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Abstract: Yang and Qiu proposed an expected utility-entropy (EU-E) measure of risk, 

which reflects an individual’s intuitive attitude toward risk. Luce et al. have derived the 

numerical representations under behavioral axioms about preference orderings among 

gambles and their joint receipt, which further demonstrates the reasonability of the EU-E 

decision model as a normative one. In the paper, combining normalized expected utility 

and entropy together, we improve the EU-E measure of risk and decision model, and then 

propose the normalized EU-E measure of risk and decision model. The normalized EU-E 

measure of risk has some normative properties under certain conditions. Moreover, the 

normalized EU-E decision model can be a proper descriptive model to some extent. Using 

this model, two cases of common ratio effect and common consequence effect, which are 

the examples of certainty effects, can be explained in an intuitive way. 

Keywords: risk; normalized expected utility; normalized entropy; certainty effect; 

common ratio effect; common consequence effect 

 

1. Introduction 

The measure of risk, and furthermore decision making under risk have always been important issues 

in the field of decision sciences, finance, economics and psychology, etc. The dominant decision 

analysis under risk is the expected utility theory ([1]) due to its role of being either a normative model 

of rational choice or a descriptive model of economic behaviors [2]. Since the challenge of its 

descriptive power for risky choices arose, various measures of risk for risky actions and decision 
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analysis models have been established to provide additional insights into risky decision problems. 

Some of these researches have been performed by Kahneman and Tversky [2], Levy [3], Dyer and Jia [4], 

Jia et al. [5], Dionisio et al. [6], Marley and Luce [7], Ng et al. [8], Luce et al. [9–11], etc. 
Yang and Qiu [12] proposed the expected utility-entropy (EU-E) measure of risk and a decision 

making model based on expected utility and entropy of an action involving risk. The EU-E measure of 

risk is based on the general decision-making model under risk [12], in which different actions may 

correspond to different states of nature and each state of nature may have its own distribution. For a 

general decision model ( , , )G A u  , { }   is the state space, A ={ }a  is the action space, ( )u X  is 

the decision maker’s utility function, while X = ( , )X a   is the payoff function defined on A  .  
Specifically, when both action and state space are finite,  1 2, , , mA a a a  , the state i  

corresponding to ia  has in  outcomes 1 2, , ,
ii i in   , the payoff is ( , )i ijX X a  ijx  when taking 

action ia  while state ij  occurs, and the probability distribution of i  is { }ijp , { }ij ijp P X x   is the 

probability that outcome ijx  occurs ( 1,2, ,i m  ; 1,2, , ij n  ). Then, the general decision making 

model can be tabled [12].  
For the action ia , it is also denoted by a combination of outcomes and corresponding probabilities 

in the following matrix or vector form used in [7–11]: 

1 2 ,

1 2 ,

i

i

i i i n
i

i i i n

x x x
a

p p p





 
 

, or 1 1 2 2 , ,( , ; , ; ; , )
i ii i i i i i n i na x p x p x p . (1)

In our insight of the notion of risk in decision analysis, there are two main factors that determine the 

decision maker’s choice of action: the uncertainty of outcomes resulting from uncertainty of 

occurrence of state and decision maker’s expected utility when taking a certain action. Based on this 

insight of risk, the EU-E measure of risk of action a is defined as follows [12]: 

 ( ) ( ) (1 ) [ ( ( , ))] / max [ ( ( , ))]a
a A

R a H E u X a E u X a    


   , (2)

where 10    is a constant, )(aH  denotes entropy of the distribution of its corresponding state. 

Suppose the utility function is nonnegative and  max [ ( ( , ))]
a A

E u X a 


 exists. 

The constant λ reflects a tradeoff between a decision maker’s subjective expected utility of an 

action and objective uncertainty of its corresponding states. In EU-E measure of risk, the expected 

utility reflects the decision maker’s subjective preference; the entropy measures the objective 

uncertainty of its corresponding states. The EU-E measure of risky action effectively incorporates the 

decision maker’s subjective preference and the objective uncertainty regarding the states of nature by 

the risk tradeoff factor. This measure of risky action is the weighted linear average of the expected 

utility and entropy. If all actions have an equal expected utility, then the risk ordering is determined by 

the entropy component. This result was derived by Luce [13]. If all states of nature have the same 

distribution, then the entropy of the states is the same for every state of nature corresponding to each 

action; in this case the risk ordering is determined by the expected utility component. 

Recently, Marley and Luce [7] presented a detailed theoretic analysis of five utility  

representations-subjective expected utility, rank-dependent utility, gains decomposition utility, rank 

weighted utility, and a configural-weighted model. Luce et al. [10] have derived the numerical 

representations under behavioral axioms about preference orderings among gambles and their joint 
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receipt. These representations are for uncertain alternatives and consist of a subjective utility term plus 

a term depending upon the events and the subjective weights.  

For the risky case, Luce et al. [11] specialize the results on entropy-modified representations of 

event based gambles to representations of probability-based gambles by assuming an implicit event 

structure underlying the probabilities. Under segregation and under duplex decomposition conditions, 

they obtain numerical representations consisting of a linear weighted utility term plus a term 

corresponding to information-theoretical entropies.  

Under segregation assumption, Luce et al. [11] present an exact representation, which is called 

entropy-modified expected utility (EM-EU) [11]. Using notations in the general decision-making 

model, the EM-EU representation of action a in Luce et al. [11] is in the following form: 

( ) [ ( )] ( )aU a E u a A H    , (3)

where, ( )U a  is the representation of risky action a, [ ( )]E u a  is the expected utility of action a, ( )aH   

is the Shannon entropy of state of nature corresponding to action a, and A is a constant. 

Luce et al. [11] provide an explanation of a number of the well-known empirical paradoxes using 

EM-EU representation. Their results are very similar to those of Yang and Qiu [12]. This further 

demonstrates the reasonability of EU-E decision model in Yang and Qiu [12].  

The EU-E measure of risk is a closely related non-axiomatized representation involving Shannon’s 

entropy [9]. This measure of risk tends not to be axiomatic, not to be mathematically very general, and 

not to apply to uncertain alternatives [10,11]. Using the EU-E decision model, some well-known 

decision problems including the famous Allais paradox can be solved reasonably. Actually, this 

happens with an underlying assumption that the numbers of state of nature are equal, or relatively 

close. While the numbers of the state of nature corresponding to risky actions are far apart, both EU-E 

measure of risk and EM-EU representation may not be appropriate representations for risky choice. 

Let us investigate the choices between the following pairs of risky actions in Table 1. 

Table 1. Pairs of risky actions. 

Risky 

Actions 

Outcomes and Their 

Corresponding Probabilities 

Expected 

Value 
Entropy 

Normalized 

Entropy 

1a  
9 9.6 9.8 10.2 10.4 11 

10 1.79 1 
1/6 1/6 1/6 1/6 1/6 1/6 

2a  
9 11 

10 0.69 1 
0.5 0.5 

For the risky actions in Table 1, they have the same expected value. If the utility function is linear, 

it would be concluded that action 1a  may be much uncertain than action 2a . Using the EU-E measure 

of risk, the individual should choose 2a . If we use EM-EU representation for risky choices, there hold 

1( ) 10 1.79U a A  , 2( ) 10 0.69U a A  , where A is a constant. Thus, 2 1 1 2( ) ( )a a U a U a   

0A  . But people may perceive that they have the same relative uncertainty, and 1a  may have 

higher expected utility and choose 1a . In this case, both EU-E and EM-EU representation may not 

provide the proper description for risky choice. 

To deal with these kinds of risky actions, normalized entropy is a better way to measure the relative 

uncertainty of the risky actions with different numbers of state of nature. In addition, the value of the 
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EU-E measure of risk is not the standardized one, so it is necessary to extend the EU-E measure of risk 

and the corresponding decision model. 

In this paper, we improve the EU-E measure of risk as well as the EU-E decision model to propose 

a normalized EU-E measure of risk and decision model for the general decision-making model under 

risk. Then, we explore some properties of the normalized EU-E measure of risk. Using the normalized 

EU-E decision model, the certainty effect has been interpreted in a simple way. We also compare the 

predictions of the (normalized) EU-E and EM-EU presentations, and discuss similarities and 

differences among these representations. We demonstrate the reasonability of the normalized EU-E 

decision model as a descriptive model or a normative decision model involving risk. 

2. Normalized Expected Utility-Entropy Measure of Risk 

In this paper, we use the normalized entropy to measure the relative uncertainty of the state of 

nature  of a risky action. The entropy is a measure of the amount of uncertainty in a probability 

distribution originally defined by Shannon [14]. When the state of nature  corresponding to action a is 

a discrete variable with a set of probabilities 1 2, , , np p p , the entropy of  is defined as: 

1

( ) ln
n

a i i
i

H p p


  . (4)

The normalized entropy is defined as 
1

( ) ( ln ) / ln( )
n

a i i
i

NH p p n


  , for n > 1; ( ) 0aNH   , for n = 1. 

The maximum uncertainty reaches when the state of nature follows the uniform distribution with n 
outcomes, and ln(n) represents maximum uncertainty. A value ( ) 0aNH    implies no uncertainty 

(i.e., 1ip   for some i and 0jp   for all j i ). Alternatively, an ( )aNH   = 1 implies maximal 

uncertainty (i.e., 1/ip n  for all 1,2, ,i n  ). 

The normalized entropy is a measure of relative uncertainty [15]. The value of normalized entropy 

lies between 0 and 1, so ( )aNH  [0, 1]. This leads to standardized measures which can be compared 

with one another [16]. An analog measure 1 ( )aNH  , called the information index, serves to measure 

the reduction in uncertainty [17].  

For a risk-averse decision maker, it would be better that risky action has the smaller relative 

uncertainty, i.e., the smaller normalized entropy. This is consistent with notion of risk proposed by 

Yang and Qiu [12]. Therefore, we should take these two sides into account. People may wish to reduce 

uncertainty and increase expected utility of an action.  

This insight of risk has motivated us to improve the EU-E measure of risk for an action in context 

of the general decision analysis model to the normalized EU-E measure of risk. 

Definition 2.1. Given a general decision analysis model ( , , )G A U  , action a A , state of  

nature   . Suppose the utility function u(x) is mono-increasing, and ( ) 0u x  , we have 

max { [ ( ( , ))]} 0a A E u X a   . Then, the normalized EU-E measure of risk of action a when taking 

action a is defined as follows:  

( ) (1 ) ( ), 1
( )

(1 ) ( ), 1
aNH NE a if n

R a
NE a if n

  


   
 

  
, (5)
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where ( )aNH  = ( ) / ln( )aH n , ( ) [ ( )]/ max{ [ ( ( , ))]}
a A

NE a E u X E u X a 


 ; n is the number of actions in 

action space; λ∈[0,1] is a constant, Ha(θ) is the entropy of the states of nature  corresponding to action a; 

X(a,θ) denotes the outcome corresponding to state θ when taking action a.  

In Equation (5), ( )NE a  is the normalized expected utility of the action a, and ( )aNH   is the 

normalized entropy of the state of nature . We have 0 NH , 1NE  , then it holds that 

1 ( ) 1R a   .  

The Definition 2.1 provides a quantified measure of an individual’s intuitive perception of an 

action’s risk. It is the weighted linear average of normalized expected utility and entropy. The 

definition of risk is based on Yang and Qiu [12], Golan et al. [15], Kumar et al. [16] and Soofi [17]. It 

is founded on the fact that the decision maker wishes less uncertainty and bigger expected utility. 

Like the EU-E measure of risk, if all actions have an equal normalized expected utility, then the risk 

ordering is determined by the normalized entropy component. If all states of nature have the same 

distribution, then the normalized entropy of the states is the same for every state of nature corresponding 

to each action; in this case the risk ordering is determined by the normalized expected utility component. 

This measure of risk builds on the basis that people’s perception of risk depends on two factors: 

relative uncertainty of the outcomes and expected utility of risky actions. For some people, relative 

uncertainty far outweighs expected utility and for other people the expected utility outweighs the 

uncertainty. In the evaluation of the risk, people may distinguish relative uncertainty and expected 

utility by tradeoff coefficient .  

It should be noted that both the EU-E and normalized EU-E measures of risk are linear weighted 

averages of the normalized expected utility and (normalized) entropy. Expected utility and entropy 

alone are not the measure of risk. It may not be true if someone only takes expected utility and entropy 

alone as a measure of risk. 

We assume the individual makes decisions according to the normalized EU-E measure of risk. This 

gives the following definition of the normalized EU-E decision model.  

Definition 2.2. For a given general decision analysis model ( , , )G A U  , action 1a , 2a A , 

1( )R a , 2( )R a  denote normalized EU-E measure of risk of 1a  and 2a  respectively. If 1( )R a  < 2( )R a , 

then action 1a  is preferred to action 2a  in the sense of normalized EU-E measure of risk, denoted by 

1 2a a , or 2 1a a ; if 1( )R a  ≤ 2( )R a , then action 2a  is not superior to 1a , denoted by 1 2a a . 

According to Definition 2.2, we can rank the actions in action space by the order of normalized  

EU-E measure of risk. Among all actions in action space, the one with the minimal normalized EU-E 

risk value is optimal. 

3. Properties of the Normalized EU-E Measure of Risk 

In this section, we discuss some normative properties of the normalized expected utility and entropy 

measure of risk. We can obtain the following results directly from Definition 2.1: 

Proposition 1. Given a general decision analysis model ( , , )G A u  , 1a , 2a A , the normalized 

entropy of the state   corresponding to action ia  is denoted by 
1
( )aNH  (i = 1,2). Denote expected 

utility of ia  by ( )iE a , i.e., ( )iE a  = [ ( ( , ))]iE u X a   ( 1, 2i  ). There holds the following results. 

(1) If 1( )E a  = 2( )E a , and 
1
( )aNH    

2
( )aNH  , then 1( )R a   2( )R a . 
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(2) If 
1
( )aNH   = 

2
( )aNH  , and 1( )E a   2( )E a , then 1( )R a   2( )R a . 

(3) If 
1
( )aNH   < 

2
( )aNH  , and 1( )E a   2( )E a , then 1( )R a   2( )R a . 

By Proposition 1, we know that for two different actions in the action space with the same expected 

utility, the action with less normalized entropy has smaller risk. We also know that the riskiness of an 

action with higher expected utility is less when normalized entropies of their corresponding states of 

nature are equal. This is consistent with people’s perception of risk. 

Proposition 2. Given a general decision analysis model ( , , )G A u  , we have: 

(1) If expected utilities of all actions in action space A are the same, then the action with the least 

normalized entropy is the optimal one. 

(2) If the normalized entropies of the states corresponding to each action in action space A  are 

equal, then the action with the largest expected utility is optimal. 

This can directly follow from Definition 2.1. 

By Proposition 2, if all actions in the action space have the same expected utility, we only need to 

compare their normalized entropies when making a decision. The action with the smallest normalized 

entropy is the optimal one. If all actions have the same normalized entropies, we only need to compare 

their expected utilities, and the action with the largest expected utility is the optimal one. In this case, 

we take 0  , we choose the action with less normalized EU-E measure of risk as the preferred one, 

that is, the action with higher expected utility. Thus, the normalized EU-E decision criterion is 

consistent with the expected utility principle. 
Specifically, if one of actions 1a  and 2a  is a certain action, i.e., the occurrence of one outcome is 

certain with probability 1, the other is a risky one, then we have the following proposition. 

Proposition 3. Given a general decision analysis model ( , , )G A u  , suppose the decision maker 

is risk averse ( ( ) 0u x  , ( ) 0, ( ) 0u x u x   ), 1 2{ , }A a a . 1a  is the action with a certain outcome c , 

and 2 1 1 2 2( , ; , ; ; , )n na x p x p x p  (assuming at least one of 1p , 2p , …, np  less than 1). If action 1a  

and 2a  have the same expected value, then 1a  is the preferred action in the sense of the normalized  

EU-E model. 

Proof: Since action 1a  and 2a  have the same expected value, then we have 
1

n

i i
i

p x c


 . 

Furthermore, the decision maker is risk averse, so the utility function is concave. By Jensen inequality, 

we have 
1 1

( ) ( )
n n

i i i i
i i

u p x p u x
 

  . Thus, 
1

( ) ( )
n

i i
i

u c p u x


  .  

Therefore, we have 1( ) ( )E a u c  2
1

( ) ( )
n

i i
i

E a p u x


   . Thus,  max [ ( ( , ))] ( )
a A

E u X a u c


 .  

Thus, for any tradeoff coefficient  (0 1)  , the normalized EU-E measures of risk of action 1a  

and 2a  are as follows:  

1( )R a = (1 )  , 2( )R a =
2

1

( ) (1 ) ( ) / ( )
n

a i i
i

NH p u x u c  


   . (6)

Obviously, it holds that 1 2( ) ( )R a R a . Thus, action 1a  is the preferred action in the sense of the 

normalized EU-E model. 
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Proposition 3 can explain the phenomenon why people choose the action with certain outcomes 

rather than risky actions when these actions have same expected value. 

For the above specific problem, if we make decisions by the expected utility criterion, we can also 

obtain that action 1a  is optimal. That is, for this decision problem, we can get the same decision choice 

both by the normalized EU-E model and the expected utility principle. A risk averter can get the 

conclusion by intuition, so the results are consistent made both by intuition and the normalized EU-E 

model. By this proposition, we can show the normalized EU-E model can serve either as a descriptive 

model or a normative decision model.  

Similar to EU-E measure of risk, the following proposition shows that the normalized EU-E 

measure of risk fits empirical findings concerning people’s perception of risk quite well. 

Proposition 4. Given a general decision analysis model { , , }G A u   with nonnegative outcomes, 

there hold the following results. 
(1) If { , }A a a  , where 0   is a constant, then: 

( )R a   ( )R a , (7)

namely, risk decreases when a positive constant is added to all outcomes of an action. 
(2) If { , }A a a , where 1   is a constant, then: 

( )R a  ( )R a ,  (8)

i.e., risk decreases if a constant greater than 1 multiplies all outcomes of an action, that is risk 

decreases with an increase in range of the outcomes of risky action. 

Proof. (1) Since utility function ( )u X  is increasing, then for 0  , we have: 

( )u X   ( )u X  (9)

Then: 

max{ [ ( ( , ))]}
a A

E u X a 


= max{ [ ( )], [ ( )]}E u X E u X  = [ ( )]E u X  . 

Thus, by Definition 2.1, we have: 

( )R a =  ( ) / ln( ) (1 ) [ ( ( , ))]/ max [ ( ( , ))]a
a A

H n E u X a E u X a    


   

= ( ) / ln( ) (1 ) [ ( )]/ [ ( )]aH n E u X E u X      , 
(10)

( )R a  = ( ) / ln( ) (1 )aH n     . (11)

For action a and a  , ( )aH   = ( )aH   , and ln(n) is a constant. By Equations (10) and (11), we 

can reach the desired conclusion. 
(2) Since utility function is increasing and outcomes ( , )X X a   are all nonnegative, then we have 

( )u X   ( )u X  for 1  . Moreover { , }A a a , thus: 

max{ [ ( ( , ))]}
a A

E u X a 


= max{ [ ( )], [ ( )]}E u X E u X = [ ( )]E u X . (12)

Therefore:  

( ) ( ) / ln( ) (1 ) [ ( )] / [ ( )]aR a H n E u X E u X       (13)
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( ) ( ) / ln( ) (1 )aR a H n       (14)

For action a  and a , ( ) / ln( )aH n  = ( ) / ln( )aH n  , thus we have ( )R a   ( )R a . 

4. Explanations of the Certainty Effect 

Expected utility serves as a descriptive model for interpreting both economic behavior and human 

decision behavior to some extent, but it has been challenged by several anomalies and empirical 

studies [2,18,19]. Using EU-E model and EM-EU representation of gambles [11], the Allais  

paradox ([18]) can be interpreted in a simple as well as reasonable way. 

In expected utility theory, the utilities of outcomes are weighted by their probabilities. Kahneman 

and Tversky [2] have described a series of risky choices in which people’s preferences systematically 

violated this principle. They have shown that people often overweight outcomes that are considered 

certain, relative to outcomes which are merely probable―a phenomenon which they called the 

certainty effect. Now, the certainty effects are the two special cases of general empirical phenomena 

called the common ratio effect and the common consequence effect, respectively [20]. Using the 

normalized EU-E model, the certainty effect in prospect theory ([2]) can be interpreted in a reasonable 

way. It demonstrates the reasonability of the normalized EU-E model as a descriptive model. 

4.1. Explanations of a Case of Common Ratio Effect 

The common ratio effect comes from Machina [20]. It is a phenomenon involving pairs of prospects 

of the following form: 

1

0

1

x
a

p p


   

 versus 2

0

1

y
a

q q


     

(15)

and: 

3

0

1

x
a

rp rp


   

 versus 4

0

1

y
a

rq rq


     

(16)

where 0 x y  , 1 0p q   ( or 0x y  , 0 1p q   ), 0 < r < 1. 

One kind of certainty effect of Kahneman and Tversky [2] is included as a special case of the 
common ratio effect [20]. The expected utility model predicts choices of 1a  and 3a  or else 2a  and 4a . 

However, experimental studies have found a systematic tendency for choices to depart from these 

predictions [20].  

Marley and Luce [7] studied these similar risky choices and gave the definition of common ratio 

independence as follows: 
Common ratio independence is satisfied if, for all 0 , 1p q  , 0 1/ max( , )r p q  , 

1

0

1

x
a

p p


   

2

0

1

y
a

q q


   




 is equivalent to 3

0

1

x
a

rp rp


   

4

0

1

y
a

rq rq


   




. The 

common ratio effect is just the contrary of the common ratio independence.
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Let x = 6000, p = 0.45, y = 3000, q = 0.9, r = 1/450, then this special case of the common ratio 

effect is the example of this kind of certainty effect in Kahneman and Tversky [2] involving only two 

outcome lotteries in the following pairs of risky actions. 

Problem 1. Select 1a  or 2a , where: 

1

6000 0

0.45 0.55
a


 
 

, 2

3000 0

0.90 0.10
a


 
 

. (17)

Problem 2. Choose 3a  or 4a , where: 

3

6000 0

0.001 0.999
a


 
 

, 4

3000 0

0.002 0.998
a


 
 

. (18)

The above problems can be summarized using the general decision making model in Table 2  

as follows. 

Table 2. Example of common ratio effect. 

Risky 

Choice 

Outcomes and Their 

Corresponding Probabilities 

Expected 

Value 
Entropy 

Normalized 

Entropy 

1a  
6000 0 

2700 0.6881 0.9928 
0.45 0.55 

2a  3000 0 
2700 0.3251 0.4690 

0.90 0.10 

3a  6000 0 
6 0.0079 0.0114 

0.001 0.999 

4a  
3000 0 

6 0.0144 0.0208 
0.002 0.998 

Empirical studies have shown that a majority of people have the preference pattern of 2a  over 1a , 

but 3a  over 4a , which violates the expected utility principle [2]. The phenomenon illustrates a situation 

in which the most people’s attitudes toward risk cannot be captured by the expected utility model.  

We now use the normalized EU-U model to give a reasonable explanation of the above risky choices. 

The expected values and normalized entropies of these four risky actions are shown in Table 2 as 

well. Since: 

1 2( ) ( )E a E a  = 2700, 
1 2a aNH NH ; 3 4( ) ( )E a E a  = 6, 

3 4a aNH NH ; (19)

namely, actions 1a  and 2a  have the same expected value, but action 2a  has less normalized entropy, 

i.e., less measure of relative uncertainty. If the decision maker is risk averse, the by proposition 1, we 

conclude that action 2a  is superior to action 1a . Similarly, the action 3a  is superior to 4a . 

In this example, the numbers of states of nature corresponding to each action are equal. Thus, it 

makes no difference using either the EU-E or the normalized EU-E model. So, if we use the EU-E 

model to give an explanation of the above risky action, it is the same as the normalized EU-E model. 

Now, we compare the normalized EU-E representation with EM-EU representation in Luce et al. [11].  

From Table 2, we have: 
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11 1( ) [ ( )] ( ) 2700 0.688aU a E u a A H A     , (20)

22 2( ) [ ( )] ( ) 2700 0.325aU a E u a A H A     . (21)

Thus, 2 1 1 2( ) ( ) 2700 0.668 2700 0.325 0a a U a U a A A A        . 

And, 
33 3( ) [ ( )] ( ) 6 0.008aU a E u a A H A     , 

44 4( ) [ ( )] ( ) 6 0.014aU a E u a A H A     . So, we 

have 3 4 3 4( ) ( ) 0.008 0.014 0a a U a U a A A A      . 

In both cases, it mean the uncertainty of the state of nature will reduce the “total” utility of risky 

actions, i.e., the individual will choose the risky choices with less uncertainty when the risky choices 

have equal expect utilities. In either of these cases, the constant A is less than 0. This explanation is 

consistent with that of (normalized) EU-E representation for risky choices. Furthermore, this 

demonstrates the result (1) of Proposition 1. 

If we let x = 3000, p = 1, y = 4000, q = 0.8, r = 0.25, then this special case of the common ratio 

effect is another situation of certainty effect in Kahneman and Tversky [2], which involves choosing 

between pairs of two outcome lotteries. This case of the common ratio effect can be summarized using 

general decision-making model directly in Table 3. 

Table 3. Example of common ratio effect. 

Risky 

Choice 

Outcomes and Their 

Corresponding Probabilities 

Expected 

Value 
Entropy 

Normalized 

Entropy 

1a  3000 
3000 0 0 

1 

2a  4000 0 
3200 0.50 0.72 

0.80 0.20 

3a  3000 0 
750 0.56 0.81 

0.25 0.75 

4a  4000 0 
800 0.50 0.72 

0.20 0.80 

Experiments have shown that a majority of subjects have the preference pattern of 1a  over 2a  but 

4a  over 3a  [2]. The modal pattern preferences in this case are not compatible with expected  

utility theory. 

If the decision maker is risk neutral, i.e., the utility function is linear, and ( )u x x , then the 

normalized EU-E measure of risk of action 1a  and 2a  are as follows: 

1( )R a = 0.94(1 )  , 2( )R a = 0.72 (1 ) 1.72 1      . (22)

By the normalized EU-E decision model, the sufficient and necessary condition for 1 2a a  is 

0.94(1 )   < 1.72 1  . So, we have 0.08 <    1. Namely, when the tradeoff coefficient 0.08 <    1, 

then we can predict the subject’s preference pattern. 

For action 3a  and 4a , since 3( )E a  < 4( )E a , and 
3aNH  > 

4aNH , then for any 0 ≤   ≤ 1, we have 

3( )R a  > 4( )R a . Thus, we can reach the conclusion that action 4a  is superior to 3a . 
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If the decision maker’s utility function is ( )u x x , the expected utilities of action 1a  and 2a  are 

as follows, respectively: 1( )E a  = 54.77, 2( )E a  = 50.60. We have 1( )E a  > 2( )E a  and 
1aNH   

2aNH , 

so action 1a  is superior to 2a . 

For action 3a  and 4a , we have 3( )E a  = 13.69, 4( )E a  = 12.65. Their normalized EU-E measures of 

risk are as follows, respectively: 

3( )R a  1.81  1, 4( ) 1.64 0.92R a   . (23)

Then, we have 3( )R a  4( )R a 0.47    1. Thus, when 0.47    1, the subjects will choose 

action 4a . 

For the above explanations of these problems we can know that the decision maker’s risky choices 

are compatible with the normalized EU-E decision model as long as the tradeoff coefficient  is rather 

big to some extent. 

Similar to the above situation, the numbers of states of nature corresponding to each state of nature 

are equal or very close to each other. Thus, if we use the EU-E model to explain the above risky action, 

it is similar to the normalized EU-E model.  

If the decision maker is risk neutral, using the EU-E decision model, when the tradeoff coefficient 

0.08 <    1, then we can predict the subject’s preference pattern. 
For action 3a  and 4a , then for any 0 ≤   ≤ 1, we have 3( )R a  > 4( )R a . Thus, we can reach the 

conclusion that action 4a  is superior to 3a . 

We make a comparison with the EM-EU representation in Luce et al. [11]. From Table 3, we have: 

1( ) 3000U a  , 2( ) 3200 0.50U a A  . (24)

Thus, 1 2 1 2( ) ( ) 3000 3200 0.50 400a a U a U a A A        . 

Moreover, 3( ) 750 0.56U a A  , 4( ) 800 0.50U a A  , so we have:  

3 4 3 4( ) ( ) 750 0.56 800 0.50 833.33a a U a U a A A A        . (25)

In these two cases, EM-EU representation for risky actions may not provide an intuitive explanation 

for empirical results. Even though a value of A < −400 explains the two pairs of choices, the meaning 

of constant A may not be clear to these examples. One might think more about why the estimate of A is 

so different for the two pairs of gambles.  

4.2. Explanations of a Case of Common Consequence Effect 

The common consequence effect comes from Machina [20] as well. It is a general phenomenon 

involving pairs of probability mixturing actions in the following form:  

**
1 : (1 )xa P    versus **

2 : (1 )a P P    (26)

and: 

*
3 : (1 )xa P    versus *

4 : (1 )a P P    
(27)

where x  denotes the prospect which yields x with certainty, P involves outcomes both greater and 

less than x, and **P  stochastically dominates *P . Many experiments have shown that a majority of 
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subjects have the preference pattern of 1a  over 2a  in the first pair, and 4a  over 3a  in the second, which 

is inconsistent with any form of expected utility ([2,21]). 

Let 
2400

1
x

  
 

, α = 0.34, 
2500 0

33/ 34 1/ 34
P

  
 

, * 0

1
P

  
 

, ** 2400

1
P

  
 

, there holds **P  

stochastically dominates *P . Then, we have the following results: 

**
1

2400 2400 2400
: (1 ) 0.34 0.66

1 1 1
xa P               

    
, 

**
2

2500 0 2400 2500 2400 0
: (1 ) 0.34 0.66

33/ 34 1/ 34 1 0.33 0.66 0.01
a P P 

    
        

    
, 

*
3

2400 0 2400 0
: (1 ) 0.34 0.66

1 1 0.34 0.66xa P 
    

        
     , 

*
4

2500 0 0 2500 0
: (1 ) 0.34 0.66

33/ 34 1/ 34 1 0.33 0.67
a P P 

    
        

     . 

This special case of the common consequence effect is another kind of certainty effect in Kahneman 

and Tversky’s prospect theory [2], which can be summarized using the general decision model in 

Table 4 as follows. 

Table 4. Example of common consequence effect. 

Risky 

Choice 

Outcomes and Their 

Corresponding Probabilities 

Expected 

Value 
Entropy 

Normalized 

Entropy 

1a  
2400 

2400 0 0 
1 

2a  
2500 2400 0 

2409 0.686 0.62 
0.33 0.66 0.01 

3a  
2400 0 

816 0.641 0.92 
0.34 0.66 

4a  
2500 0 

825 0.634 0.91 
0.33 0.67 

Suppose the decision maker is risk neutral, and the utility function is ( )u x x , then for actions 1a  

and 2a , their normalized EU-U measures of risk are as follows respectively: 

1( ) 0.996(1 )R a    , 2( )R a  1.62 1 . (28)

As long as the tradeoff factor 0.006    1, then we have 1( )R a  2( )R a , which predicts the 

preference pattern. For actions 3a  and 4a , 3 4( ) ( )E a E a  and 
3 4
( ) ( )a aNH NH  , so 4a  is superior to 

3a  in which the preference is consistent with the normalized EU-U measure of risk. 

We have interpreted this kind of certainty effect by the normalized EU-E model in a simple way. 

From the above interpretations, we know that the preference pattern fits with the normalized EU-E 

decision criterion. Thus, the normalized EU-E model shows the descriptive ability for risk behaviours 

and it serves as a descriptive decision model to some extent in this kind of situations. 
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The situation is the same as that of the common ratio effect above. If we use the EU-E model to 

explain the above risky action, it is similar to the normalized EU-E model. 

If the decision maker is risk neutral, using the EU-E decision model, when the tradeoff coefficient 

0.006    1, then we can predict the subject’s preference pattern in the first pairs of choice. 
For action 3a  and 4a , then for any 0 ≤   ≤ 1, we have 3( )R a  > 4( )R a . Thus, we can reach the 

conclusion that action 4a  is superior to 3a , in which the preference is consistent with the EU-U 

measure of risk. 

We make a comparison with EM-EU representation in Luce et at. [11]. From Table 4, we have: 

1( )U a  2400, 2( ) 2409 0.686U a A  . (29)

Thus, 1 2 1 2( ) ( ) 2400 2409 0.686a a U a U a A A        13.12. 

Moreover, 3( ) 816 0.641U a A  , 4( ) 825 0.634U a A  , so we have:  

4 3 4 3( ) ( )a a U a U a  825 0.634 816 0.641A A    1285.7A  . (30)

Similar to second example in Section 4.1, for these two risky choices, EM-EU representation may 

not provide an intuitive explanation for the empirical results. The meaning of constant A may not be 

“sensible” in explaining the results. What is more, the EM-EU representation builds on the segregation 

assumption, so one concern here is that if there is enough empirical support for segregation assumption 

in Luce et al. [11]. 

4.3. Further Discussion 

For the risky actions in Sections 4.1 and 4.2, we use the normalized EU-U decision model to give 

reasonable explanations for the certainty effect. Actually, we may use EU-U and EM-EU representations 

to predict the risky choices as well when the numbers of state of nature are equal, or relatively close. 

EU-U and EM-EU representations are not proper models to predict the risky choices when numbers of 

state of nature are far apart. In this case, we need to use the normalized EU-E model. In the 

introduction, we have discussed the risky choices between pairs of risky choices, in which numbers of 

state of nature are relatively apart. In this example, they have the same expected value 10 and 

normalized entropy. If the utility function is ( )u x x , then 1( )E a  = 3.161, 2( )E a  = 3.158. Using the 

normalized EU-E measure of risk, we should choose the 1a . This is consistent with the normalized 

EU-E decision model. 

5. Conclusions 

In this paper, by combining normalized expected utility and entropy together, we propose the 

normalized EU-E measure of risk. The normalized EU-E measure of risk lies between −1 and 1. It has 

some normative properties under certain conditions. In the case where the normalized entropies of all 

actions are equal, the normalized EU-E decision criterion is consistent with the expected utility 

principle. Moreover, it has the descriptive power to some extent. We also compare the predictions of 

the (normalized) EU-E and EM-EU presentations. When the numbers of state of nature are close, all 

these representation can be the descriptive models for risky choices, but when the numbers of state of 

nature are far apart, only the normalized EU-E is the proper descriptive model. The two kinds of 
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certainty, which are the special case of common ratio and common consequences effect, can be 

interpreted reasonably using the normalized EU-E model. 
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