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Abstract: Electroencephalography (EEG) reflects the electrical activity of the brain, which
can be considered chaotic and ruled by a nonlinear dynamics. Chickens exhibit a protracted
period of maturation, and this temporal separation of the synapse formation and maturation
phases is analogous to human neural development, though the changes in chickens occur in
weeks compared to years in humans. The development of synaptic networks in the chicken
brain can be regarded as occurring in two broadly defined phases. We specifically describe
the chicken brain development phases in the causality entropy-complexity plane H × C,
showing that the complexity of the electrical activity can be characterized by estimating the
intrinsic correlational structure of the EEG signal. This allows us to identify the dynamics
of the developing chicken brain within the zone of a chaotic dissipative behavior in the plane
H × C.
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1. Introduction

The brain can be thought as a complex system, and the dynamical features of neural population
activity emerge from the interactions of the neuro-anatomical networks. Mental states would emerge
therefore from the interaction between multiple physical and functional levels. The nature of the
relationship between the mind and the brain is far from understood. We may tend to think of the optimal
brain development of a human, or a mouse, or a chicken, as something which is clearly limited by genes.
However, if chickens or rats are provided with a stimulating environment, cognitive performances can
be slightly improved as generations pass. On the contrary, if environmental stimuli and food supplies are
discontinued, the brain inter-connectivity does not grow further. Thus, the conditions surrounding the
organism could define how the neural system would evolve.

Developing theoretical tools that could provide new insights to study how mind/brain mechanisms
evolve would crucially change our understanding of cognitive processes. In this paper, we show
that recent advances in complex systems can provide crucial new insights into this problem.
Electroencephalography (EEG) reflects the brains electrical activity, such as postsynaptic potentials,
and functional magnetic resonance imaging (fMRI) detects blood flow, motion and equilibrium under
the action of external forces. Importantly, EEGs contain information about the architecture of the neural
networks in the brain on several scales. The detection of anomalies in EEG signals can be a biomarker
for developmental cognitive disorders.

Bandt and Pompe [1] have proposed a robust approach to time series analysis on the basis of counting
ordinal patterns by introducing the concept of permutation entropy for quantifying the complexity of
a system behind a time series. Thus, the ordinal structures of the time series instead of the values
themselves are considered taking into account the time causality of the signal [2]. This methodology
has been applied for investigating EEG and FMRi signals [3–14]. The complexity of the brain would
represent the amount of “information” contained in the organism, in the sense that it quantifies the
dynamical features of the temporal pattern due to functional interactions produced by a structural
network. Complexity captures the degree to which a neural system integrates specialized information,
and in particular, MPRstatistical complexity can distinguish time series generated by stochastic and
chaotic systems [15,16]. This statistical complexity measure can also detect and quantify noise induced
order [15,16].

In this paper, we characterize EEG signals of chicken, from the time the birds have weekly measures
until six weeks posthatch. We considered that in this period, the chickens reach their neurological
maturity. We analyze the EEG time series corresponding to the first six weeks of life and perform a
quantitative analysis of the brain maturation changes. By estimating Shannon entropy, MPR statistical
complexity and the Fisher information measure [17–19] of the EEGs signals, we show that it is possible
to quantify brain development. Thus, using information theory-based quantifiers as biomarkers of
chicken brain allows us to characterize the underline the dynamics of EEG time series, identifying the
different stages of bird brain maturation. Our results show that synapse formation in the chicken brain
occurs in the first stage between the first and the third week, where the system, instead of developing
into a more complex state, moves to lower values, producing its entropic reduction, where it reaches
a more ordered state (in agreement with [20–22]). Once the chickens are between the third and sixth
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week, meeting the needs of the highly energetic, demanding and sensitive neuronal cells (helped with
the proper conditions surrounding the organisms), it is said that they reach the “maturation period”. We
show that during this second stage, the brain develops into a more complex state, but also, at the same
time, producing its entropic deterioration as cells become older. Importantly, our analysis of the causality
entropy-complexity plane H × C allows us to identify the localization of the developing chicken brain
dynamics within the zone of a chaotic dissipative behavior in this plane.

2. Methodology

2.1. Experimental Methods

Twenty four chickens (Gallus domesticus) reared from hatching were the subjects in this experiment.
All birds had free access to food and water throughout the experiment. The birds were reared initially
in incubation boxes and then transferred to holding cages maintained at a constant temperature (21 ◦C)
with a 12:12 h light:dark cycle. Continuous EEG recordings (0.1–100 Hz with a 50-Hz notch filter)
were made using small (6 mm) gold cup electrodes attached to the scalp with collodion glue and filled
with electrode gel. The signal was sampled at a rate of 128 Hz, passed through amplifiers and stored
directly on a computer. The total length of each record is 16, 368 data. Data acquisition was controlled
by Strawberry Tree software. Four electrodes were placed over the left and right frontal (LF and RF) and
the left and right posterior (LP and RP) areas of the scalp, with an additional reference electrode placed
at the back of the head. EEG recording was taken at Day 7 posthatch and then each week for six weeks.
For additional details of the acquisition protocol, see [23]. The recorded EEG signals are nonstationary,
and they also present artifacts, due to saccadic eye movements [23].

In order to avoid these problems and to facilitate a subsequent quantitative analysis, each signal
was pre-processed using a methodology based on orthogonal discrete wavelet transform (see [24] for
procedure details) and summarized as follow: (1) The discrete orthogonal wavelet transform of the
signal is obtained considering Jmax = −10 wavelet resolution levels with a spline cubic mother wavelet.
(2) After that, a cleaning and stationary signal is obtained by reconstruction (inverse wavelet transform)
using the resolution wavelet levels corresponding to the frequency range 0.5–32.0 Hz. (3) The wavelet
frequency bands at which the saccadic movement frequency appear, as well as their time localization
were identified. The corresponding wavelet coefficients were reduced so that they present a contribution
below the noise-signal level, and the corresponding frequency band is reconstructed. (4) Finally, the
complete signal is obtained by superposition of the all wavelet reconstructed frequency bands [25].

2.2. Shannon Entropy, Fisher Information Measure and MPR Statistical Complexity

Sequences of measurements (or observations) constitute the basic elements for the study of natural
phenomena. In particular, from these sequences, commonly called time series, one should judiciously
extract information on the underlying dynamical systems under study. We can define an information
theory quantifier as a measure that is able to characterize some property of the probability distribution
function (pdf) associated with these time series of a given row signal (i.e., EEG). Entropy, regarded as a
measure of uncertainty, is the most paradigmatic example of these quantifiers.
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Given a time series X (t) ≡ {xt; t = 1, · · · ,M}, a set of M measures of the observable X and the
associated pdf, given by P ≡ {pj; j = 1, · · · , N} with

∑N
j=1 pj = 1, and N the number of possible

states of the system under study, the Shannon’s logarithmic information measure (Shannon entropy) [26]
is defined by:

S[P ] = −
N∑
j=1

pj ln(pj) . (1)

This functional is equal to zero when we are able to predict with full certainty which of the possible
outcomes j, whose probabilities are given by pj , will actually take place. Our knowledge of the
underlying process, described by the probability distribution, is maximal in this instance. In contrast,
this knowledge is commonly minimal for a uniform distribution Pe = {pj = 1/N, ∀j = 1, · · · , N}.

The Shannon entropy S is a measure of “global character” that is not too sensitive to strong changes in
the pdf taking place in a small region. Such is not the case with the Fisher information measure [27,28]:

F [f ] =

∫
|∇⃗f(x)|2

f(x)
dx , (2)

which constitutes a measure of the gradient content of the distribution f (continuous pdf), thus being
quite sensitive even to tiny localized perturbations.

The Fisher information measure can be variously interpreted as a measure of the ability to estimate
a parameter, as the amount of information that can be extracted from a set of measurements, and also
as a measure of the state of disorder of a system or phenomenon [28,29], its most important property
being the so-called Cramer–Rao bound. It is important to remark that the gradient operator significantly
influences the contribution of minute local f -variations to the Fisher information value, so that the
quantifier is called a “local” one. Note that Shannon entropy decreases with a skewed distribution, while
Fisher information increases in such a case. Local sensitivity is useful in scenarios whose description
necessitates an appeal to a notion of “order” [17–19]. The concomitant problem of loss of information
due to the discretization has been thoroughly studied (see, for instance, [30–32] and the references
therein), and in particular, it entails the loss of Fisher’s shift-invariance, which is of no importance for
our present purposes.

For Fisher information measure computation (discrete pdf), we follow the proposal of Dehesa and
coworkers [33] based on amplitude of probability f(x) = ψ(x)2, then:

F [ψ] = 4

∫ {
dψ

dx

}2

dx . (3)

Its discrete version is now:

F [P ] = 4
N−1∑
i=1

(
√
pi+1 −

√
pi)

2 . (4)

If our system is in a very ordered state and, thus, is represented by a very narrow pdf, we have a
Shannon entropy S ∼ 0 and a Fisher information measure F ∼ Fmax. On the other hand, when the
system under study lies in a very disordered state, one gets an almost flat pdf and S ∼ Smax, while
F ∼ 0. Of course, Smax and Fmax are, respectively, the maximum values for the Shannon entropy and
Fisher information measure. One can state that the general behavior of the Fisher information measure
is opposite to that of the Shannon entropy [34].
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It is well known, however, that the ordinal structures present in a process is not quantified
by randomness measures, and consequently, measures of statistical or structural complexity are
necessary for a better understanding (characterization) of the system dynamics represented by their time
series [35]. The opposite extremes of perfect order (i.e., a periodic sequence) and maximal randomness
(i.e., a fair coin toss) are very simple to describe, because they do not have any structure. The complexity
should be zero in these cases. At a given distance from these extremes, a wide range of possible ordinal
structures exists. The statistical complexity measure allows one to quantify this array of behavior [36].
We consider the MPR complexity [37], as it is able to quantify critical details of dynamical processes
underlying the data set.

Based on the seminal notion advanced by López-Ruiz et al. [38], this statistical complexity measure
is defined through the functional product form:

CJS[P ] = QJ [P, Pe] ·HS[P ] (5)

of the normalized Shannon entropy:

HS[P ] = S[P ]/Smax (6)

with Smax = S[Pe] = lnN , (0 ≤ HS ≤ 1) and the disequilibrium QJ defined in terms of the
Jensen–Shannon divergence. That is,

QJ [P, Pe] = Q0 J [P, Pe] (7)

with:
J [P, Pe] = S[(P + Pe)/2]− S[P ]/2− S[Pe]/2 (8)

the above-mentioned Jensen–Shannon divergence and Q0, a normalization constant (0 ≤ QJ ≤ 1),
are equal to the inverse of the maximum possible value of J [P, Pe]. This value is obtained when
one of the components of the pdf, P , say pm, is equal to one and the remaining pj are equal to zero.
The Jensen–Shannon divergence, which quantifies the difference between two (or more) probability
distributions, is especially useful to compare the symbolic composition between different sequences [39].
Note that the above introduced statistical complexity depends on two different probability distributions,
the one associated with the system under analysis, P , and the uniform distribution, Pe. Furthermore, it
was shown that for a given value of HS , the range of possible CJS values varies between a minimum
Cmin and a maximum Cmax, restricting the possible values of the statistical complexity in a given
entropy-complexity plane [40]. Thus, it is clear that important additional information related to the
correlational structure between the components of the physical system is provided by evaluating the
statistical complexity measure.

2.3. The Bandt–Pompe Approach to the pdf Determination

The study and characterization of time series X (t) by recourse to information theory tools assume that
the underlying pdf is given a priori. In contrast, part of the concomitant analysis involves extracting the
pdf from the data, and there is no univocal procedure with which everyone agrees. Almost ten years ago,
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Bandt and Pompe (BP) introduced a successful methodology for the evaluation of the pdf associated with
scalar time series data using a symbolization technique [1]. For a didactic description of the approach,
as well as its main biomedical and econophysics applications, see [2].

The pertinent symbolic data are: (i) created by ranking the values of the series; and (ii) defined by
reordering the embedded data in ascending order, which is tantamount to a phase space reconstruction
with embedding dimension (pattern length) D and time lag τ . In this way, it is possible to quantify the
diversity of the ordering symbols (patterns) derived from a scalar time series.

Note that the appropriate symbol sequence arises naturally from the time series, and no model-based
assumptions are needed. In fact, the necessary “partitions” are devised by comparing the order of
neighboring relative values rather than by apportioning amplitudes according to different levels. This
technique, as opposed to most of those in current practice, takes into account the temporal structure of
the time series generated by the physical process under study. This feature allows us to uncover important
details concerning the ordinal structure of the time series [19,41,42] and can also yield information about
temporal correlation [15,16].

It is clear that this type of analysis of a time series entails losing some details of the original series’
amplitude information. Nevertheless, by just referring to the series’ intrinsic structure, a meaningful
difficulty reduction has indeed been achieved by Bandt and Pompe with regard to the description
of complex systems. The symbolic representation of time series by recourse to a comparison of
consecutive (τ = 1) or nonconsecutive (τ > 1) values allows for an accurate empirical reconstruction
of the underlying phase-space, even in the presence of weak (observational and dynamic) noise [1].
Furthermore, the ordinal patterns associated with the pdf is invariant with respect to nonlinear
monotonous transformations. Accordingly, nonlinear drifts or scaling artificially introduced by a
measurement device will not modify the estimation of quantifiers, a nice property if one deals with
experimental data (see, e.g., [43]). These advantages make the Bandt and Pompe methodology more
convenient than conventional methods based on range partitioning (i.e., pdf based on histograms).

Additional advantages of the method reside in: (i) its simplicity; we need few parameters: the
pattern length/embedding dimension D and the embedding delay τ ; and (ii) the extremely fast nature
of the pertinent calculation process [44]. The BP methodology can be applied not only to time series
representative of low dimensional dynamical systems, but also to any type of time series (regular, chaotic,
noisy or reality based). In fact, the existence of an attractor in the D-dimensional phase space is not
assumed. The only condition for the applicability of the Bandt–Pompe methodology is a very weak
stationary assumption (that is, for k ≤ D, the probability for xt < xt+k should not depend on t [1]).

To use the Bandt and Pompe [1] methodology for evaluating the pdf, P , associated with the
time series (dynamical system) under study, one starts by considering partitions of the pertinent
D-dimensional space that will hopefully “reveal” relevant details of the ordinal structure of a given
one-dimensional time series X (t) = {xt; t = 1, · · · ,M} with embedding dimension D > 1 (D ∈ N)
and embedding time delay τ (τ ∈ N). We are interested in “ordinal patterns” of order (length)
D generated by (s) 7→

(
xs−(D−1)τ , xs−(D−2)τ , · · · , xs−τ , xs

)
, which assigns to each time s

the D-dimensional vector of values at times s, s − τ, · · · , s − (D − 1)τ . Clearly, the greater the
D−value, the more information on the past is incorporated into our vectors. By “ordinal pattern”
related to the time (s), we mean the permutation π = (r0, r1, · · · , rD−1) of [0, 1, · · · , D − 1] defined
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by xs−rD−1τ ≤ xs−rD−2τ ≤ · · · ≤ xs−r1τ ≤ xs−r0τ . In order to get a unique result, we set
ri < ri−1 if xs−ri = xs−ri−1

. This is justified if the values of xt have a continuous distribution, so that
equal values are very unusual. Thus, for all the D! possible permutations π of order D, their associated
relative frequencies can be naturally computed by the number of times this particular order sequence is
found in the time series divided by the total number of sequences.

Consequently, it is possible to quantify the diversity of the ordering symbols (patterns of length
D) derived from a scalar time series, by evaluating the so-called permutation entropy, the permutation
statistical complexity and Fisher permutation information measure. Of course, the embedding dimension
D plays an important role in the evaluation of the appropriate probability distribution, because D

determines the number of accessible states D! and also conditions the minimum acceptable length
M ≫ D! of the time series that one needs in order to work with reliable statistics [41].

Regarding the selection of the parameters, Bandt and Pompe suggested working with 4 ≤ D ≤ 6 and
specifically considered an embedding delay τ = 1 in their cornerstone paper [1]. Nevertheless, it is clear
that other values of τ could provide additional information. It has been recently shown that this parameter
is strongly related, if it is relevant, to the intrinsic time scales of the system under analysis [45–47].

The Bandt and Pompe proposal for associating probability distributions to time series (of an
underlying symbolic nature) constitutes a significant advance in the study of nonlinear dynamical
systems [1]. The method provides univocal prescription for ordinary, global entropic quantifiers of the
Shannon-kind. However, as was shown by Rosso and coworkers [18,19], ambiguities arise in applying
the Bandt and Pompe technique with reference to the permutation of ordinal patterns. This happens if
one wishes to employ the BP-probability density to construct local entropic quantifiers, like the Fisher
information measure, which would characterize time series generated by nonlinear dynamical systems.

The local sensitivity of the Fisher information measure for discrete pdfs is reflected in the fact that
the specific “i-ordering” of the discrete values pi must be seriously taken into account in evaluating the
sum in Equation (4). The pertinent numerator can be regarded as a kind of “distance” between two
contiguous probabilities. Thus, a different ordering of the pertinent summands would lead to a different
Fisher information value. In fact, if we have a discrete pdf given by P = {pi, i = 1, · · · , N}, we will
have N ! possibilities for the i-ordering.

The question is, which is the arrangement that one could regard as the “proper” ordering? The answer
is straightforward in some cases, the histogram-based pdf constituting a conspicuous example. For such
a procedure, one first divides the interval [a, b] (with a and b the minimum and maximum amplitude
values in the time series) into a finite number on non-overlapping sub-intervals (bins). Thus, the division
procedure of the interval [a, b] provides the natural order sequence for the evaluation of the pdf gradient
involved in the Fisher information measure. In our current paper, we chosen for the Bandt–Pompe pdf
the lexicographic ordering given by the algorithm of Lehmer [48], amongst other possibilities, due to it
provide a better distinction of different dynamics in the Fisher vs. Shannon plane (see [18,19]).

3. Results and Discussion

The application of nonlinear time series analysis provides additional information to the linear
techniques as reflecting important additional information related to the correlational structure of the
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signal. In particular, the Bandt and Pompe technique [1] allows us to account for the ordinal structures
of the EEGs time series instead of the values themselves. As we mentioned in the experimental
methodology section, twenty four chickens reared from hatching were the subjects in this experiment.
Four electrodes were placed over the left and right frontal (LF and RF) and left and right posterior
(LP and RP) areas of the scalp with an additional reference electrode placed at the back of the head.
EEG recording was taken at Day 7 posthatch and then each week for six weeks. The EEG time series
studied in the current work required pre-processing in order to eliminate undesired frequencies produced
by the repetitive motion (saccadic movements) typical of the studied birds. This preprocessing is not
straightforward (it cannot be done with band pass filters) and was the object of a previous paper [24].
Based on the EEG signals preprocessed using a methodology of orthogonal wavelets, we estimated subtle
measures accounting for their causal information: the normalized Shannon permutation entropy, Fisher
permutation information and permutation statistical complexity. This allows us to investigate how the
information of the system behaves as chickens reach their neurological maturity.

More specifically, in this section, we use the Bandt and Pompe [1] methodology for evaluating the
pdf, P , associated with the time series, considering an embedded dimension/pattern length D = 6

(with τ = 1) and using the lexicographic pattern-ordering proposed by Lehmer [48]. This embedded
dimension is enough to efficiently capture causality information of the ordinal structure of the time
series [1].

In order to illustrate our methodology, Figure 1A–D shows averaged values (over all of the chickens)
of the normalized Shannon permutation entropy and its standard deviation versus the maturation week
when considering the recordings of the four electrodes. Note that the normalized permutation Shannon
entropy mean value decreases up to the third week, but thereafter grows closer to its initial value.
Figure 2A–D shows that mean values permutation Fisher information (and its standard deviation) does
not show significative changes as the chicken brain reaches its maturity. Figure 3A–D shows that
permutation MPR statistical complexity mean values decreases up to the third week, but thereafter grows
closer to its initial value.

Figure 4A–D shows the informational causal plane of entropy versus complexity, H × C. Note that
the MPR permutation statistical complexity and normalized permutation Shannon entropy decrease up
to the third week. That is, during the three first weeks, the system, instead of developing into a more
complex state, moves to lower values, producing its entropic reduction, where it reaches a more ordered
state. After that, the normalized permutation Shannon entropy grows to higher values where the system
reaches a greater entropic deterioration together with a higher level of permutation statistical complexity.

MPR permutation complexity is a measure derived from nonlinear systems theory that, when applied
to EEG signals, can be indicative of the global dynamical complexity of electrocortical activity.
However, to obtain further understanding of our results, we need to plot the localization in the causality
entropy-complexity plane of the results obtained in the present work. Figure 5 displays all of the results
considered here in the causality entropy-complexity planeH×C location. The continuous lines represent
the curves of maximum and minimum statistical complexity, Cmax and Cmin, respectively, as functions
of the normalized Shannon entropy [40]. A closer look reveals that our results are in the chaotic attractors
zone, corresponding to the localization of a dissipative chaotic system. As can be appreciated from the
contrast of our results with the one being shown in [42], in which the Bandt–Pompe pdf was evaluated
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considering D = 6 (pattern length), τ = 1 (time lag), our results correspond to the localization of a
chaotic dissipative system: the Tinkerbell map X-component [42].

Figure 1. Normalized permutation Shannon Entropy versus the maturation week (average
values and standard deviation estimated considering the 24 chickens). The used pdf
Bandt–Pompe parameters are D = 6 and τ = 1. (A) Left frontal electrode. (B) Right
frontal electrode. (C) Left posterior electrode. (D) Right posterior electrode.
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Figure 2. Permutation Fisher information versus the maturation week (average values and
standard deviation estimated considering the 24 chickens). The used pdf Bandt–Pompe
parameters are D = 6 and τ = 1. (A) Left frontal electrode. (B) Right frontal electrode. (C)
Left posterior electrode. (D) Right posterior electrode.
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EEGs reflect the electrical activity of the brain, and the problem of analyzing and interpreting
the meaning of these signals has received a great deal of attention. Since EEG signals may be
considered chaotic, nonlinear theory can provide effective quantitative descriptors of EEG dynamics and
of underlying chaos in the brain. However, choosing the appropriate methodology to characterize the
chaotic behavior can be a difficult task. Biochemical, morphological and physiological data indicate that
the forebrain of chickens exhibits a protracted period of maturation [20–22], and this temporal separation
of the synapse formation and maturation phases is analogous to human neural development, though the
changes in chickens occur in weeks compared with years in humans.

Figure 3. MPRpermutation statistical complexity versus the maturation week (average
values and standard deviation estimated considering the 24 chickens). The used pdf
Bandt–Pompe parameters are D = 6 and τ = 1. (A) Left frontal electrode. (B) Right
frontal electrode. (C) Left posterior electrode. (D) Right posterior electrode.
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In this paper, we have shown that the complexity of the electrical activity of the chicken brain
can be characterized by estimating the intrinsic correlational structure of the EEG signal through the
MPR statistical complexity [15,16]. In particular, the causal entropy-complexity plane H × C allows
us to identify the localization of the developing chicken brain dynamics within the zone of a chaotic
dissipative behavior. We have shown that MPR permutation statistical complexity and normalized
Shannon permutation entropy decrease up to the third week. More specifically, during the three first
weeks, the system moves to lower complexity together with an entropic reduction where the network
reduces the level of chaos as synapse formation is established. Afterward, the system reaches a greater
entropic deterioration together with a higher level of complexity, suggesting that chicken brains display
a critical level of complexity consistent with their emergent functions. This behavior is associated with
the “maturation period” described by Rostas a co-workers [21,22]. Thus, Shannon entropy and the
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MPR statistical complexity measure not only provide a robust method to analyze EEG signals, but also
advance the classification of mental states, distinguishing normal behavioral pattern from anomalies that
may cause dysfunction.

Figure 4. Causality entropy-complexity plane H × C: localization of the mean values.
We used an embedding dimension of D = 6 and a time lag of τ = 1 to estimate the pdf
associated with the Bandt–Pompe methodology. (A) Left frontal electrode. (B) Right frontal
electrode. (C) Left posterior electrode. (D) Right posterior electrode.
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Figure 5. Localization in the causality entropy-complexity plane of the EEGs results
presented in this work. Note that our results are localized in a chaotic dissipative behavior
zone [42].
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4. Conclusions

Animal models provide an invaluable source of information in the testing of hypotheses that are
difficult to corroborate by other experimental means. In the present work, we revisit the data analysis
of scalp-applied recording electrodes that have been used to monitor changes in basal EEG patterns in
chickens during posthatch development [23]. Unfortunately, the literature on the use of the EEG in the
chicken is not extensive. Research efforts have largely concerned the use of the EEG either as an indicator
of the general integrity of the nervous system or as a measure of specific brain states, such as sleep cycles
and other EEG rhythm-defined states. In those studies using the EEG as a functional integrity measure of
the chicken nervous system, a major interest has been to plot the embryonic development of the chicken
brain. The functional properties of synaptic networks and the signaling machinery in neurons are known
to change during development, and it is thought that these changes are important for the plasticity that
brings about the fine-tuning of neuronal circuits during the maturation of the brain.

In recent years, there has been a growing realization that the development of synaptic networks in the
brain can be regarded as occurring in two broadly defined phases. During the initial synapse formation
phase, functional synaptic contacts are established in a changing tissue environment, and there is a
net increase in the number of synapses. In the subsequent maturation phase, during which the tissue
environment is broadly stable, except for an increase in myelination, there is little change in synapse
number in the brain overall, but immature, yet functional, synapses are altered to become like those
found in the adult, brain with synaptic circuits being fine-tuned [21,22]. Synapse formation in the chicken
brain occurs most rapidly around the time of hatching, and it is complete by 10 to 14 days posthatch [49].
Subsequently, the immature synapses and neurons gradually attain adult ultrastructural and biochemical
properties. These changes occur in the period between three and eight weeks posthatch, during which
neuronal circuits become fine-tuned, and have been termed the “maturation period” by Rostas [21]. That
is, during the second period, neuronal circuits become fine-tuned.

According to the theorem of Liouville in the case of dissipative systems (non-energy preserving), the
volume occupied by the states in the phase space shrinks as time goes towards infinity. The limit set of
an autonomous dissipative system to which trajectories converge for time increasing towards infinity is
called the attractor. As the chicken brain develops, dendrites dissipate large quantities of their metabolic
energy. Dissipation in this case manifests itself in the disappearance of energy and the emergence of
a complex network structure. In this paper, we show that the development of the chicken brain could
be thought of as a dissipative chaotic system in which the network dynamics during development is
associated with a complex structure reflected in the causality entropy-complexity plane, H × C.

We have investigated the development and maturation of brain functions using information
theory-based tools [15,16], showing that the complexity of the electrical activity can be characterized
by estimating the intrinsic correlational structure of the EEG signal. Our current approach allows us to
distinguish two broadly-defined phases. More specifically, during the first phase, which corresponds to
the three first weeks, the system moves to lower complexity together with an entropic reduction (where
the network reaches a more ordered state). Thereafter, in the second phase, the system reaches a greater
entropic deterioration together with a higher level of complexity. In the second phase, the relevant
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structures of the brain reach a critical level of maturation together with a higher level of complexity, in
conformity to the behavioral changes occurring throughout this period [21,22].

A mental disorder, also called a mental illness or a psychiatric disorder, is a mental or behavioral
pattern or anomaly. Future research should examine how developmental changes, such as an induced
illness or due to inappropriate nutrition, or detrimental effects on cognitive functions can modify the
complexity measures during the development of the chicken brain. Thus, using normalized Shannon
entropy and MPR complexity, EEG signals can be important tools, not only for interpreting brain coding
dynamics, but also for diagnosing mental diseases.
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