improved virial equation of state 

which are truncated to the third virial coefficient. The pneumatic equations are established 

on the basis of the derived residual functions. The comparison of the numerical results shows 

that the real gas effects are strong, and the pneumatic performance analysis indicates that the 

real dynamic thermodynamic process is obviously different from the ideal one. 

Keywords: thermodynamics; residual function; specific thermodynamic energy; specific 

enthalpy; high pressure air; compressibility factor 
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1. Introduction 

Compared to petroleum or electric systems, high pressure air has the advantages of no pollution, high 

power density, cheapness, reliable performance, recycling use, and being easy to maintain [1,2]. It has 

been applied to industrial automation, robot driving, compressed air powered vehicles, and even some 

special industries such as aeronautics, astronautics, and weapons design [3]. Typically, the charging and 

discharging performance and exergy analysis [4] are based on the equations of state. However, in 

high-pressure pneumatic dynamic thermodynamic processes, the pressure is much higher than the air 

critical pressure and the temperature can deviate significantly from the Boyle temperature. Since the 

thermodynamic properties based on the ideal gas are not authentic [5], the deviations in the mass and 

energy balances in thermodynamic process may not be acceptable. In this paper, the specific residual 

thermodynamic energy and specific residual enthalpy will be derived to compensate for the real gas effect. 

Extensive studies have been conducted on high pressure pneumatic systems [6,7]. In these works, 

most of the thermodynamic property calculations are still based on the ideal gas assumption, although 

the specific thermodynamic energy and specific enthalpy of an ideal gas and a real gas can differ 

considerably under high pressure and low temperature conditions. In this study, we will also examine the 

deviation between the state variables computed by the real gas equation and ideal gas assumption. 

Many semi-empirical formulas have been proposed to describe the properties of real gases, including 

the van der Waals equation [5], Redlich-Kwong (R-K) equation [8], Soave-Redlich-Kwong (S-R-K) 

equation [9], Benedict-Webb-Rubin (B-W-R) equation [10], and Peng-Robinson (P-R) equation [11,12]. 

With the development of the corresponding states principles, these equations are applicable to all kinds 

of gases within a certain pressure and temperature range. However, the precision of some of these 

equations is not satisfactory, or when calculating the thermodynamic variables by using high order 

nonlinear equations, like the S-R-K and P-R equations, it will lead to the extra problem of solving 

transcendental equations, which appearance is not desirable. The SAFT-type equation of state [13] is 

accurate enough to calculate thermodynamic variables of air, while the mathematical expression of the 

derived functions are complex. 

2. Derivation and Determination of Real Gas Equation of State for High Pressure Air 

According to the corresponding state law, the compressibility factor which indicates the deviation of 

real gas from ideal gas can be obtained from the table of corresponding states [14]: 

 ,m c mc r mr
c r r

c r

PV PV PV
Z Z P T

RT RT T


  
     

  
 (1)

The compressibility factor is a function of the corresponding pressure and temperature. The 

compressibility factor value of an ideal gas is 1. For most gases, the P-Z curves can be approximately 

considered to be linear when the pressure P < 0.5Pc or the temperature T > 5Tc, and the compressibility 

factor Z is nearly 1. However, under high pressure conditions over 0.5Pc, or low temperature conditions 

below 5Tc, a reliable and simple real gas equation of state should be derived to fit the data. 

The virial coefficients which are basic thermodynamic properties represent the non-ideal behavior of 

real gases. The importance of the virial coefficients lies in the fact that they are related directly to the 

interactions between molecules. The second virial coefficient represents the deviation behavior from 
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ideality due to interactions between pairs of molecules, the third virial coefficient gives the effects of 

interactions of molecular triplets, and so on. The fourth and higher virial coefficients usually contribute 

little to the densities of gases and have relatively large uncertainties. Therefore, the accurate knowledge 

of the virial coefficients is of great significance. In order to improve the accuracy of calculation, most 

effort has been focused on obtaining the second [15,16] and third virial coefficients [17,18]. 

The volume serial form of the virial equation which is truncated to the third virial coefficient can be 

written as: 

2
1m

m m

PV B C

RT V V
    (2)

After the introduction of the critical pressure Pc, the critical temperature Tc, acentric factor ω, and the 

extended corresponding states variable θ [19], the second and third virial coefficients of the 

corresponding state can be expressed as: 

0 1 2( ) ( ) ( )c
r r r r r r r

c

BP
B B T B T B T

RT
      (3)

2
0 1 2

2
( ) ( ) ( )

( )
c

r r r r r r r
c

CP
C C T C T C T

RT
      (4)

where Br
0(Tr), Cr

0(Tr) are obtained by fitting data for small spherical molecules (ω = 0); Br
1(Tr), Cr

1(Tr) 

are obtained from data for larger, non-spherical, non-polar molecules (ω ≠ 0); Br
2(Tr), Cr

2(Tr) are 

obtained from data for non-hydrogen bonding polar molecules; and Tr = T/Tc. 

In this paper, the real gas is assumed to be air in chemical equilibrium [20]. The National Institute of 

Standards and Technology (NIST) provides a basic model of air [21], which consists of nitrogen, 

oxygen, and argon. These are non polar molecules, the Br
2(Tr), and Cr

2(Tr) of dry air are 0, and the critical 

parameters of air are: Tc = 132.45K, Pc = 3.77MPa. The improved formulas of Br
0(Tr), Br

1(Tr), Cr
0(Tr), 

and Cr
1(Tr) given by references [22–24] are: 

0
2 3 8

0.30252 0.15668 0.00724 0.00022
( ) 0.13356r r

r r r r

B T
T T T T

      (5)

1
2 3 8

0.15581 0.38183 0.44044 0.00541
( ) 0.17404r r
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T T T T

     (6)

0
2.8 10.5

0.02432 0.00313
( ) 0.01407r r

r r

C T
T T

    (7)

1
2.8 3 6 10.5

0.0177 0.04 0.003 0.00228
( ) 0.02676r r

r r r r

C T
T T T T

       (8)

The Peng-Robinson (P-R) equation, Equation (9), is an improvement on the van der Waals equation. 

It was proposed in 1976 [12,13]: 

( )

( ) ( )

RT a T
p

v b v v b b v b
 

   
 (9)
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where  
2 2

20.5
( ) 0.42748 1 1c

r

c

a T
R T

r T
p

  
 

    
 

, 
20.48 1.574 0.176r w w   , and 

0.08664
c

c

RT
b

p
 . 

In the general high pressure pneumatic system, the pressure can reach 30 MPa, and the temperature 

range is about 250 K< T <400 K. Compared with the Nelson-Obert’s generalized compressibility  

chart [1], the P-R equation is more precise than the S-R-K equation in the compressibility factor 

calculation of air [1]. In this paper we calculate the compressibility factor, using improved virial and 

P-R equations. The results of some feature points are shown in Table 1. The data for air fitted in this 

paper are provided by the real properties database of National Institute of Standards and Technology 

(NIST) [25], as shown in Table 2. 

Table 1. Compressibility factors of air using improved virial equation and P-R equation. 

Compressibility Factors Z 
Pressure [MPa] 

0.101 1 6 12 19.43 25 30 

Temperature 
[K] 

400 
virial 1.0002 1.0019 1.0146 1.0358 1.0695 1.0986 1.1268 

P-R 1.0001 1.0007 1.0077 1.0231 1.0504 1.0755 1.1005 

298 
virial 0.9997 0.9969 0.9880 0.9922 1.0173 1.0470 1.0788 

P-R 0.9994 0.9947 0.9772 0.9773 1 1.0275 1.0620 

250 
virial 0.9990 0.9907 0.9540 0.9351 0.9505 0.9832 1.0209 

P-R 0.9987 0.9875 0.9392 0.9190 0.9382 0.9725 1.0170 

200 
virial 0.9976 0.9765 0.8687 0.7942 0.8133 0.8685 0.9278 

P-R 0.9970 0.9710 0.8476 0.7831 0.8157 0.8775 0.9465 

Table 2. Specific volume within different temperature and pressure. 

Specific volume 
[m3/kg] 

Pressure [MPa] 

0.1 0.5 1 6 10 15 20 25 30 

Temperature 
[K] 

100 0.281 0.0509 0.00130 0.00126 0.00125 0.00122 0.00120 0.00119 0.00117 
140 0.399 0.0773 0.0370 0.00222 0.00174 0.00158 0.00150 0.00144 0.00139
200 0.537 0.114 0.0561 0.00833 0.00467 0.00309 0.00245 0.00214 0.00195
260 0.746 0.149 0.0741 0.0120 0.00713 0.00478 0.00368 0.00307 0.00269
300 0.861 0.172 0.0859 0.0142 0.00855 0.00578 0.00446 0.00368 0.00318
400 0.148 0.230 0.115 0.0194 0.0118 0.00806 0.00620 0.00509 0.00437

The error results when calculating the compressibility factor within the pressure range of  

0.101325 MPa < P < 30 MPa at the temperatures of 400 K, 300 K and 260 K, respectively, are shown as 

Table 3. From Table 3, it is found that the precision of improved virial equation is better than P-R 

equation compared to the NIST database. 

Compared with the P-R equation, the precision of the improved virial equation is better. The 

precision can meet the requirements of general engineering computation. Therefore, the improved virial 

equation is adopted to calculate compressibility factor, and in this paper the thermodynamic variables 

will be derived based on the improved virial equation of state. 
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Table 3. Error of compressibility factors for air using improved virial equation and P-R 

equation respectively. 

Temperature 
[K] 

Pressure range 
[MPa] 

P-R equation Improved virial equation 
Maximum 
absolute 

error 

Maximum 
relative 
error 

Maximum 
absolute 

error 

Maximum 
relative 
error 

400 0.101325～30 0.0415 3.63% 0.0152 1.33% 
300 0.101325～30 0.0467 4.21% 0.0274 2.47% 
260 0.101325～30 0.0555 5.13% 0.0457 4.23% 

Figure 1 shows the relationship between the pressure and density of high pressure air under different 

temperature conditions using different equations of state. It is found that the improved virial equation 

shows good agreement with the NIST data. 

Figure 1. Comparison of real gas equations of state (T = 400 K, T = 300 K, T = 260 K). 

(a) (b) 

(c) 

3. Modeling Thermodynamic Variables 

The dynamic thermodynamic analysis under high pressure conditions such as mass flow rate, 

charging and discharging processes, and exergy analysis in the pneumatic system are of particular 

interest in many applications. Therefore, to investigate the thermal behaviors in thermodynamic 
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processes, which can be used to predict the gas pressure, temperature and flow rate, it is essential to 

derive the thermodynamic variables on the basis of real gas equation states. In this section, the real 

analytical expressions of specific thermodynamic energy and specific enthalpy will be derived for high 

pressure air. 

3.1. Residual Functions 

In the calculation of real thermodynamic property variables, the ideal value can be calculated first, 

then the residual function will subtracted from the ideal value. The definition of residual function can be 

expressed as: 

reF F F   (10)

where Fre denotes the residual of a arbitrary extensive properties or specific properties, that is, the 

difference between the properties of ideal gas and real gas, F* denotes the properties of ideal gas, and F 

denotes the properties of real gas. 

The differential form of specific thermodynamic energy for real gas is: 

[ ( ) ]
P

du c dT p T dv
v vT


  


 (11)

We have: 

u p
T p

v TT v

            
 (12)

The residual specific thermodynamic energy for a real gas is obtained by integrating the equation 

above from v* = ∞ (ideal gas state) to v (real gas state) along the isotherm: 

2 ( / )
( )

v v

r
v

p p T
u p T dv T dv

T T 

                 (13)

The specific enthalpy for a real gas is defined as: 

h u pv   (14)

and the specific enthalpy for an ideal gas can be expressed by: 
* *

gh u R T   (15)

Combination of the above three equations will lead to: 

2 ( / )v

r g
v

p T
h T dv pv R T

T

        (16)

3.2 Thermodynamic Variables of Ideal Gas 

The specific thermodynamic energy and specific enthalpy of ideal gas can be written as: 

0

* *
0( )

T

VT
u T c dT u   (17)
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0

* *
0( ) ( )

T

V gT
h T c R dT h    (18)

For ideal gas, isochoric heat capacity can be expressed by: 

 * 2 3 4( 1)V gc R T T T T           (19)

where 3.653  , 31.337 10    , 63.294 10   , 91.913 10    , and 120.2763 10   . 

3.3 Thermodynamic Variables of Real Gas 

Based on the improved virial equation and substituting Equations (13), (16), (17) and (18) into 

Equation (10), respectively, the analytical expressions of specific thermodynamic energy and specific 

enthalpy for real gas are obtained as follows: 
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(20)
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(21)

4. Modeling of Pneumatic Catapult 

Figure 2 shows the working principle of a high pressure pneumatic catapult, and Figure 3 is the 

schematic diagram of the lifting ejection mechanism which is a schematic structural diagram of the 

three-step piston cylinder in Figure 1 and component 6 in Figure 4. There da is the diameter of the piston 

rod, dc is the diameter of piston, Sa is an effective thrust area of the third stage cylinder, Lb represents the 

second cylinder, and Lc represents the third stage cylinder. 
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Figure 2. High pressure gas supply system. 

 

The working principle of the lifting ejection system can be described as follows: as the launching 

process starts, the controlled valve immediately responds and opens, and high-pressure gas flows into 

the low pressure chamber; the second stage of the cylinder pushes the piston to move forward, then the 

first stage of the cylinder pushes the piston to move forward after the second stage moves to the end; 

missile moves with lifting beam, then lifting beam collides with the buffer, and missile flies out of the 

launch tube. 

In the course of the pneumatic ejection, taking the subsonic and sonic flow into account, mass flow 

equation can be written as: 

2 1
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，

 (22)

where subscripts 1 and 2 indicate high-pressure chamber and low pressure chamber respectively, μx is 

flow correction factor, A denotes the equivalent cross-sectional area of orifice, and k denotes the 

adiabatic index. 

According to mass and energy conservation laws, and the flow equation in the high-pressure chamber 

and low pressure chamber, the following relations can be established: 
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where me is the quality of missile, Pa denotes the atmospheric pressure, g is the acceleration of gravity,  

v2 is the speed of missile, and st denotes effective thrust area. 

Let X1=ρ1, X2=T1, X3=m2, X4=T2, X5=l, X6=v2, the closed pneumatic equations can be established as: 
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Figure 3. Three-step piston cylinder simplified diagram. 

 

Figure 4. Lifting ejection mechanism sketch. 

 

5. Simulation Analysis of the Pneumatic Ejection 

The system parameters of above mathematical model and thermo-physical parameters are as shown 

in Table 4. The five-step four-order Runge-Kutta method is used to calculate the pneumatic ejection 

process based on ideal gas equation and real gas equation respectively. The basic idea of five-step 

four-order Runge-Kutta method is expressed as: 
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(25)

where 0t  indicates time step, and j represents the current time step. 

Air 
intake

Sa

dc

da

Buffer

Load

Lc

Lb

La

1 3 4 5

1-folding wing, 2-lifting beam, 3-lifting pole, 4-missile,

5-gas inlet, 6-three-step piston cylinder, 7-exhaust orifice,

8-launch tube.

2 6 7 8
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Table 4. System parameters and thermal physical parameters of dry air. 

Parameters Values 
Universal gas constant R [J/mol·K] 8.3145 
Critical temperature Tc [K] 132.45 
Critical pressure Pc [MPa] 3.77 
Acentric Factor   0.031 
Gas constant of air Rg [J/kg·K] 287.0 
Molar mass M [g/mol] 28.97 
Flow correction factor μx 0.95 
Cross-sectional area valve control A [m2] 0.0123 
Adiabatic index k 1.4 
Initial gas density of “1” ρ1 [kg/m3] 360 
Initial gas temperature of “1” T1 [K] 300 
Volume of “1” V1 [m

3] 1.8 
Initial gas mass of “2” m2 [kg] 26 
Initial gas temperature of “2” T2 [K] 300 
The number three piston cylinder n 4 
Effective thrust area of cylinder S0 [m

2] 0.0235 
Mass of missile M0 [kg] 24,000 
Launch angle   [deg] 90 
Initial volume of “2” V0 [m

3] 0.7 

5.1. Comparative Analysis of Dynamic Thermodynamic Processes 

Figures 5–9 show the dynamic variation comparison of the main thermodynamic variables in the 

ejection process. When air flows from high pressure chamber to low pressure chamber in the throttling 

process, the temperature will change with the pressure drop. The throttling process is assumed to be an 

isenthalpic process. From Figure 5, we can see that the high pressure air flows into the low pressure 

chamber, the temperature in the high pressure chamber decreases all the time. In the initial stage, the 

temperature of the low-pressure chamber increases immediately, and then decreases gradually when the 

missile moves upward. Also, from Figure 5, we can see that the real temperature in the high chamber 

decreases faster than the ideal temperature before 0.2 s. This can be explained from the following two 

aspects: firstly, Figure 9 shows that the gas mass based on real gas and ideal gas flowing into the low 

pressure chamber are nearly equal; secondly, Figure 7 shows that the residual enthalpy in high pressure 

chamber is positive, the real enthalpy of high pressure air is obviously less than ideal one. As a result, the 

real temperature in the high chamber decreases faster before 0.2 s. 

From Figure 5, we know the temperature in the low pressure chamber increases immediately, and 

then decreases slowly when the missile moves upward. It shows that the real temperature of gas in the 

low pressure is always lower than ideal one, which indicates that the real gas effects decelerates the 
temperature increasing rates in the low pressure chamber in the early stage, and accelerates the rate of 

decrease of the temperature with the missile moving upward. 

Figure 6 shows the pressure variations in the high pressure chamber and low pressure chamber. We 

can see that the hyperbaric always deflates, and the pressure continues to decay. High pressure air flows 

into low pressure chamber that the pressure in the low pressure chamber increases before the missile 
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starts to move, and decreases as the missile moves upward. The real pressure decay rate is greater than 

the ideal decay rate. This is due to the following facts: firstly, from the analysis above, we know that the 

real temperature in the high chamber decreases faster than the ideal one; secondly, the real gas mass 

flowing out of high pressure chamber is nearly the same as the ideal mass. The first factor is the 

dominant factor which makes the phenomenon happened. The ideal value of temperature in the hyperbaric 

pressure chamber is much greater than the actual value which is similar to low pressure chamber. 

Figure 5. Temperature contrast curve. 

 

Figure 6. Pressure contrast curve. 

 

From Figure 7, we can see that the specific enthalpy in the hyperbaric chamber increases first and then 

decreases slightly, while the specific enthalpy in the low pressure chamber rises rapidly, and then increases 

slowly. When the pressure getting higher, the distance between molecules becomes smaller and the 

intermolecular interaction becomes stronger, as a result, the specific enthalpy gets larger and it deviates more 

from the ideal gas state. While the temperature increases, the situation is totally different: longer distance 

between molecules makes the intermolecular forces smaller, so the specific enthalpy gets smaller and it is 

more close to the ideal gas state. For the high pressure chamber, with gas flowing into low pressure chamber, 

pressure decays, and temperature decreases rapidly. Figure 7 shows the specific enthalpy in the high pressure 

chamber drops slightly, which indicates that the pressure drop is the main factor. For the low pressure 

chamber, the pressure and temperature increase first, and decrease with the gas pushing the missile upwards. 

Figure 7 shows the specific enthalpy in the low pressure chamber increases rapidly first and then increases 

slightly, which indicates that the pressure increase is the main factor in the early stage, and the temperature 

decrease is the main factor in the later round. 
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Figure 7. The residual enthalpy curve. 

 

Figure 8 shows the dynamic variation of pressure compression factors in the hyperbaric chamber and 

low pressure chamber. The maximum compression factor reaches 1.1013 and 1.0486, respectively. 

From Equation (1) we can see that the compressibility factor is determined by temperature and pressure. 

As shown in Figure 5 and Figure 8, the compressibility factor variation law is similar to the pressure one 

which indicates that the pressure dominates the changing regulation of the compression factor. 

Figure 8. The compressibility factor curve. 

 

Figure 9 shows the mass flow rate declines rapidly at first, and then rises slowly. It is also noticed in 

Figure 9 that the real gas effect accelerates the rate of decrease of the mass flow in the early stage, and 

decelerates the rates of increase in the later period. 

Figure 9. The mass flow rate curve. 
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5.2. Ejection Performance Evaluation Variables 

With the missile overload consistent with the pressure in the low pressure chamber, agreement 

between the acceleration of missile and pressure in the low pressure chamber are fairly satisfied, 

regardless of whether the correspondence relationship is based on a real gas or based on an ideal gas, just 

as shown in Figures 5 and 9.  

The missile speed is a linear function of acceleration, and the missile stroke is a quadratic function of 

acceleration, while the ejection time is less than 1 s. It is shown that the velocity of missile based on an 

ideal gas is significantly greater than that based on a real gas, and missile stroke based on an ideal gas is 

slightly larger than that based on a real gas shown in Figures 10–12. 

Figure 10. The acceleration curves. 

 

Figure 11. The velocity curve. 

 
Figure 12. The displacement curve. 
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6. Conclusions 

In this paper, the improved virial equation of state is used to describe the thermodynamic properties 

of high pressure air by fitting the NIST data. The compressibility factor is utilized to evaluate the 

precision of the equation of state. Compared with the NIST data, the compressibility factor value 

obtained from the improved virial equation has a maximum error of 1.33%, 2.47% and 4.23% within the 

pressure ranges of 0.101325 MPa < P < 30 MPa at the temperatures of 400 K, 300 K and 260 K, 

respectively, and the precision of the improved virial equation of state is better than that of the existing 

P-R and S-R-K equations. 

Also, the analytical expression for thermodynamic variables, such as the specific residual 

thermodynamic energy and specific residual enthalpy are presented to compensate the real gas effects, 

based on the improved virial equation of state. The study on dynamic thermodynamic analyses, mass 

flow rate, charging and discharging processes, and exergy analysis are of particular importance in high 

pressure air applications. In addition, based on the real thermodynamic variables, the internal ballistics 

mathematical model for a pneumatic ejection system is established, with the real gas effects considered. 

Numerical simulations are also performed. 

The detailed dynamic thermodynamic processes for discharging processes in the hyperbaric chamber 

and charging processes in the low pressure chamber are analyzed. The comparison of the numerical 

results indicate that the value of residual enthalpy is high, the state of the working fluid deviates from the 

ideal gas, and the compressibility of working fluid is strong, as the compression factor reaches 1.107. 

The real gas effects accelerate the pressure and temperature rates of decrease in the hyperbaric pressure 

chamber, and decelerate the rates of increase in the low pressure chamber. 
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  acentric factor, dimensionless r corresponding value 

Θ extended corresponding states variables, dimensionless c critical value 
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