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Abstract: Because of high variation in mountainous areas, rainfall data at different 

spatiotemporal scales may yield potential uncertainty for network design. However,  

few studies focus on the scaling effect on both the spatial and the temporal scale.  

By calculating the maximum joint entropy of hourly typhoon events, monthly, six dry and wet 

months and annual rainfall between 1992 and 2012 for 1-, 3-, and 5-km grids, the relocated 

candidate rain gauges in the National Taiwan University Experimental Forest of Central 

Taiwan are prioritized. The results show: (1) the network exhibits different locations for first 

prioritized candidate rain gauges for different spatiotemporal scales; (2) the effect of spatial 

scales is insignificant compared to temporal scales; and (3) a smaller number and a lower 

percentage of required stations (PRS) reach stable joint entropy for a long duration at finer 

spatial scale. Prioritized candidate rain gauges provide key reference points for adjusting the 

network to capture more accurate information and minimize redundancy. 
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1. Introduction 

The most crucial information required for planning, constructing, and operating hydraulic structures 

is rainfall data. The objective of a rainfall network is to design hydraulic structures efficiently and 

economically, according to the researched rainfall data [1]. However, because of topography, rain 

patterns, and effects of time, the spatial and temporal distributions of precipitation are uneven. 

Consequently, planning a suitable and optimal rain gauge station network is a challenging task. 

Research shows that even when two rain gauge stations are in close proximity to each other (5 km), the 

correlation coefficient of their precipitation time sequences may be lower than 0.5 [2]. This low 

correlation complicates the design and modulation of a rainfall network. 

A reliable rainfall network can provide the immediate and precise precipitation data that is crucial 

to designing and placing hydraulic structures such as flood-prevention drainages. However,  

the number of rain gauge stations required may differ significantly from one watershed to another.  

In the past, stations were usually built without any standardization, according to the population 

density, assigned budget of each area, or the traffic feasibility to the stations. Hence, a problem of 

representative rainfall distribution and possible data redundancy may result. The World Meteorological 

Organization (WMO) [3] prescribes the minimum density of rainfall networks under various 

topographical and meteorological conditions, in particular, 25 km2 per station on mountainous islands 

with irregular precipitation, one of which is Taiwan, the selected case in this study. 

The optimization of a rainfall network has to satisfy two crucial criteria—spatial and temporal. 

Previous studies have mainly focused on the estimation of the location, distribution, and priority of 

rain gauge stations. However, determining the minimum number and optimal location of stations 

requires further investigation. Furthermore, the effect of spatiotemporal scaling on network design is yet to 

be analyzed. Applications to groundwater quality monitoring networks, stream gauge networks, and water 

distribution networks have increased in recent years. The methods used in network research related to 

entropy include least square methods and entropy [4], kriging [5], information entropy [6–22], and 

combined kriging and information entropy [23–25]. In particular, the information entropy approach 

has been widely adopted since the 1970s for hydrologic data collection network design and uncertainty 

evaluation [26–33]. 

The effects of heterogeneity and of scale and scaling continue to be significant issues in hydrologic 

research. Despite the progress that has been achieved in the past 20 years, considerable interest and 

much research remain centered on these issues [34]. Disaggregation-aggregation approaches were 

illustrated to link catchment-scale and point-scale state variables, which permit an empirical  

large-scale model that still retains some essence of small-scale physics [35]. The analysis of rainfall 

data from buoys on the ocean, the microwave imager (TMI) and precipitation radar (PR) on board  

the Tropical Rainfall Measuring Mission (TRMM) satellite shows that TMI and PR satellite data from  

2.5° × 2.5° areas centered on the buoys consistently agree well with the buoys on both annual and 

seasonal timescales, but the monthly point measurement of buoys exhibited large differences with 

TRMM data [36]. Singh [37] addressed the complete entropy theory and its applications in 

environmental and water engineering, and most importantly, several entropy measures, including 

directional information transfer index, total correlation, and maximum information minimum redundancy, 

were introduced. Nevertheless, few studies have been conducted to evaluate the possible spatiotemporal 
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scaling issue for network design. The proposed scheme for analyzing an optimal rainfall network 

involves kriging to generate the rainfall data of the candidate rain gauge stations, and entropy to 

evaluate the uncertainty in different combinations of spatial and temporal scales. In this study, we 

evaluate the spatiotemporal scaling effect on rain gauge network design and suggest optimal configuration. 

In particular, because records of several typhoon rainfall events, together with monthly, six dry and 

wet months, and annual rainfall, were analyzed, an optimal rain gauge network can be optimized by 

the hydrologic or climatic consideration, either short- or long-duration based. Once the optimal 

network design with maximum information and minimum redundancy is established, rainfall 

characteristics can be obtained to provide the key reference for the hydrologic planning for the watershed. 

2. Methodology 

This study involved the following steps: (1) determining the different combinations of spatial and 

temporal scales and delineating the study area; (2) applying kriging to existing rainfall data to generate 

the rainfall data of the candidate rain gauge stations for a certain combination; (3) determining the 

priority sequence of the candidate rain gauge stations and evaluating the minimum number required; 

and (4) summarizing the spatiotemporal scaling effect. 

2.1. Spatiotemporal Scale 

Stewart et al. [38] pointed out two distinct problems involved in scaling: (1) the requirement for  

a set of concepts that will allow the correct partitioning of the water balance at any given scale; and  

(2) the concepts that will allow information gathered at one scale to be used in making predictions at 

other scales. To solve these two problems, the possible scaling effect should be addressed first. In this 

study, spatial scales for 1 × 1, 3 × 3, and 5 × 5 km grids were partitioned to delineate a study area 

comprising 327.86 km2. A total of 346, 45, and 20 grids were created, respectively. The center of each 

grid was assigned the location of a candidate rain gauge station. At each of the three different spatial 

scales, hourly records for typhoon events, monthly, six dry and wet months and annual rainfall were 

individually analyzed. Hourly data are used to investigate fluctuations of short duration for extreme 

events while the monthly, six dry and wet months and annual data depict the possible seasonal  

and annual trends or variations. Therefore, a total of fifteen combinations for different conditions  

are evaluated. 

2.2. Kriging 

Kriging is a geostatistical method for interpolating random spatial variations in rainfall data to 

estimate linear grid points [39–43]. In this study, we use the exponential model to fit the semi-variogram  

from the measurements of rainfall [24]: 

  















a

h
bh exp1  (1)

where a denotes the range parameter, and b denotes the sill; that is, the critical variance in the spatial 

independence is as high as 3a. 
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In particular, three independent short-term rainfall measurements from the 50 rain gauges were used 

to verify the kriging results. 

2.3. Entropy 

The information entropy introduced by Shannon [44,45] is based on probabilities. The entropy 

value is used to estimate uncertainties: 

 



n

i
ii ppxH

1

log)(  (2)

where H(x) is the entropy value and pi is probability. 

Shannon’s entropy [45] is a measure of information content, which depends on the current level  

of knowledge or uncertainty. Mathematically, the amount of information is inversely related to  

the probability of occurrence. The basic assumptions of the entropy are the amount of information,  

I(p), being a real nonnegative measure, additive, and a continuous function of probability p. For the 

rational numbers, the function of I(p) obeys the same formula as the log function. For any discrete 

probability distribution, Shannon’s entropy is expressed as: 

  
i

ii ppxH ln1  (3)

where pi is the probability of event xi. Equation (3) refers only to the information state before receiving 

data. Thus, H(x1) measures the average amount of information. H(x1) = 0 when the event is certain  

(pi = 0 or 1) and there is no surprise. Because of the uniformity resulting in an inability to believe any 

outcome being more likely than any other, uniform distribution results correspond to maximum 

ignorance. Maximum entropy can be seen as a generalization of the classical principle of indifference 

and can be used to obtain unbiased probability assessments. 

The rainfall information of two rain gauge stations may be overlapped. Therefore the rainfall 

information of the two rain gauge stations can become two variables x1 and x2. Corresponding to 

Equation (3), the joint entropy of two variables is [24]: 

  
i j

ijij ppxxH ln, 21  
(4)

For three variables of x1, x2, and x3, the joint entropy is [24]: 

  
i j k

ijk ijk
ppxxxH ln,, 321  

(5)

where ijkp  is the joint probability of x1, x2, and x3. 

When the x1 rain gauge station is examined to record rainfall data, the remaining uncertainty of  

the x2 rain gauge station will be exhibited by the conditional entropy. The probability of x2 under  

the influence of x1’s condition can be shown as below [24]: 

 
i

ij
ij p

p
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Thus: 

     11221 |, xHxxHxxH   (7)

The joint entropy that can measure the amount of information of the joint events is derived by 

Equation (7) with conditional probability [24]: 

     12112 ,| xHxxHxxH   (8)

where H(x2|x1) is the conditional entropy of x2 given x1.To find out the amount of mutual or overlapped 

information of the two stations, a transferable information calculation can be utilized to do so, as if 

using the x1 rain gauge station to forecast information from the x2 rain gauge station. 

2.4. Optimization of Network Design 

The significance of each rain gauge station in its network can be determined from its entropy 

value. The greater the value, the higher the uncertainty; thus, each station is prioritized according to  

the descending order of entropy values. After confirming the first station, which has the greatest 

entropy value, the rest are selected and added one at a time, according to the inferiority of the system 

and overlapped information. To minimize the system’s uncertainty, the standardization of determining 

the second most important station in the sequence is set as [24]: 

    122 | xxHxHMin   (9)

Then, the n-th to be added is [24]: 

     121121 ,,,|,,,   nnn xxxxHxxxHMin   (10)

In the calculation, therefore, the greatest   121 ,,,| nn xxxxH   can be selected to arrange the order 

of data overlap of all the stations, in which the station with minimum overlap is the first to be added  

to the network, and the station with maximum overlap is the last to be added. 

The sequence of prioritized stations determined by the entropy values can also be used as  

the sequence of station elimination. In each selection stage, the objective is to ascertain the maximum 

entropy value of each selected station. Stations are subsequently added according to the gradual 

increase in the joint entropies. However, the joint entropy does not increase sufficiently to show any 

differences when it reaches a certain number and attains a definite value. In other words, adding more 

stations has a very limited effect on the network system. The exponential model is applied to the 

correlation graph of the station numbers and  1 2 1| , , ,n nH x x x x     to detect the critical data volume 

and the supposed number of stations. The coefficient km denotes the specific value of the m-th entropy 

value, as compared with all entropy values of the study area; it is assumed to be used as the reveal data 

volume of the m-th station. Assuming n stations in the study area and a number of basic stations have 

been selected, and the addition of new candidate rain gauge stations is prioritized on the basis of the 

entropy value, the definition of km in this study can be expressed as [24]: 
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and 1,,,,,, 121  nnm kkkkk  . Hence, in determining the number of stations in a catchment area,  

a threshold value *
mk  must be set, and by setting a limit such as km > *

mk , the number can be secured. 

On the other hand, the threshold value is determined by the increasing efficiency revealed by the 

increment of km. In this study, km is set to 0.95, which is 95% of the information. Hence, if the number 

of rain gauge stations in the existing network is greater than that in the candidate network, those 

existing stations sequenced behind the candidate station are to be eliminated; otherwise, more stations 

are added. 

In this study, there are fifteen combinations of different spatiotemporal scales. To evaluate  

the efficiency to the number km, we define the percentage of required stations reaching 95% information 

PRS (%) as: 

 
nm

n

kn
PRS m  %,100(%)  (12)

PRS is used to evaluate the efficiency of the sequence of prioritized stations. The number of 

prioritized stations may be the same at different combinations of spatiotemporal scales. However, 

lower PRS can be regarded as more efficient to reach the total 95% threshold value of measured 

uncertainty with fewer stations. 

2.5. Study Area and Data 

To illustrate and evaluate the proposed model, rainfall data within and near the National Taiwan 

University Experimental Forest (NTUEF) is used to demonstrate an optimal rainfall network. Located 

upstream on the Zhuoshui River, the geographical site lies between 23°48'49" and 23°28'10"N and 

121°45'16" and 121°59'15"E, accounting for an approximate area of 327.86 km2 (Figure 1).  

The catchment area extends from the Mt. Jade (elevation 3952 m, the highest peak in Taiwan) to 

Gueitsuto (220 m). Coursing through major forestland within the Chenyulan catchment, the river flows 

over 41.4 km, with an average slope of 2.7%. Most of the catchment is covered by mature forests, and 

the geological features of this region include a complex suite of rocks, such as granite, gneiss, schist, 

sandstone, conglomerate, and marl. Because of differences in altitude, the climate is divided into 

subtropical, warm temperate, cold temperate, subfrigid, and frigid zones. The mean annual temperature 

ranges between a low of 4 °C (Mt. Jade) and a high of 23 °C (Jushan). The NTUEF area usually 

experiences enhanced rainfall, and it receives an average (1992–2012) rainfall of 2408 mm; however, 

the rainfall is unevenly distributed, with more than 70% of it occurring between May and September. 

The annual rainfall increases from north to south and east to west, and consists of several centers 

(Figure 2a). During the period 1992 to 2012, the most severe rainfall event, Typhoon Morakot, which 

occurred 5 August to 9 August 2009, poured almost the entire average annual rainfall within a few 

days (Figure 2b). The largest rainfall recorded by the Alishan weather station (bottom left near the 

boundary in Figure 1) is 2884 mm, which caused a large-scale landslide and debris flow. 

There are 50 rain gauge stations within or near the NTUEF territory; they are listed in Table 1. 

These stations are operated by the Central Weather Bureau and the NTUEF, and include the microclimate 

station and rain gauges set by the authors. Figure 1 also shows the locations of the 50 existing and 

candidate rain gauge station from 1 × 1, 3 × 3, and 5 × 5 km. For integrity, the rainfall data from 1992 
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to 2012 is used in this study. In addition, only hourly records of seven severe typhoon events during 

this period are selected to evaluate the short-duration rainfall (Table 2). Three criterions were 

considered to select these seven typhoons (1) the most of typhoon period cover the study area;  

(2) its 24-h rainfall is approaching or over 600 mm; (3) recorded massive disaster such as landslide and 

debris flow occurred in the study area. The sample size for hourly, monthly, and annual rainfall  

(dry and six wet months) is 385, 252, and 21, respectively. 

Figure 1. Candidate and existing rain gauges in the study area NTUEF. 

 

Figure 2. Contour maps of (a) average annual rainfall between 1992 and 2012; and  

(b) Typhoon Morakot rainfall of 5–9 August 2009 at the NTUEF area. 
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Table 1. Summary description of rain gauge stations in Study Area. 

No. 
Rain Gauge 

Station 

Elevation 

(m) 

TM2 (m) Hourly Rainfall for Typhoon Events (mm) Monthly Rainfall (mm) Annual Rainfall (mm) 

Easting Northing Maximum Minimum Mean 
Standard 

Deviation
Maximum Minimum Mean

Standard 

Deviation 
Maximum Minimum Mean

Standard 

Deviation 

1 AliShan  2413 230,043 2,600,476 123.0  0.0  25.8  25.6  3346.0  0.0  336.6 438.1  5886.7  2196.5  4039.2 1140.9  

2 Mt. Jade 3845 245,030 2,598,435 64.0  0.0  14.7  13.4  2189.9  0.0  254.8 299.0  4705.2  1702.7  3058.2 830.3  

3 Xitou Nursery 1169 228,583 2,618,722 110.0  0.0  17.0  20.6  1770.0  0.0  202.3 246.1  4053.0  1291.0  2455.3 673.5  

4 Jushan-NTU  156 216,693 2,628,383 145.0  0.0  10.2  18.1  1173.0  0.0  181.0 214.8  2821.6  1355.1  2221.0 449.4  

5 Shueli-NTU  295 234,893 2,633,571 123.5  0.0  10.5  17.2  1512.5  0.0  150.7 200.4  2816.0  212.5  1835.9 724.6  

6 Nemoupu-NTU 509 233,987 2,620,868 125.5  0.0  11.2  15.8  1008.0  0.0  153.3 175.4  2805.0  946.0  1820.9 491.0  

7 Heshe-NTU  780 237,830 2,609,920 74.0  0.0  11.2  14.3  1258.0  0.0  154.2 185.0  2688.5  1062.0  1855.9 498.8  

8 
Chinshueigao-

NTU 
520 227,576 2,629,098 100.0  0.0  9.2  14.5  1271.6  0.0  187.6 222.1  4275.0  680.5  2234.6 852.4  

9 Hsingouko  2540 236,749 2,597,543 112.5  0.0  16.8  15.9  2203.0  0.0  241.7 294.0  4524.5  787.0  2828.7 1068.2  

10 Dann  1528 224,672 2,619,646 75.5  0.0  8.6  11.2  945.0  0.0  180.7 197.9  3154.0  773.0  2088.8 627.1  

11 Jushan  151 217,157 2,629,012 170.0  0.0  8.9  16.9  1133.5  0.0  177.6 207.3  3205.0  613.0  2047.8 611.7  

12 Wanshian  2403 240,080 2,613,075 85.0  0.0  12.8  15.0  1633.5  0.0  208.3 247.9  3642.0  924.0  2421.6 832.5  

13 Phoenix Garden  878 227,485 2,625,117 141.0  0.0  11.9  18.4  1292.0  0.0  218.2 235.6  3671.0  948.0  2522.5 741.5  

14 Xitou Observation 1771 229,514 2,617,731 61.0  0.0  9.2  9.6  1053.5  0.0  192.8 203.2  3139.0  909.5  2219.5 629.0  

15 Long-Shen Bridge 339 236,100 2,630,858 130.5  0.0  9.0  15.0  900.0  0.0  164.5 179.4  2812.5  1133.5  1921.2 653.3  

16 Ji-Ji  235 226,257 2,636,039 103.5  0.0  8.3  13.2  975.0  0.0  188.7 210.0  3100.5  1504.5  2256.7 923.4  

17 GuanShan 1780 240,135 2,601,472 81.5  0.0  14.8  15.4  1171.5  0.0  227.7 225.2  3695.9  1296.5  2444.9 820.9  

18 Pasture 2677 237,860 2,597,660 136.0  0.0  18.3  17.4  2383.5  0.0  304.1 387.7  5218.8  1653.5  3719.5 1025.3  

19 Shenmu Village  1595 233,125 2,603,668 91.5  0.0  16.4  17.0  2141.5  0.0  260.1 330.5  4649.5  1653.5  3114.4 1664.2  

20 Chungshinlun  661 219,839 2,625,192 63.5  0.0  9.4  12.6  1075.0  0.0  231.0 264.0  3682.0  1554.5  2731.8 1468.3  

21 Shueli  593 234,295 2,636,644 110.0  0.0  10.2  17.5  911.0  0.0  193.9 218.3  3094.0  1451.0  2341.8 1276.9  

22 Fongchiou  1151 237,647 2,618,491 84.5  0.0  11.1  14.3  1211.0  0.0  166.9 210.1  2938.0  1088.0  2021.5 1114.5  

23 ShangAn  781 236,321 2,625,167 66.0  0.0  8.6  12.2  804.5  0.0  162.0 190.1  2914.0  1193.0  1973.3 1074.3  

24 Hsin-shin Bridge 897 235,680 2,606,957 96.5  0.0  14.2  17.2  1751.5  0.0  193.9 266.1  3277.5  1291.0  2425.1 1297.9  

25 Dongpu  887 241,493 2,606,091 67.0  0.0  10.2  11.8  1307.0  0.0  169.6 219.2  2917.0  1107.0  2092.9 1138.7  

26 Siluang  1001 237,315 2,628,058 78.5  0.0  10.7  15.5  963.5  0.0  186.7 217.3  3061.0  1313.5  2193.8 1218.5  
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Table 1. Cont. 

No. 
Rain Gauge 

Station 

Elevation 

(m) 

TM2 (m) Hourly Rainfall for Typhoon Events (mm) Monthly Rainfall (mm) Annual Rainfall (mm) 

Easting Northing Maximum Minimum Mean 
Standard 

Deviation 
Maximum Minimum Mean 

Standard 

Deviation
Maximum Minimum Mean 

Standard 

Deviation 

27 Xitou office 1156 228,453 2,619,028 56.0  0.0  13.5  12.9  1218.5  0.0  223.2 277.4  4005.5  1125.5  3053.3  1369.3  

28 TienDi 787 230,728 2,624,199 53.5  0.0  11.3  12.6  1360.5  0.0  140.3 266.4  3122.5  137.0  2326.5  973.3  

29 GuangHsin 645 225,917 2,625,831 49.5  0.0  9.8  12.2  1190.5  0.0  238.9 286.9  3628.5  329.0  3124.5  1299.3  

30 No.3 Gully 1185 228,811 2,619,174 25.0  0.0  4.2  5.7  776.0  0.0  167.2 180.2  3339.5  712.5  1937.0  907.2  

31 
Neihu  

elementary school
772 227,181 2,623,316 52.0  0.0  9.8  11.7  1214.5  0.0  201.6 258.7  3560.5  901.0  3090.3  1157.6  

32 
Lower  

University Gully 
1197 227,492 2,618,456 106.0  0.0  15.1  16.8  1663.0  0.5  255.6 402.7  3956.0  222.5  3334.2  1207.7  

33 Wushio 1495 225,450 2,620,064 32.0  0.0  7.3  7.5  2296.5  0.0  212.4 394.3  3941.0  610.0  3400.8  1221.4  

34 Yashanpin 1390 233,383 2,611,144 86.0  0.0  17.5  19.4  1872.5  0.0  269.3 367.1  4221.0  2264.5  3534.0  1478.1  

35 Alibudon 1208 235,227 2,609,712 31.5  0.0  4.8  7.9  823.5  0.0  135.8 162.1  2876.0  530.5  1549.0  780.0  

36 Salishian 1216 241,259 2,602,664 61.5  0.0  10.3  12.3  1211.5  0.0  208.0 274.3  3284.5  824.5  1941.2  799.8  

37 Neuchangpin 1306 237,549 2,606,292 83.0  0.0  13.8  16.5  1500.0  0.0  185.3 247.9  2672.5  1768.5  2302.8  1008.6  

38 Shenmu 1315 235,142 2,602,259 75.0  0.0  12.9  15.5  1490.5  0.5  297.5 413.5  3885.0  425.0  2185.3  955.8  

39 32-compartment 1823 240,123 2,602,231 59.0  0.0  15.6  13.5  1714.5  0.0  223.5 298.9  3073.0  2050.5  2318.0  1157.2  

40 30-compartment 2097 238,588 2,603,814 66.0  0.0  14.8  14.4  1725.0  0.0  227.2 341.3  4294.0  1134.5  2903.7  1244.7  

41 29-compartment 2298 233,408 2,596,924 80.5  0.0  20.2  20.7  2307.5  0.0  347.0 466.6  5450.5  974.5  3453.3  1774.8  

42 20-compartment 967 233,765 2,615,241 72.0  0.0  12.8  15.1  1372.5  15.0  174.8 282.1  2010.0  603.0  1456.5  573.6  

43 21-compartment 1280 231,832 2,618,174 99.5  0.0  22.3  24.4  2243.5  7.0  296.3 433.4  2946.0  2048.5  2518.5  1023.4  

44 22-compartment 892 230,636 2,618,475 79.0  0.0  13.7  17.1  1403.0  3.0  198.1 259.8  2859.5  1859.5  2129.6  877.4  

45 24-compartment 1278 231,635 2,621,701 107.0  0.0  18.9  21.2  2042.0  0.0  171.1 339.8  2820.5  442.0  1582.8  797.0  

46 13-compartment 454 231,953 2,629,686 51.5  0.0  7.9  11.0  708.5  8.5  178.2 193.9  2728.5  1003.5  1870.9  804.6  

47 16-compartment 1002 232,038 2,630,932 71.0  0.0  10.6  14.9  303.0  2.5  114.4 203.5  1473.5  508.5  1058.4  458.3  

48 17-compartment 454 230,194 2,632,283 51.0  0.0  8.9  10.4  343.0  0.0  166.6 259.3  1403.0  409.5  1110.8  300.3  

49 11-compartment 1228 230,931 2,626,757 60.0  0.0  12.9  14.5  915.0  21.0  216.6 207.2  2998.0  1402.0  2219.9  929.7  

50 9-compartment 1213 232,127 2,628,823 57.0  0.0  10.4  12.3  755.0  21.5  216.4 189.2  2391.5  1301.5  1839.6  762.0  
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Table 2. Typhoon events in this study between 1996 and 2012. 

Typhoon Date 
Maximum  
Wind (m/s) 

Rainfall  
Duration (h) 

Damage  
(Billion, NT) 

Herb 29 July–1 August 1996 53 44 39.3 
Toraji 28–31 July 2001 38 24 14.7 
Mindulle 28 June–3 July 2004 45 72 6.5 
Kalmeigi 16–18 July 2008 33 32 3.4 
Silaku 11–16 September 2008 51 75 5.6 
Marakot 5–10 August 2009 40 96 47.7 
Saola 30 July–3 August 2012 38 42 16.2 

3. Result and Discussion 

3.1. Validation of Kriging Estimates 

Kriging was used in this study to estimate the rainfall at ungauged sites. However, how to validate 

the estimates using existing observation data becomes another important issue. The fitted parameters 

and kriging variance are listed in Table 3. From the basic statistical data in Table 1 and spatial 

distribution in Figure 2, the range of hourly, monthly, annual rainfall is quite large, the b sill parameter 

shows increase trend as the temporal scale enlarges; the a range parameter shows no significant 

variation except for six dry months. During six dry months, the rainfall regime dominated mainly by 

frontal rain lead to low rainfall intensity in winter and spring which yields wide influence range. 

Kriging variance in wet six months is far larger than that of dry six months, showing the significant 

rainfall amount distribution for dry (30%) and wet period (70%). Besides the 50 rain gauges, rainfall 

measurements of another three temporary rain gauge stations located in Xitou were used to validate the 

kriging estimates. By using the semi-variogram constructed from the 50 rain gauges, estimates of these 

three sites were then obtained and compared with actual point measurements. Monthly rainfall 

validations are shown in Figure 3. Although kriging results were underestimated by 11% to 24%, 

considering the high rainfall variability in mountainous areas, the correlation between estimates and 

measurements were high enough to be adjusted using simple regression. 

Table 3. Details of kriging estimates. 

Temporal Scale b (Sill, mm2) a (Range Parameter, m) Kriging Variance (mm2) 

Hour 165 ± 292 40,243 ± 25,538 21 ± 62 
Month 23,529 ± 67,316 39,481 ± 67,316 3154 ± 7760 

Dry six months 43,209 ± 52,813 50,926 ± 22,708 3198 ± 4184 
Wet six months 583,324 ± 560,410 39,499 ± 27,171 64,250 ± 58,808 

Annual 645,623 ± 654,175 31,337 ± 29,685 104,080 ± 107,613 



Entropy 2014, 16 4636 

 

 

Figure 3. Validation of monthly rainfall at three stations in Xitou Tract by Ordinary 

Kriging; (a) Phoenix 3.8 K Station (January 2004 to September 2005); (b) Liu Long Gully 

Station (January 2004 to September 2005); and (c) Upper Station of University Gully 

(December 2004 to September 2005). 

  
(a) (b) 

 

(c) 

3.2. Uncertainty Distributed in Space 

The entropy was used in this study to analyze the uncertainty of rainfall for individual gauges. The 

result shows the spatial distribution differs from typhoon hourly, monthly, six dry and wet monthly 

and annual rainfall, as illustrated in Figure 4. For hourly data, the contour line is comparably smooth, 

and the entropy values increase from north (1.05) to south (1.50) and east (1.35) to west (1.95). For 

monthly rainfall, the contour line changes locally, and the values are higher than those of typhoon 

hourly values, especially in northern and eastern areas, which indicates higher uncertainty exists in 

temporal scales. As aforementioned, the rainy season in the study area ranges from May to September, 

resulting in uneven monthly distribution. In addition, the entropy contour line of annual rainfall is 

irregularly distributed. However, the pattern of the annual contour map is distinct from the other two, 

revealing the larger local variation even with small entropy values. Compared with Figure 2a, around 

the rainfall center in Figure 4c, the contour line is also comparably smooth. This indicates that the 

entropy value in surrounding areas with large rainfall is smaller. If the network design is based on the 

uncertainty, the priority in this area is not so important, and vice versa.  
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Figure 4. Entropy contour maps at (a) hourly; (b) monthly; (c) six dry monthly; (d) six wet 

monthly; and (e) annual scale. 
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Figure 5. Variation of joint entropy for first 20 prioritized candidate gauges at (a) hourly, 

(b) monthly; (c) six dry monthly; (d) six wet monthly; and (e) annual scale. 
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3.3 Spatial Scale Effect 

If the same temporal scale was considered, the variation at the spatial scale is not so significant.  

The effect decreases as the temporal scale increases. Because of different candidate gauge stations for  

1, 3 an 5-km, only the first 20 prioritized candidate rain gauge stations were compared for the spatial 

scale effect shown in Figure 5. For hourly data, the variation in the 5-km grid is larger than in the  

3-km grid and in the 1-km grid. Before the eighth selected candidate rain gauge, the joint entropy value 

of 1-, 3-, and 5-km grid oscillates. However, the joint entropy of the 5-km grid is higher than that of  

3-km grid and the 1-km gird after the eighth selected candidate rain gauges. The joint entropy of the  

3-km grid is always higher than that of the 1-km grid. For the annual scale, no significant difference 

was found among the 1-, 3-, and 5-km grids. In general, for the first 20 prioritized candidate rain gauge 

stations, the maximum entropy of hourly, monthly, dry and wet six months and annual rainfall is 

around 4.5, 4.3, and 3.0, respectively. It implies the uncertainty of these two temporal scales are higher 

than the long-term scale and also implies that the spatial scale effect is less for long temporal scales 

and fewer rain gauges are required for long-term monitoring. In particular, the hourly data were 

collected during typhoon events, regarded as rainy and comparably large, and exhibiting diverse 

variability in high terrain relief. Within the 5-km grid, the joint entropy is larger because of more 

uncertainty existing in short-period rainfall. The rain gauge network is suggested to increase the 

number of stations to obtain more detailed variation for hydrologic design and rainfall forecasting. 

3.4. Temporal Scale Effect 

Based on the same spatial scale, more candidate rain gauge stations are needed to reach the stable 

value of joint entropy for a short temporal scale. In Figure 6, fewer gauge stations are required to reach 

the stable value of joint entropy. The trends coincide with each other between different spatial scales. 

In the 5-km grid, only 4 stations are needed to reach maximum joint entropy, but more than 300 gauges 

are needed to reach maximum joint entropy in the 1-km grid. The maximum joint entropy value did 

not change much between the 1-, 3-, and 5-km grids, but that of the annual rainfall, dry and wet  

six months (around 3) is separated from hourly and monthly rainfall. The spatial scaling effect is also 

proved again not to be as significant at the temporal scale. 

3.5. Optimal Rain Gauge Station Network of the NTUEF Area 

The priorities of the rain gauge stations are determined by calculating the joint entropies of  

the study area. The priority of the rain gauge stations obtained on the basis of the entropy can also 

become the sequence of removal of the stations. As aforementioned, different candidate rain gauge 

stations exist for different spatial scales. The number and PRS are calculated to express the percentage 

of required gauge stations at the three spatial scales listed in Table 4. Figure 7 illustrates the first  

ten prioritized gauge stations in 1-, 3-, and 5-km grids. Figure 7a demonstrates the first prioritized 

candidate station almost located at the southwestern corner with all five temporal scales at the 1-km grid. 

Hourly, monthly and six dry months temporal scale are located around rain gauge No. 1. The annual 

rainfall around this region is over 3600 mm and also with the largest rainfall in the study area. 

However, the first prioritized candidate station for six wet months and annual temporal scale is located 
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at rain gauge northern No.19 and eastern No.18, respectively. Three groups along the eastern boundary 

were clearly identified, implying that the existing rain gauge stations were crucial across temporal 

scales; however, no distinct groups were found in Figure 7b,c. More gauge stations are needed for 

these three concentrated groups. In addition, the second large prioritized candidate gauge stations were 

quite different across 1, 3, and 5 km. It can be inferred that the existing rain gauge stations not in the 

neighboring area of prioritized candidates should be addressed for the issue of stopping observation or 

abandonment. The decision for optimal rain gauge network can be made according to the prioritized 

and overlapped gauge stations across five temporal scales. 

Figure 6. Variation of joint entropy vs. candidate gauge number for (a) 1-km scale;  

(b) 3-km scale; (c) 5-km scale. 
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If the number of stations in the network is greater than the minimum number of candidate stations, 

then the stations exceeding the minimum candidate number can be processed for elimination. In Table 4, 

PRS exceeding the threshold value of 95% across different temporal scales is smaller at finer spatial 

scales. Although the entropy value changes in Figure 4e, only three to four gauges are enough to 
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represent the variability of annual rainfall. The PRS of hourly, monthly, six dry and wet monthly and 

annual rainfall increases as the spatial scale enlarges. For the same spatial scale, the PRS for shorter 

temporal scale as hour and month is far larger than longer temporal scale; for the same temporal scale, 

the PRS increase as the spatial enlarges. It is noted the six rainy months need less candidate stations 

than six dry months which implies more variation and uncertainty of rainfall existed during dry 

seasons. According to the third category for the WMO standard aforementioned, the study area of 

327.86 km2 is equivalent to 13.1 gauges, very close to the number analyzed for hourly and monthly 

rainfall in the 5-km grid in Table 4. More rainfall information can be obtained as the required rain 

gauges increased for 3- and 1-km scale. However, for efficiency, 13 and 14 candidate stations at 

monthly and hourly at the 5-km grid, equivalent to one-fourth of existing rain gauge stations, are 

enough for general use, respectively; for hydrologic design and using the prioritized network at 3- or  

1-km grid, the number will double or even more. Compromising the accuracy and network density, 13 

candidate stations were identified as the optimal network according to the prioritized and overlapped 

gauge stations across all spatiotemporal scales in Figure 8. 

Table 4. Number and Percentage of Required Stations (PRS) at different spatiotemporal scales. 

Scale 
Candidate 

Station Number 
Hour Month 

Six Dry  
Months 

Six Wet  
Months 

Year 

1-km 346 126 (36.4%) 143 (41.3%) 3(0.9%) 2(0.6%) 4 (1.1%) 

3-km 45 26 (57.8%) 28 (62.2%) 5(11.1%) 3(6.7%) 4 (8.9%) 

5-km 20 14 (70.0%) 13 (65.0%) 6(30%) 3(15%) 3 (15.0%) 

Compared with Figure 7, these 13 candidate stations locate very closely with three concentrated 

groups found at 1-km scale. Kay and Kutiel [46] suggested a new approach in mapping climate maps 

of precipitation and found the actual rainfall field is more closely represented if more rainfall events 

and dense grid. In this study, the 1-km grid can capture more rainfall uncertainty than 3- and 5-km grid but 

with low PRS, indicating more candidate rain stations need to yield same accuracy. Kutiel and Kay [47] 

found no consistent recommendation of network design is best for all purposes. From Table 4 we 

demonstrate the PRS for fifteen combination of spatiotemporal scale, for best efficiency and low cost 

of rain gauge configuration, we should choose lowest PRS both at spatial and temporal scale, which 

means 1-km at six months or annual scale is best choice. However, it may only satisfy the evaluation 

or research for long-term climate and fail to capture need information for short-term such as 

hydrologic forecast. 

Compared with Figure 7, these 13 candidate stations locate very closely with three concentrated 

groups found at 1-km scale. Kay and Kutiel [46] suggested a new approach in mapping climate maps 

of precipitation and found the actual rainfall field is more closely represented if more rainfall events 

and dense grid. In this study, the 1-km grid can capture more rainfall uncertainty than 3- and 5-km grid but 

with low PRS, indicating more candidate rain stations need to yield same accuracy. Kutiel and Kay [47] 

found no consistent recommendation of network design is best for all purposes. From Table 4 we 

demonstrate the PRS for fifteen combination of spatiotemporal scale, for best efficiency and low cost 

of rain gauge configuration, we should choose lowest PRS both at spatial and temporal scale, which 

means 1-km at six months or annual scale is best choice. However, it may only satisfy the evaluation 
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or research for long-term climate and fail to capture need information for short-term such as 

hydrologic forecast. 

Figure 7. First 10 prioritized candidate gauges in the study area at (a) 1-km scale; (b) 3-km 

scale; and (c) 5-km scale at different temporal scales. 
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Figure 8. Locations of 13 suggested rain gauge candidates. 
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Compared with Figure 7, these 13 candidate stations locate very closely with three concentrated 

groups found at 1-km scale. Kay and Kutiel [46] suggested a new approach in mapping climate maps 

of precipitation and found the actual rainfall field is more closely represented if more rainfall events 

and dense grid. In this study, the 1-km grid can capture more rainfall uncertainty than 3- and 5-km grid but 

with low PRS, indicating more candidate rain stations needed to yield same accuracy. Kutiel and Kay [47] 

found no consistent recommendation of network design is best for all purposes. From Table 4 we 

demonstrate the PRS for fifteen combinations of spatiotemporal scale, for best efficiency and low cost 

of rain gauge configuration, we should choose lowest PRS both at spatial and temporal scale, which 

means 1-km at six months or annual scale is best choice. However, it may only satisfy the evaluation 

or research for long-term climate and fail to capture need information for short-term such as 

hydrologic forecast.  

The authors did not analyze all the hourly rainfall records for three reasons. First, for hydrologic 

design and disaster warning and prevention, the records with “rain” are far more important than  

“no-rain.” Second, if all the hourly data are considered, the sample size will be larger than 183,000, 

which contains too many zeros or tiny rain records (e.g., 0.5 mm). The discrete distribution of data will 

cause the bias in calculating the entropy with respect to monthly and annual data in Equation (2). 

Third, the rainfall of typhoon events covered most of the study area for constructing semi-variogram in 

Equation (1), preventing inadequate semi-variogram resulting from rainfall only in some local areas. 

Despite above three reasons, hourly data analyzed in this study is still part of the whole dataset and just 

represent the network design for rainy hours. For No. 1 rain gauge (Alishan), there were only about 

half rainy days between 1992 and 2012 (total 7671 days).We do not include daily rainfall data for the 

same reasons even though it may be a suitable temporal scale between hour and month. Compared 

with the work by Cheng et al. [5] at hourly and annual scale, this study only includes hourly data for 

typhoons with the selecting criterion that over two thirds records are non-zero data, we neglected the 
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other three major rainfall types, i.e., convective, Mei-Yu and frontal rain. The major reason is the rain 

intensity of seven typhoon events in study area is large enough to represent the extreme rainfall 

condition in study area, in particular, the Typhoon Morakot in Aug 2009. From Table 1, 30% rain 

gague stations (15 out of 50) its maximum hourly rainfall had reached 100 mm. The hourly spatial 

variability with annual rainfall is not significant different as the aforementioned study may lead to 

different area size 2200 km2, rain gauge number 27, with respect to 328 km2 and 50 in this study.  

4. Conclusions 

The proposed model can be used to design an optimal rainfall network that provides the majority of 

rainfall information as the existing rainfall network. Derived from the data of the existing rainfall 

network, it is used to analyze the spatiotemporal scaling effect and suggest an optimal candidate 

station network by use of information entropy and kriging. In this study, we demonstrated that the 

candidate rainfall network is able to reduce the number of rain gauge stations, while accurately 

reflecting the location of precipitation. The results indicate that the optimal rainfall network at different 

combinations of spatiotemporal scales consists of candidate stations with capacities to provide 95% 

rainfall information of existed rain gauge stations. The relevant conclusions and propositions are  

as follows: 

(1) It exhibits different locations for first prioritized candidate rain gauges between  

spatiotemporal scales. 

(2) The effect of spatial scales is insignificant in comparison to temporal scales for network design. 

From the joint entropy value, the difference between hourly and monthly scales is more 

significant than the six dry, wet months and annual rainfall. However, the difference is 

significant across the spatial scale. 

(3) A smaller number and a lower percentage of required stations (PRS) are needed to reach stable 

joint entropy of long duration (six months or year) at finer spatial scale. Compromising  

the accuracy and network density, we suggest the optimal network design comprising of  

13 candidate stations be suitable across all spatiotemporal scales. 
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