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Abstract: We study a crowdsourcing-based diagnosis algorithm, which is against the fact
that currently we do not lack medical staff, but high level experts. Our approach is to make
use of the general practitioners’ efforts: For every patient whose illness cannot be judged
definitely, we arrange for them to be diagnosed multiple times by different doctors, and we
collect the all diagnosis results to derive the final judgement. Our inference model is based
on the statistical consistency of the diagnosis data. To evaluate the proposed model, we
conduct experiments on both the synthetic and real data; the results show that it outperforms
the benchmarks.
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1. Introduction

Image based diagnosis has been developed and widely used in medical fields for decades,
according to some statistics, up until 2010, 5 billion medical imaging studies had been conducted
worldwide [1]. By analyzing a great deal of information yielded through imaging techniques such
as X-ray Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI), doctors reveal,
diagnose, or examine disease for patients, examples including strokes [2] and cancers [3].

However, as well known, accurate analysis and interpretation of a medical image relies heavily on the
knowledge and experience of experts. In cases of images that contain many details, the diagnosis process
might become tedious and time consuming even for well-trained professionals. For illustration, let us
study some CT images presented in Figure 1, where the first row is from some lung cancer patients, and
the second row is of the pulmonary abscess patients. We see the differences between the two rows of
images are very subtle, so it is not easy to distinguish the two kinds of the patients from each other, even
for some well educated junior doctors. For example, as mentioned below, we have recruited 13 graduate
students to diagnose 50 patients according to their CT images, we find the result is far from optimistic:
On average, every student only has 19 correct diagnoses.

Figure 1. Some sample medical images, pictures in the first row are from the pulmonary
abscess patients, in the second row are from the lung cancer patients. (a) Some
sample images of the pulmonary abscess patients; (b) Some sample images of the lung
cancer patients.

(a)

(b)

Meanwhile, a brutal reality is true worldwide: well trained experts are rare. For example, according
to some public reports, in China, until July of 2012, among the 1.3 billion population there were about 2
million doctors. In other words, the number of doctors per 1000 people was around 1.5. Although this
is greater than 1.25, which is suggested as the lower bound by WHO (World Health Organization), only
half of the doctor population holds a bachelor or higher degree in medicine. What is more, among the
the total doctor population, the ratio of people with a master or higher degree is below 8%. In addition,
because of various objective conditions such income and life, almost all the well-trained and experienced
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doctors gather in a very few highly developed cities of China, such as Beijing [4], Shanghai [5] and
Guangzhou [6]. Almost all of the other cities suffer from a severe shortage of high level doctors.

Because of the unbalanced distribution of the experts, for many hospitals, when they have patients
who cannot be definitively diagnosed, they often need to ask for help from outside experts. This
approach, despite the inefficiency and the extra cost, does not always work well, because the experts
are often needed by their own business.

In the present article, we propose another attempt to approach the shortage of experts with respect to
the context of medical image based diagnosis. Our basic idea is regarding the observation that what we
lack are the experts, but not the general practitioners, so it is possible to release the experts from endless
requests via making use of the general practitioners’s efforts. Our solution is the crowdsourcing [7]
scheme, the details of which are presented in Table 1.

Table 1. The working scheme of the crowdsourcing based diagnosis.

1. For every patient who can not be diagnosed definitely, do:
2. Invite some other doctors to diagnose the patient based on her medical images;
3. Summarize the all diagnosis results and make the final decision;
4. End

At first glance, the procedure of Table 1 looks very much like the expert consultation (ES) system.
However, there are some fundamental differences between the two approaches: Firstly, the ES scheme
often requires the participation of experts, while the crowdsourcing scheme only needs the general
practitioners (but of course, experts are welcome.). Secondly, in the ES scheme, all the experts usually
take part in the diagnosis together and achieve the unique conclusion in the end. In the crowdsourcing
scheme, every doctor works independently and the final judgement is derived by some algorithm that
takes the all doctors’ conclusions as input.

Our contribution is three fold, the summarization is as follows:

(1) We propose the crowdsourcing based diagnosis paradigm;
(2) We present a statistical consistency based learning algorithm, which ensembles all the doctors’

diagnosis conclusions and derived the final decision;
(3) We evaluate the proposed approach with the synthetic and real data.

The remainder of the paper is organized as follows. Section 2 discusses the related works on
crowdsourcing; Section 3 describes a real medical image based diagnosis results set that is used in
the work; in Section 4, we present our crowdsourcing based diagnosis method; Section 5 is devoted to
the experiments, and Section 6 is the conclusion.

2. Crowdsourcing

To the best of our knowledge, the term crowdsourcing was first proposed by Jeff Howe as
the composition of the terms “wisdom of crowds” and “outsourcing” [8,9]. In essence, crowdsourcing
is one type of Human as a Service (HuaaS), where a group of (not necessary expert) people (or
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workers) are asked to do a task of that often needs professional background, such as natural language
processing [10], movie recommendation [11], optical character recognition [12], image classification [13,14]
and dermatology research [15]. One of the most famous crowdsourcing examples is Wikipedia, where
thousands of users contributes the creation of the world’s largest encyclopedia every day. And some
other well known instances include the Amazon Mechanical Turk platform [16], the the Galaxy Zoo
project [17] and the Click Worker project [18].

Since most of the crowdsourcing contributors are not domain experts, so their working results
are often of relatively low quality. Hence, naturally, a central concern of crowdsourcing is How to
combine the individuals’ works to derive high quality results. The approaches, roughly speaking, can
be categorized into two classes: The first category is the data content independent (DCI) method,
where the ensemble algorithm only takes the individuals’ conclusions as input and makes the final
judgement. Among all the DCI methods, the most used one is the majority voting algorithm [10], which
suggests that for every item of the task, the ground truth is the one that is elected by the most workers.
Despite its simplicity, the majority voting algorithm is well recognized as the most stable one among
various crowdsourcing algorithms [7,19,20], and achieves surprising success in many crowdsourcing
applications. However, for the naive majority voting algorithm and its variations, almost all of them
need every task to be done multiple times by different workers. This requirement, when the actual
cost is taken into account, is infeasible in many real applications. Addressed to the shortage of the
DCI methods, as the second category algorithm, the data content dependent (DCD) method is proposed.
A typical DCD policy usually consists of two stages: In the first stage, it learns the behavior of the
workers from their working results, i.e., for every worker wi, it treats the items worked by wi along
with the working results as the training data and learns the predictor to simulate the behavior of wi, then
applies the learned model to act as wi to make predictions on the other items [21,22]. In the second stage,
the algorithm ensembles the all working results (both of the workers’ results and the prediction results)
and makes the final judgements. To avoid the undertraining problem, the DCD approach often requires
every worker to have large enough working results.

3. Data

The dataset we use is composed of 50 patients’ CT medical images, for every patient there are
300–400 images. Every patient is in one of the four categories: pulmonary tuberculosis, lung cancer,
pulmonary abscess and pulmonary metastasis, some samples of the images are presented in Figure 2.

We recruit 13 volunteers to diagnose (or to label) the patients according to their images, all the
volunteers are 2nd or 3rd year graduate students of the medical imaging major. We ask every student to
make their diagnosis for every patient according to the images independently. The average accuracy of
the volunteers is 39.54%, i.e., on average, every student only has 19 accurate diagnosis. Besides, the best
volunteer achieved an accuracy of 50%, while the worst one only has a accuracy of 20%.
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Figure 2. Some sample medical images, (a) pulmonary tuberculosis; (b) lung cancer;
(c) pulmonary abscess; (d) pulmonary metastasis.

(a) (b) (c) (d)

4. Method

In our problem, every worker only labels 50 patients, while for every patient there are more than
300 high resolution medical images, so it is easy to become trapped into the undertraining dilemma if
we try to learn the worker’s behavior via their working results. As a result, we take the DCI policy to
make diagnosis judgement.

Our idea is based on the statistical consistency of the patients’ diagnosis results: Denote the set
of available doctors as {D1, D2, . . . , Dn}, the set of patients as {P1, P2, . . . , Pm}, the set of possible
illnesses (or, labels) as {I1, I2, . . . , Ik}. Let Si represent the set of diagnosis results of Pi (Throughout
this paper, unlike conventional definitions, we allow a set to contain duplicate values.). We use Di to
represent the distribution on Si. Specifically, we denote S0 = S1 ∪ S2 ∪ . . . Sn, and D0 the distribution
on S0. It is noteworthy that here we do not require the patients to be diagnosed by the all doctors, hence,
the distributions Dis are estimated only by the collected diagnosis data. For patient Pi, to determine
which illness she has, our idea is to choose the one from I which leads to the minimal changes to both
the global distribution D0 and individual distribution Di.

4.1. Preliminaries

Throughout this paper we use upper case letters (e.g., X, Y, Z, . . . ) to denote the random variables,
and lower cases to represent the instances.

Our work is mainly based on Information Theory. Below we introduce some definitions and
preliminary results used in this paper. Most of them can be found in [23].

Let P be a distribution with p(X) as the probability density function (p.d.f) for X ∼ P , then entropy
of X is defined as

H(X) = −
∫
p(x) ln p(x)dx.
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Given a distributionQwith q(X) as the p.d.f, we employ the Kullback–Leibler divergence to measure
the distance between P and Q, which is defined as

KL(P ||Q) =

∫
p(x) ln

p(x)

q(x)
dx.

Our assumption of the proposed algorithm is as follows:

Assumption 1. For i ∈ {0, 1, 2, . . . , n}, the distribution Di is multinominal with probability
{pi,1, pi,2, . . . , pi,k}.

For every 0 ≤ i ≤ n, we use ni,j to denote the number of Ij in Si, let ni,0 =
∑k

l=1 ni,l, we have
the following theorem:

Theorem 1. Let p∗i,1, p
∗
i,2, . . . , p

∗
i,k be the solution to the following problem

{p∗i,1, p∗i,2, . . . , p∗i,k} = argmax
{pi,1,pi,2,...,pi,k}

Pr(Si) (1)

then for j = 1, 2, . . . , k

pi,j =
ni,j

ni,0

. (2)

Proof of Theorem 1 According to Assumption (1),

Pr(Si) =
ni,0!

ni,1!ni,2! . . . ni,k!

k∏
l=1

p
ni,l

i,l (3)

Take logarithm on both sides of the equation above, we have

lnPr(Si) = ln
ni,0!

ni,1!ni,2! . . . ni,k!
+

k∑
l=1

ni,l ln pi,l. (4)

Noting that the term ln
ni,0!

ni,1!ni,2!...ni,k!
is a constant and

k∑
l=1

pi,l = 1. (5)

Let

Ti(pi,1, pi,2, . . . , pi,k) =
k∑

l=1

ni,l ln pi,l + λ(1−
k∑

l=1

pi,l).

where λ > 0 is fixed, then problem of Equation (1) is equivalent to the following:

{p∗i,1, p∗i,2, . . . , p∗i,k} = argmax
{pi,1,pi,2,...,pi,k}

Ti(pi,1, pi,2, . . . , pi,k). (6)

For l = 1, 2, . . . , k, let
∂Ti(pi,1, pi,2, . . . , pi,k)

∂pi,l
= 0,

we have
pi,l =

ni,l

λ
. (7)

plug Equation (7) into Equation (5), we achieve λ = ni,0, hence we have the proof. �
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4.2. Diagnosis with Crowdsourcing

Given the sets of the diagnosis results S1, S2, . . . , Sn, we pretend there is an extra oracle doctor
to make the final judgement for every patient. Denote the illness of Pi given by the oracle as Oi.
For an arbitrary X ∈ {I1, I2, . . . , Ik}, noting that the distribution on Si ∪ {X} will always differ from
that on Si, denote the distribution on Si ∪ {X} as Dnew

i , we assume Oi is the one that most consistent
with their existing diagnosis, or, formally,

Oi = argmin
X∈{I1,I2,...,Ik}

KL(Di||Dnew
i ) (8)

Denote Pri(·) as the probability function of Di and Prnewi (·) the function of Dnew
i , noting that:

1

|Si|
ln

Pr(Si)

Prnew(Si)
=

1

|Si|
ln

∏
Z∈Si

Pr(Z)∏
Z∈Si

Prnew(Z)
(9)

=
1

|Si|
∑
Z∈Si

ln
Pri(Z)

Prnewi (Z)
(10)

=
1

|Si|
∑
Ij∈Si

∑
Z=Ij

ln
Pri(Z)

Prnewi (Z)
(11)

=
∑
Ij∈Si

ni,j

ni,0

ln
Pri(Ij)

Prnewi (Ij)
(12)

According to Theorem 1, Pri(Ij) =
ni,j

ni,0
, hence, the last equation above is exactly the divergence

KL(Di||Dnew
i ).

Now we seek the solution to Equation (8), firstly, for X = Il(1 ≤ l ≤ k), we have

pnewi,j =

{
ni,j

ni,0+1
if j 6= l,

ni,j+1

ni,0+1
if j = l.

Noting that in Equation (10), the term 1
|Si| is fixed, so

KL(Di||Dnew
i ) ∝ ln

Pri(Si)

Prnewi (Si)
(13)

= lnPri(Si)− lnPrnewi (Si) (14)

Since lnPri(Si) is a constant, the target Equation (8) is equivalent to the following:

Oi = argmax
X∈{I1,I2,...,Ik}

lnPrnewi (Si) (15)

where for X = Il,

lnPrnewi (Si) =
k∑

j=1

(ni,j + I(j = l)) ln pnewi,j (16)

In addition to Equation (8), it’s noteworthy that the introduction of Oi will also lead to changes to
the global distribution D0, these changes, should be as small as possible, too. Therefore, similar to
Equation (8), we have:

Oi = argmin
X∈{I1,I2,...,Ik}

KL(D0||Dnew
0 ) (17)
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where we use Dnew
0 to denote the distribution on D0 ∪ {Oi}.

Denote Pr0(·) as the probability function of D0 and Prnew0 (·) the function of Dnew
0 , analog to

the procedure above, we also have:

Oi = argmax
X∈{I1,I2,...,Ik}

lnPrnew0 (S0) (18)

where for X = Il,

lnPrnew0 (S0) =
k∑

j=1

(n0,j + I(j = l)) ln pnew0,j (19)

With Equations (16) and (19), we have the final decision target:

Oi = argmax
X∈{I1,I2,...,Ik}

lnPrnewi (Si) + λ lnPrnew0 (S0) (20)

= argmax
X∈{I1,I2,...,Ik}

k∑
j=1

(ni,j + I(j = l)) ln pnewi,j + λ

k∑
j=1

(n0,j + I(j = l)) ln pnew0,j (21)

where λ > 0 is the tradeoff factor,

4.3. Algorithm

To ensemble the individuals’ judgements and make the final diagnosis for the patients, we adopt the
enumeration policy, i.e., for every patient, we enumerate the all possible illnesses and calculate the target
values respectively. We take the one with the minimum value of Equation (20) as the final judgement of
the patient.

The details of the algorithm are presented in Algorithm 1, where line 6 is from Equation (21). We
see in the algorithm there nk iterations, besides, in each iteration, to calculate the probability pi,js

(0 ≤ i ≤ n, 1 ≤ j ≤ k), we need at most m scans to count the diagnosis given by the m doctors to
the patient, so the time complexity of the algorithm is θ(nmk).

Algorithm 1: Diagnose via Crowdsourcing.
Input: Candidate illness set {I1, I2, . . . , Ik}, doctor set {D1, D2, . . . , Dm}, patient set

{P1, P2, . . . , Pn} and the diagnosis sets S1, S2, . . . , Sn, initial value of λ.
Output: The judgements O1, O2, . . . , On, where Oi corresponds to Pi.

1 for i=1 to n do
2 max_val = −∞;
3 Oi = null;
4 for j=1 to k do
5 X = Ij;
6 temp =

∑k
j=1(ni,j + I(j = l)) ln pnewi,j + λ

∑k
j=1(n0,j + I(j = l)) ln pnew0,j ;

7 if temp > max_val then
8 max_val = temp;
9 Oi = Ij;

10 end
11 end
12 end
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5. Experiments

We conduct experiments on both of synthetic and real datasets to evaluate the proposed method.
For comparison, we also compare the performance of our method with two other benchmark algorithms,
including majority voting(MV) and follow the best doctor(FTBD). Where MV is a straightforward
approach, which uses the most common label as the true label. From reported experimental results on
real crowdsourcing data [10], MV performs significantly better on average than the individual workers.
FTBD refers to a natural alternative for the patients that when they receive more than one diagnosis from
different doctors, they will tend to follow the best doctors’ diagnosis.

The detailed information of the real dataset is in Section 3, as to the constitution of the synthetic
dataset, we adopt a 30 × 30 matrix R to represent the diagnosis results that are given by 30 doctors to
30 patients, where the rows correspond to the patients and columns to the doctors, hence, every entry
Ri,j is the diagnosis doctor Dj gives to patient Pi. We assume there are in total three illnesses I1, I2 and
I3, where every patient has equal probability to have one of the illnesses, so for each illness there are 10
patients with it. We observe that in real life every doctor often has some special diseases she has a good
knowledge of, hence, for doctor Dj(1 ≤ j ≤ 30) we draw a random number x ∼ Laplace(0, 1), where,
when the patient has the (1 + b j−1

10
c)th illness, we assume Dj makes right the diagnosis with probability

1− |x|, and makes the wrong diagnosis to conclude that the patient has an arbitrary one of the other two
illnesses with equal probability (i.e., 1−|x|

2
).

We summarize the prediction performance in Tables 2–5, where the results on the synthetic data are
presented in Tables 2 and 3, and the results on the real data are in Tables 4 and 5.

Table 2. The prediction accuracy on the synthetic data, higher is better.

Method Accuracy (%)

MV 12(40.0%)
FTBD 20(66.7%)

CROWD 21(70%)

Table 3. The confusion matrix of the prediction on the synthetic data.

MV FTBD CROWD
I1 I2 I3 I1 I2 I3 I1 I2 I3

I1 0.80 0.00 0.20 1.00 0.00 0.00 0.90 0.10 0.00
I2 0.60 0.00 0.40 0.00 1.00 0.00 0.50 0.30 0.20
I3 0.50 0.10 0.40 0.30 0.70 0.00 0.10 0.00 0.90

Table 4. The prediction accuracy on the real data, higher is better.

Method Accuracy (%)

MV 24(48%)
FTBD 25(50%)

CROWD 28(56%)
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Table 5. The confusion matrix of the prediction on the real data.

MV FTBD CROWD
I1 I2 I3 I4 I1 I2 I3 I4 I1 I2 I3 I4

I1 0.58 0.25 0.08 0.08 0.58 0.33 0.08 0.00 0.67 0.17 0.08 0.08
I2 0.00 0.67 0.00 0.33 0.17 0.67 0.00 0.17 0.00 0.75 0.00 0.25
I3 0.08 0.67 0.08 0.17 0.08 0.67 0.25 0.00 0.08 0.67 0.17 0.08
I4 0.14 0.21 0.07 0.57 0.12 0.36 0.00 0.50 0.07 0.21 0.07 0.64

Tables 2 and 4 are for the prediction accuracy results, where we see our proposed algorithm
outperforms the comparison methods on the both datasets. Tables 2 and 4 are the summarization of
the confusion matrix of the results, where, for every algorithm, the (i, j)th entry corresponds to the
percentage value of the patients who are of illness i and diagnosed to be with illness j. For example, in
Table 3, the top left entry (I1, I1) = 0.80 indicates that 80% of the I1 patients are diagnosed correctly by
the MV algorithm.

Another issue remained to be discussed is to address the value of λ. In our experiments, for the ith
patient Pi, we calculate their λ value as follows:

λ =
Number of diagnosis to the all patients

Number of diagnosis to Pi

(22)

Our intuitation of the definition is as follow: Denote Σ1 as the number of diagnosis to the all patients, Σ2

as the Number of diagnosis to Pi, it’s clear that Σ1 � Σ2, so after the introduction of Oi, the divergence
KL(Di||Dnew

i ) is always far greater than KL(D0||Dnew
0 ), for compensation, we define λ as above.

6. Conclusions

Addressing the high level medical experts shortage problem, we present a crowdsourcing based
scheme. Unlike the popular expert consultation systems, our approach aims at exploiting the power
of the general practitioners’ efforts. We propose a multiple diagnosis results ensemble policy, which is
based on the statistical consistency w.r.t. the distribution of the results. We evaluate the proposed method
on both the synthetic and real datasets. Results show it outperforms the comparison algorithms.

It is noteworthy that, although our algorithm yields better performance than the benchmarks in the
empirical studies, and even the accuracy on the synthetic data is acceptable in practice, the results
on the real data still remain not as high as expected. We think a main reason for this should be
attributed to the limitation of the training data, because, in our experiment, all the volunteers are from
the same department of the same medical school. Therefore, because of the reflection of their academic
background, the diversity of their diagnosis results will be smaller than that of the real situation, or, in
other words, the diagnosis results of different volunteers tends to be identical to each other. So when one
volunteer has misdiagnosed a patient, it is most likely that many other volunteers will make the same
mistake on the same patient, too. As a result, in the extreme case, no matter what the ensemble policy
is, it is simply identical to the superposition of multiple duplicates. So, in our subsequent work, on the
one side, we will try to introduce some small sample statistical technologies to improve the performance
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of the algorithm, on the other side, we will keep on collecting more real data from different sources to
enlarge the ground truth base.

Acknowledgments

This work is supported in part by Research Fund for the Doctoral Program of Higher Education
of China (20120171120086), Educational Commission of Guangdong Province (2013113) and Science
and Technology Planning Project of Guangdong Province (2012B061700078). The authors would like
to thank Wubin Li for polishing the presentation.

Author Contributions

Jian-Yong Yang directed the research. Xian-Hong Xiang and Xiao-Yu Huang contributed equally in
data analysis, algorithm design and paper writing. Xiao-Ling Zhang, Chun-Fang Cai and Lei Li helped
to recruit the volunteers, collect the data and evaluate the model. All authors have read and approved the
final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Roobottom, C.; Mitchell, G.; Morgan-Hughes, G. Radiation-reduction Strategies in Cardiac
Computed Tomographic Angiography. Clin. Radiol. 2010, 65, 859–867.

2. Warach, S.; Gaa, J.; Siewert, B.; Wielopolski, P.; Edelman, R.R. Acute Human Stroke Studied by
Whole Brain Echo Planar Diffusion-weighted Magnetic Resonance Imaging. Ann. Neurol. 1995,
37, 231–241.
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