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Abstract: We discuss a special class of generalized divergence measures by the
use of generator functions. Any divergence measure in the class is separated into the
difference between cross and diagonal entropy. The diagonal entropy measure in the class
associates with a model of maximum entropy distributions; the divergence measure leads
to statistical estimation via minimization, for arbitrarily giving a statistical model. The
dualistic relationship between the maximum entropy model and the minimum divergence
estimation is explored in the framework of information geometry. The model of maximum
entropy distributions is characterized to be totally geodesic with respect to the linear
connection associated with the divergence. A natural extension for the classical theory
for the maximum likelihood method under the maximum entropy model in terms of the
Boltzmann-Gibbs-Shannon entropy is given. We discuss the duality in detail for Tsallis
entropy as a typical example.
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1. Introduction

Information divergence plays a central role in the understanding of integrating statistics, information
science, statistical physics and machine learning. Let F be the space of all the probability density
functions with a common support with respect to a carrier measure Λ of a data space. Usually Λ

is taken as the Lebesgue measure and the counting measure corresponding to continuous and
discrete random variables, respectively. The most typical example of information divergence is the
Kullback-Leibler divergence

D0(f, g) =

∫
f(x){log f(x)− log g(x)}dΛ(x)

on F , which is decomposed into the difference of cross and diagonal entropy measures

C0(f, g) = −
∫
f(x) log g(x)dΛ(x)

and

H0(f, g) = −
∫
f(x) log f(x)dΛ(x).

The entropy H0(f) is nothing but Boltzmann-Gibbs-Shannon entropy. In effect, D0(f, g) connects
the maximum likelihood [1,2], and the maximum entropy [3]. If we take a canonical statistic t(X), then
the maximum entropy distribution under a moment constraint for t(X) belongs to the exponential model
associated with t(X),

M (e) = {f0(x, θ) := exp{θ>t(x)− κ0(θ)} : θ ∈ Θ} (1)

where κ0(θ) = log
∫

exp{θ>t(x)}dΛ(x) and Θ = {θ : κ0(θ) <∞}. In this context, the statistic t(X) is
minimally sufficient in the model, in which the maximum likelihood estimator (MLE) for the parameter
θ of the model is given by one-to-one correspondence with t(X), see [4] for the convex geometry. If we
consider the expectation parameter,

µ = Ef0(·,θ){t(X)}

in place of θ, then for a given random sample X1, · · · , Xn, the MLE for µ is given by the sample mean
of t(Xi)’s, that is

µ̂0 =
1

n

n∑
i=1

t(Xi).

We define two kinds of geodesic curves connecting f and g in F . We call a curve

C(m) = {C(m)
t (x) := (1− t)f(x) + tg(x) : t ∈ (0, 1)} (2)

mixture-geodesic. Alternatively, we call a curve

C(e) = {C(e)
t (x) := exp{(1− t) log f(x) + t log g(x)− κ(t)} : t ∈ (0, 1)} (3)

exponential geodesic, where κ(t) = log
∫
f(x)1−tg(x)tdΛ(x). We denote Γ(m) and Γ(e) the two linear

connections induced by the mixture and exponential geodesic curves on F , which we call the mixture
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connection and exponential connection on F , respectively, see [5,6]. Thus all tangent vectors on
a mixture geodesic curve are parallel to each other with respect to Γ(m); all tangent vectors on an
exponential geodesic curve are parallel to each other with respect to Γ(e). It is well-known that M (e) is
totally exponential-geodesic, that is, for any f0(x, θ0) and f0(x, θ1) in M (e) it holds that the exponential
geodesic curve connecting f0(x, θ0) and f0(x, θ1) is inM (e). In effect we observe thatC(e)

t (x) = f0(x, θt)

with θt = (1− t)θ0 + tθ1. Thus C(e)
t (x) ∈M (e) for all t ∈ (0, 1) because Θ is a convex set. Alternatively,

consider a parametric model

M (m) = {f1(x, π) :=
d∑
j=0

πjfj(x) : πj > 0 (j = 0, · · · , d),
d∑
j=0

πj = 1}.

Then, M (m) is totally mixture-geodesic. Because a mixture geodesic curve C
(m)
t (x) =

(1− t)f1(x, π0) + tf1(x, π1) is in M (m) for any t ∈ (0, 1) on account of C(m)
t (x) = f1(x, πt), where

(1− t)π0 + tπ1.
We discuss a generalized entropy and divergence measures with applications in statistical models and

estimation. There have been recent developments for the generalization of Boltzmann-Shannon entropy
and Kullback-Leibler divergence. We focus on U -divergence with a generator function U , in which
U -divergence is separated into the differences between cross entropy and diagonal entropy. We observe
a dualistic property associated with U -divergence between statistical model and estimation. The U -loss
function is given by an empirical approximation for U -divergence based on a given dataset under a
statistical model, in which the U -estimator is defined by minimization of the U -loss function on the
parameter space. On the other hand, the diagonal entropy leads to a maximum entropy distribution
with a mean equal space, where we call the family of distributions U -model. In accordance with this,
the U -divergence leads to a pair of U -model and U -estimator as a statistical model and estimation.
The typical example is that U(t) = exp(t), which is associated with the Kullback-Leibler divergence
D0(f, g) generating a pair of an exponential family M (e) and the minus log-likelihood function.

This aspect is characterized as a minimax game between a decision maker and Nature.
The paper is organized as follows. Section 2 introduces the class of U -divergence measures.

The information geometric framework associated with a divergence measure is given in Section 3.
In Section 3 we discuss the maximum entropy model with respect to U -diagonal entropy. The minimum
divergence method via U -divergence is discussed in Section 5. We next explore the duality between
maximum U -entropy and minimum U -divergence in Section 6. Finally, we discuss the relation to the
robust statistics by minimum divergence, and a future problem on MaxEnt in Section 7.

2. U -Divergence

A class of information divergence is constructed by a generator function U via a simple employment
of conjugate convexity, see [7]. We introduce a class of generator functions by

U = {U : R→ R+ :
d

ds
U(s) ≥ 0,

d2

ds2
U(s) ≥ 0}.

Then we consider the conjugate convex function defined on R+ of U in U as

U∗(t) = max
s∈R
{st− U(s)},
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and hence U∗(t) = tξ(t) − U(ξ(t)), where ξ(t) is the inverse function of the derivative of U(s), or
equivalently (dU/ds)(ξ(t)) = t. The existence for ξ(t) is guaranteed from the assumption for U to be in
U , in which we observe an important property that the derivative of U∗ is the inverse of the derivative of
U , that is

d

dt
U∗(t) = ξ(t). (4)

The conjugate function U∗ of U is reflexible, that is, U∗∗ = U . By definition, for any s ∈ R and
t ∈ R+,

U∗(t) ≥ st− U(s) (5)

with equality if and only if s = ξ(t). We consider an information divergence functional using the
generator function U as

DU(f, g) =

∫
{U∗(f)− fξ(g) + U(ξ(g))}dΛ, (6)

called U -divergence. We can easily confirm that DU(f, g) satisfies the first axiom of a distance function
since the integrand in Equation (6) is always nonnegative with equality of 0 if and only if f(x) = g(x)

because Equation (5). It follows from the construction that DU(f, g) is decomposed into CU(f, g) and
HU(f) such that

DU(f, g) = CU(f, g)−HU(f).

Here

CU(f, g) =

∫
{U(ξ(g))− fξ(g)}dΛ,

is called U -cross entropy;

HU(f) = −
∫
U∗(f)dΛ (7)

is called U -diagonal entropy. We can write HU(f) =
∫
{U(ξ(f)) − fξ(f)}dΛ by the definition for U∗,

which equals the diagonal CU(f, f). We note that the U -divergence is expressed as

DU(f, g) =

∫
{U∗(f)− U∗(g)− ξ(g)(f − g)}dΛ

because of Equation (4), which implies that U∗ plays a role on a generator function in place of U . In fact,
this is also called U∗-Bregman divergence, cf. [8,9]

The first example of U is U0(s) = exp(s), which leads to U∗0 (t) = t log t− t and

log(t) = argmax
s∈R

{st− exp(s)},

Thus U0-divergence, U0-cross entropy and U0-diagonal entropy equal D0(f, g), C0(f, g) and H0(f)

as defined in Introduction, respectively. As for the second example we consider

Uβ(s) =
1

β + 1
(1 + βs)

1+β
β (8)
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where β is a scalar. The conjugate function becomes

U∗β(t) =
1

β(β + 1)
tβ+1 − 1

β
t. (9)

Then the generator function Uβ associates with the β-power cross entropy

Cβ(f, g) =
1

β + 1

∫
gβ+1dΛ− 1

β

∫
f(gβ − 1)dΛ,

β-diagonal power entropy

Hβ(f) = − 1

β(β + 1)

∫
fβ+1dΛ +

1

β

and the β-power divergence Dβ(f, g) = Cβ(f, g)−Hβ(f), that is,

Dβ(f, g) =
1

β(β + 1)

∫
fβ+1dΛ− 1

β

∫
fgβdΛ +

1

β + 1

∫
gβ+1dΛ.

We observe that

lim
β→0

(Cβ(f, g), Hβ(f)) = (C0(f, g), H0(f)).

The class of β-power divergence functionals includes the Kullback-Leibler divergence in the limiting
sense of limβ→0Dβ(f, g) = D0(f, g). If β = 1, then Dβ(f, g) = 1

2

∫
(f − g)2dΛ, which is a half of the

squared L2 norm. If we take a limit of β to −1, then Dβ(f, g) becomes the Itakura-Saito divergence

DIS(f, g) =

∫ (
log g − log f +

f

g
− 1
)
dΛ,

which is widely applied in signal processing and speech recognition, cf. [10–12].
The β-power divergence Dβ(p, q) is proposed in [13]; the β-power entropy Hβ is equal to the

Tsallis q-entropy with a relation q = β + 1, cf. [14–16]. Tsallis entropy is connected with spin glass
relaxation, dissipative optical lattices and so on beyond the classical statistical physics associated with
the Boltzmann-Shannon entropy H0(p). See also [17,18] for the power entropy in the field of ecology.
We will discuss the statistical property for the minimum β divergence method in the presence of outliers
departing from a supposed model, cf. [19–21]. A robustness performance is elucidated by appropriate
selection for β. Beyond robustness perspective, a property of spontaneous learning to apply to clustering
analysis is focused in [22], see also [23] for nonnegative matrix analysis.

The third example of a generator function is Uη(s) = (1 − η) exp(s) − ηs with a scalar η.
This generator function leads to the η-cross entropy

Cη(f, g) = −
∫
{f(x) + η} log{g(x) + η} dΛ(x)

and the η-entropy

Hβ(f) =

∫
{f(x) + η} log{f(x) + η}dΛ(x),

so that the η-divegence is Dη(f, g) = Cη(f, g) − Hη(f), see [24–27] for applications for pattern
recognition. Obviously, if we take a limit of η to 0, then Cη(f, g), Hη(f) and Dη(f, g) converge
to C0(f, g), H0(f) and D0(f, g), respectively. A mislabeled model is derived by a maximum
η-entropy distribution with momentary constraint if we consider a binary regression model. See [25,27]
for a detailed discussion.
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3. Geometry Associated with U -Divergence

We investigate geometric properties associated with U -divergence, which will help the discussion
in subsequent sections. Let us arbitrarily fix a statistical model M = {fθ(x) : θ ∈ Θ} embedded
in the total space F with mild regularity conditions. In fact, we consider the mixture geodesic curve
C(m), the exponential geodesic curve C(e), the mixture model M (m) and the exponential model M (e) as
typical examples of M . Here are difficult aspects to define F as a differentiable manifold of infinite
dimension because the constraint for positivity on the support is intractable in the sense of the topology,
see Section 2 in [6] for detailed discussion and historical remarks. On the other hand, if we confine
ourselves to a statistical model M , then we can formulate M as a finite dimensional manifold, as in the
following discussion. Thus, we produce a path geometry in which for any two elements f and g of F
a class of geodesic curves connecting f and g including C(m) and C(e) is introduced so that the class of
geodesic subspaces is derived as for M (m) and M (e).

3.1. Riemannian Metric and Linear Connections

We view the statistical model M as a d-dimensional differentiable manifold with the coordinate
θ = (θ1, · · · , θd). Any information divergence associates with a Riemaniann metric and dual
linear connections, see [28,29] for detailed discussion. We focus on the geometry generated by the
U -divergence DU(f, g) as follows. The Riemannian metric at fθ of M is given by

G
(U)
ij (θ) = −

∫
∂ifθ ∂jξ(fθ)dΛ, (10)

and linear connections are

Γ
(U)
ij,k(θ) = −

∫
∂i∂jfθ ∂kξ(fθ)dΛ (11)

and

∗Γ
(U)
ij,k(θ) = −

∫
∂kfθ ∂i∂jξ(fθ)dΛ, (12)

where ∂i = ∂/∂θi, see Appendix. for the derivation. Now we can assert the following theorem under an
assumption for F : Let f be arbitrarily fixed in F . If

∫
a(x){g(x) − f(x)}dΛ(x) = 0 for any g of F ,

then a(x) is constant in x almost everywhere with respect to Λ.

Theorem 1. Let Γ(U) be the linear connection defined in Equation (11). Then any Γ(U)-geodesic curve
is equal to the mixture-geodesic curve defined in Equation (2).

Proof. Let C(U) := {ft(x) : t ∈ (0, 1)} be a Γ(U)-geodesic curve with f0 = f and f1 = g. We consider
a 2-dimensional model defined by fθ(x) = (1 − s + u)ft(x) + (s − u)g(x), where θ = (s, t, u). Then
we observe that if u = s, then

Γ
(U)
11,2(θ) = −

∫ ( d2

dt2
ft

)
ξ′(ft)(g − ft)dΛ (13)



Entropy 2014, 16 3558

which identically 0 for any g of F . It follows from the assumption for F that (d2/dt2)ft(x) = c almost
everywhere with respect to Λ, which solved by

ft(x) =
1

2
ct(t− 1) + (1− t)f(x) + tg(x)

from the endpoint condition for C(U). We observe that c = 0 because ft(x) ∈ F , which concludes that
C(U) equals the mixture-geodesic. The proof is complete.

This property is elemental to characterize the U -divergence class, which is closely related with the
empirical reducibility as discussed in a subsequent section. The assumption for F holds if the carrier
measure Λ is Lebesgue measure or the counting measure.

On the other hand, for a ∗Γ(U)-geodesic curve ∗C(U) := {f ∗t (x) : t ∈ (0, 1)} with f0 = f and f1 = g

we consider an embedding into a 2-dimensional model,

f ∗θ (x) = u((1− s+ t)ξ(f ∗t (x)) + (s− t)ξ(g(x))− κθ),

where θ = (s, t), where u(s) = (d/dt)U(s) and κθ is a normalizing constant to satisfy∫
f ∗θ (x)dΛ(x) = 1. By definition

∗Γ
(U)
11,2(θ) =

∫ ( d2

dt2
ξ(f ∗t )

)
u′(ξ(f ∗t )){ξ(g)− ξ(f ∗t )}dΛ = 0 (14)

if s = t. This leads to (d2/dt2)ξ(f ∗t (x)) = c almost everywhere with respect to Λ, which is solved by

f ∗t (x) = u((1− t)ξ(f(x))− tξ(g(x))− κt), (15)

We confirm that, if U = exp, then ∗Γ(U)-geodesic curve reduces to the exponential geodesic curve
defined in Equation (3).

3.2. Generalized Pythagorian Theorems

We next consider the Pythagorean theorem based on the U -divergence as an extension of the result
associated with the Kullback-Leibler divergence in [6].

Theorem 2. Let p, q and r be in F . We connect p with q by the mixture geodesic

f
(m)
t (x) = (1− t)p(x) + tq(x),

Alternatively we connect r and q by ∗Γ(U)-geodesic curve

f (U)
s (x) = u((1− s)ξ(r(x)) + sξ(q(x))− κ(s)).

Two curves {f (m)
t (x) : t ∈ [0, 1]} and {f (U)

s (x) : s ∈ [0, 1]} orthogonally intersect at q with respect to
the Riemannian metric G(U) defined in Equation (10) if and only if

DU(p, r) = DU(p, q) +DU(q, r). (16)
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Proof. A straightforward calculus yields that

− ∂2

∂t∂s
DU(f

(m)
t , f (U)

s )
∣∣∣
t=1,s=1

= DU(p, r)− {DU(p, q) +DU(q, r)}. (17)

By the definition of G(U) we see that G(U)
12 (θ) is nothing but the left side of Equation (17) when

fθ(x) = (1− t)p(x) + tf (U)
s (x),

where θ = (t, s). Hence the orthogonality assumption is equivalent to Equation (16), which completes
the proof.

Remark 1. We remark a further property such that, for any s and t in [0, 1],

DU(pt, r) = DU(pt, q) +DU(q, rs).

If U = exp, then Theorem 2 reduces to the Pythagoras theorem with the Kullback-Leibler divergence as
shown in [6]. Consider two geodesic subspaces defined by

M (m) = {pπ(x) = π0q(x) +
J∑
j=1

πjpj(x) : πj ≥ 0 (j = 0, · · · , J),
J∑
j=0

πj = 1}

and

M (U) = {rε(x) = u
(
ε0ξ(q(x)) +

K∑
k=1

εkξ(rk(x))− κ(ε)
)

: εk ≥ 0 (k = 0 · · · , K),
K∑
k=0

εk = 1}. (18)

For any m-geodesic curve C(m) and U -geodesic curve ∗C(U) connecting q we assume that C(m) and
C(U) orthogonally intersect at q in the sense of the Riemannian metric G(U). Then, for any p ∈ M (m)

and r ∈M (U)

DU(p, r) = DU(p, q) +DU(q, r),

in which two-way projection is associated with as

DU(p, q) = min
r∈M2

DU(p, r) and DU(q, r) = min
p∈M1

DU(p, r).

First we confirm a kind of reduction property for the Kullback-Leibler divergence to the framework
in information geometry such that (G(D0),Γ(D0), ∗Γ(D0)) = (G,Γ(m),Γ(e)), where G is the information
metric. Second we return a case of the β-power divergence, which is reduced a special case of Theorem 2.
Consider two curves C(m) = {C(m)

t (x) = (1− t)p(x) + tq(x) : t ∈ [0, 1]} and

C(β) = {C(β)
s (x) = {(1− s)r(x)β + tq(x)β + c(s)}

1
β : s ∈ [0, s]}.

Then we observe for the Riemannian metric G(β) generated by β-power divergence that

G(β)(Ċm
1 , Ċ

β
1 )(q) = Dβ(p, r)− {Dβ(p, q) +Dβ(q, r)}, (19)

which is
∫

(p− q)(pβ − qβ)dΛ. We observe that if C(m) and C(β) orthogonally intersect at q, then

Dβ(p, r) = Dβ(p, q) +Dβ(q, r).
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4. Maximum Entropy Distribution

The maximum entropy principle is based on the Boltzmann-Shannon entropy in which the maximum
entropy distribution is characterized by an exponential model. The maximum entropy method has been
widely enhanced in fields of natural language processing, ecological analysis and so forth. However,
there are other types of entropy measures proposed as the Hill diversity index, the Gini-Simpson index,
the Tsallis entropy and so on, cf. [14,17,18] in different fields. We introduced the class of U -entropy
functionals, which include all the entropy measures mentioned above. In this subsection, we discuss the
maximum entropy distribution based on an arbitrarily fixed U -entropy.

We check a finite discrete case with K + 1 cells as a special situation, where F reduces to a
K-dimensional simplex SK . The maximum U -entropy distribution is defined by

f ∗ = argmax
f∈SK

HU(f).

The Lagrange function is

L(f, λ) =
K+1∑
i=1

{−ξ(fi)fi + U(ξ(fi))}+ λ
(K+1∑

i=1

fi − 1
)
.

We observe that

∂

∂fi
L(f, λ) = −ξ(fi) + λ = 0,

which implies f ∗i = 1/(K + 1) for i = 1, · · · , K + 1. Therefore the maximum U -entropy distribution
f ∗ is a uniform distribution on SK for any generator function U .

In general the U -entropy is an unbounded functional on F unless F is finite discrete. For this we
introduce a moment constraint as follows. Let t(X) be a k-dimensional statistic vector. Henceforth we
assume that Ef{‖t(X)‖2} <∞ for all f of F . We consider a mean equal space for t(X) as

Γ(τ) = {f ∈ F : Ef{t(X)} = τ},

where τ is a fixed vector in Rk. By definition Γ(τ) is totally mixture geodesic, that is, if f and g are in
Γ(τ), then (1− t)f + tg is also in Γ(τ) for any t ∈ (0, 1).

Theorem 3. Let f ∗τ = argmax{HU(f) : f ∈ Γ(τ)}, where HU(f) is U -diagonal entropy defined in
Equation (7). Then the maximum U -entropy distribution is given by

f ∗τ (x) = u(θ>t(x)− κU(θ)), (20)

where κU(θ) is the normalizing factor and θ is a parameter vector determined by the moment constraint∫
t(x)u(θ>t(x)− κU(θ))dΛ(x) = τ.

Proof. The Eular-Lagrange functional is given by

Φ(f, θ, λ) = HU(f)− θ>[Ef{t(X)} − τ ]− λ
{∫

f(x)dΛ(x)− 1
}
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If gτ ∈ Γ(τ) and ft(x) = (1− t)f ∗τ (x) + tgτ (x), then ft ∈ Γ(τ), and

d

dt
Φ(ft, θ, λ)

∣∣∣
t=0

= 0,
d2

dt2
Φ(ft, θ, λ)

∣∣∣
t=0

< 0. (21)

The equation in Equation (21) yields that∫
{ξ(f ∗τ (x))− θ>(t(x)− τ)− λ}{g(x)− f ∗(x)}dΛ(x) = 0

for any gτ (x) in Γ(τ), which concludes Equation (20). Since ξ(t) is an increasing function, we
observe that

d2

dt2
Φ(ft, θ, λ) = −

∫
ξ′(ft(x)){g(x)− f ∗τ (x)}2dΛ(x) < 0 (22)

for any t ∈ [0, 1], which implies the inequality in Equation (21). Since gτ ∈ Γ(τ), we observe that

Egτ{ξ(f ∗τ (X))} = Ef∗τ {ξ(f
∗
τ (X))}

Therefore we can confirm that HU(f ∗τ ) ≥ HU(gτ ) for any gτ ∈ Γ(τ) since

HU(f ∗τ )−HU(gτ ) = DU(gτ , f
∗
τ ),

which is nonnegative by the definition of U -divergence. The proof is complete.

Here we give a definition of the model of maximum U -entropy distributions as follows.

Definition 1. We define a k-dimensional model

MU = {fU(x, θ) := u(θ>t(x)− κU(θ)) : θ ∈ Θ}, (23)

which is called U -model, where Θ = {θ ∈ Rk : κU(θ) <∞}.

The Naudts’ deformed exponential family discussed from a statistical physical viewpoint as in [15] is
closely related with U -model. The one-parameter family {rs(x) : s ∈ [0, 1]} as defined in Equation (15)
is a one-dimensional U -model and M (U) defined in Equation (18) is a K-dimensional U -model. For a
U -model MU defined in Equation (23), the parameter θ is an affine parameter for the linear connection
∗Γ(U) defined in Equation (12). In fact, we observe from the definition Equation (12) that

∗Γ
(U)
ij,k(θ) = ∂j∂kκU(θ)

∫
∂kfU(θ, x)dΛ(x)

which is identically 0 for all θ ∈ Θ. We have a geometric understanding for the U -model similar to the
exponential model discussed in Introduction.

Theorem 4. Assume for U(t) that U ′′′(t) > 0 for any t in R. Then, the U -model is totally ∗Γ(U)-geodesic.
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Proof. For arbitrarily fixed θ1 and θ2 in Θ, we define the U -geodesic curve connecting between fU(x, θ1)

and fU(x, θ2) such that, for λ ∈ (0, 1),

fλ(x) = u(λξ(fU(x, θ1)) + (1− λ)ξ(fU(x, θ2))− κ(λ))

with a normalizing factor κ(λ), which is written by fλ(x) = fU(x, θλ), where θλ = λθ1 + (1 − λ)θ2.
Hence it suffices to show θλ ∈ Θ for all λ ∈ (0, 1), where Θ is defined in Definition 1. We look at the
identity

∫
fU(x, θ)dΛ(x) = 1 from a fact that fU(x, θ) is a probability density function. This implies

that the first derivative gives∫
u′(θ>t(x)− κU(θ))

{
t(x)− ∂

∂θ
κU(θ)

}
dΛ(x) = 0

and the second derivative gives∫
u′′(θ>t(x)− κU(θ))

{
t(x)− ∂

∂θ
κU(θ)

}{
t(x)− ∂

∂θ
κU(θ)

}>
dΛ(x)

−
∫
u′(θ>t(x)− κU(θ))dΛ(x)

∂2

∂θ∂θ>
κU(θ) = 0 (24)

Since the identity Equation (24) shows that the Hessian of κU(θ) is proportional to a Gramian matrix,
which implies that κU(θ) is convex in θ. Since κU(θλ) ≤ (1− λ)κU(θ1) + λκU(θ2) and θ1 and θ2 in Θ,
κU(θλ) ≤ ∞. This concludes that θλ ∈ Θ for any λ ∈ (0, 1), which completes the proof.

We discuss a typical example by the power entropy Hβ(f), see [15,30–34] from a viewpoint of
statistical physics. First we consider a mean equal space of univariate distributions on (0,∞)

Γ(µ) = {f : Ef{t(X)} = µ}

where

t(x) =
(
x,
xβ(κ−1) − 1

β

)>
Note that limβ→0 t(x) = (x, (κ − 1) log x). To get the maximum entropy distribution with Hβ we

consider the Euler-Lagrange function given by

Eβ(f, λ) =
1

β(β + 1)

∫ ∞
0

f(x)1+βdx+ θ>
{∫ ∞

0

t(x)f(x)dx− µ
}

+ λ
{∫ ∞

0

f(x)dx− 1
}
,

where θ and λ are Lagrange multiplier parameters. This yields that the maximum entropy distribution is

fβ(x, θ) = Zβ(θ)−1(1 + βθ>t(x))
1
β

= Zβ(θ)−1(βθ1x+ θ2x
β(κ−1))

1
β

= Zβ(θ)−1xκ−1(θ2 − βθ1x
1−β(κ−1))

1
β ,

where θ is determined by µ such that Efβ(·,θ)t(X) = µ and

Zβ(θ) =

∫ ∞
0

x(θ2 − βθ1x
1−β)

1
β dx.
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A gamma distribution is defined by the density function

f(x, κ, θ) =
xκ−1 exp(−x

θ
)

Γ(κ)θκ

Second, we consider a case of multivariate distributions, where the moment constraints are supposed
that for a fixed p-dimensional vector µ and matrix V of size p× p

Γ(µ, V ) = {f ∈ F : Ef (X) = µ,Vf (X) = V }.

Let

fβ(·, µ, V ) = argmax
f∈Γ(µ,V )

Hβ(f).

If we consider a limit case of β to 0, then Hβ(f) reduces to the Boltzmann-Shannon entropy and the
maximum entropy distribution is the Gaussian distribution with the density function

ϕ(x, µ, V ) = {det(2πV )}p/2 exp
{
− 1

2
(x− µ)>V −1(x− µ)

}
.

In general we deduce that if β > − 2
p+2

, then the maximum β-power entropy distribution uniquely exists
such that the density function is given by

fβ(x, µ, V ) =
cβ

det(2πV )
1
2

{
1− β

2 + pβ + 2β
(x− µ)>V −1(x− µ)

}
+
,

where

cβ =


( 2β

2 + pβ + 2β

) p
2 Γ(1 +

p

2
+

1

β
){Γ(1 +

1

β
)}−1 if β ≥ 0( −2β

2 + pβ + 2β

) p
2 Γ(− 1

β
){Γ(− 1

β
− p

2
)}−1 if − 2

p+2
< β ≤ 0

See [35,36] for the detailed discussion [37,38] for the discussion on group invariance. Thus, if β > 0,
then the maximum β-power entropy distribution has a compact support

{x ∈ Rp : (x− µ)>V −1(x− µ) ≤ 2

β
+ p+ 2}

The typical case is β = 2, which is called the Wigner semicircle distribution. On the other hand,
if − 2

p+2
< β < 0, the maximum β-power entropy distribution has a full support of Rp, and equals a

p-variate t-distribution with a degree of freedom depending on β.

5. Minimum Divergence Method

We have shown a variety of U -divergence functionals using various generator functions in which
the minimum divergence methods are applied to analyses in statistics and statistical machine learning.
In effect the U -cross entropy CU(f, g) is convex-linear in f , that is,

CU(
J∑
j=1

λjfj, g) =
J∑
j=1

λjCU(fj, g)
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for any λj > 0 with
∑J

j=1 λj = 1. It is closely related with a characteristic property that the linear
connection Γ(U) associated with U -divergence is equal to the mixture connection Γ(m) as discussed in
Theorem 1. Furthermore, for a fixed g, CU(f, g) can be viewed as a functional of F in place of f
as follows:

CU(F, g) =

∫
{ξ(g(x))−

∫
U(ξ(g(x)))dΛ(x)}dF (x),

where F is the probability distribution generated from f(x). If we assume to have a random sequence
X1, · · · , Xn from a density function f(x), then the U -cross entropy is approximated as

CU(F̄n, g) = − 1

n

n∑
i=1

ξ(g(Xi)) +

∫
U(ξ(g))dΛ, (25)

where F̄n is the empirical distribution based on the data X1, · · · , Xn, that is,
F̄n(B) = 1

n

∑n
i=1 I(Xi ∈ B) for any Borel measurable set B. By definition,∫

ξ(g(x))dF̄n(x) =
1

n

n∑
i=1

ξ(g(Xi)).

Consequently, if we model g by a model function f(·, θ), then the right side of Equation (25) depends
only on the data set (Xi)

n
i=1 and parameter θ without any knowledge for the underlying density function

f(x). This gives the empirical approximation, which is advantageous over other classes of divergence
measures. The minimum U -divergence method is directly applied to minimization of the empirical
approximation with respect to θ. We note that the minimum divergence is equivalent to the minimum
cross entropy, in which the diagonal entropy is just a constant in θ. In particular, in the classical case,

C0(F̄n, f(·, θ)) = − 1

n

n∑
i=1

log f(Xi, θ) + 1,

which is equivalent to the minus log-likelihood function.
Let X1, · · · , Xn be independently and identically distributed from an underlying density function

f(x) which is approximated by a statistical model M = {f(x, θ) : θ ∈ Θ}. The U -loss function is
introduced by

LU(θ) = − 1

n

n∑
i=1

ξ(f(Xi, θ)) + bU(θ),

where bU(θ) =
∫
U(ξ(f(x, θ)))dΛ(x). We call θ̂U = argminθ∈Θ LU(θ) U -estimator for the parameter

θ. By definition Ef{LU(θ)} = CU(F, f(·, θ)) for all θ in Θ, which implies that LU(θ) almost surely
converges to CU(F, f(·, θ)) as n goes to∞. Let us define a statistical functional as

θU(F ) = argmin
θ∈Θ

CU(F, f(·, θ)),

where CU(F, g) is written CU(f, g) placing f into the probability distribution F generated from f .
Then θU(F ) is model-consistent, or θU(Fθ) = θ for any θ ∈ Θ because

CU(Fθ, f(·, θ′)) ≤ HU(f(·, θ))
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with equality if and if θ′ = θ, where Fθ is the probability distribution induced form f(x, θ).
Hence U -estimator θ̂U is asymptotically consistent. The estimating function is given by

sU(x, θ) =
∂

∂θ
ξ(f(x, θ))− Ef(·,θ)

{ ∂

∂θ
ξ(f(X, θ))

}
. (26)

Consequently we confirm that sU(x, θ) is unbiased in the sense that Ef(·,θ){sU(X, θ)} = 0.
We next investigate the asymptotic normality for U -estimator. The estimating equation for the

U -estimator is given by

1

n

n∑
i=1

sU(Xi, θ̂U) = 0,

of which the Taylor approximation gives

1

n

n∑
i=1

{
sU(Xi, θU(F )) +

∂sU
∂θ>

(Xi, θU)(θ̂U − θU(F ))
}

= o(n−1
P ).

In accordance with this, we get the asymptotic approximation,

√
n{θ̂U − θU(F )} =

1√
n
J(θU(F ))−1

n∑
i=1

sU(Xi, θU(F )) + o(n
− 1

2
P ),

where

J(θ) = Ef(·,θ)

{∂sU
∂θ>

(X, θ)
}
.

Because the strong law of large number gives

1

n

n∑
i=1

∂sU
∂θ>

(Xi, θU(f))
a.s.−→ J(θU(F ))

as n goes to∞, where a.s.−→ denotes almost sure convergence. If the underlying density function is in the
model M , that is f(x) = f(x, θ), then it follows from the model consistency for θU(F ) that

√
n(θ̂U − θ) =

1√
n
J(θ)−1

n∑
i=1

sU(Xi, θ) + o(n
− 1

2
P ),

which implies that

√
n(θ̂U − θ)

D−→ N(0, J(θ)−1V (θ)J(θ)−1),

where D−→ denotes convergence in distribution and

V (θ) = Vf(·,θ){sU(X, θ)}.

If the generator function is taken as U(s) = exp(s), then the U -estimator reduces to the MLE with
the asymptotic normality to N(0, G(θ)−1), where G(θ) is the Fisher information matrix for θ.
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Consider U -estimator for the parameter θ of the exponential modelM (e) in Equation (1). In particular
we are concerned with a possible outlying contaminated in the exponential model, and hence a
ε-contamination model is defined as

Fθ,ε,y(x) = (1− ε)F0(x, θ) + εδy(x),

where ε, 0 < ε < 1 is a sufficiently small constant, F0(x, θ) is the cumulative distribution function
of the exponential model, and δy(x) denotes a degenerate distribution at y. The influence function for
U -estimator is given by

IF(θ̂U , y) := lim
ε→0

θU(Fθ,ε,y)− θ
ε

= J(θ)−1sU(y, θ),

See [19,20,27]. Thus we can check the robustness for U -estimator whether the influence function is
bounded in y or not. For example, if we adopt as U(s) = (1 + βs)1/β , then

IF(θ̂U , y) = J(θ)−1[{t(y)− µ}f0(y, θ)β − b(θ, β)], (27)

where b(θ, β) =
∫
{t(x) − µ}f0(x, θ)βdΛ(x). Thus, if β > 0, then the influence function is confirmed

to be bounded in y for almost cases including a normal, exponential and Poisson distribution models
since the term {t(y)−µ}f0(y, θ)β in Equation (27) is bounded in y for these models. On the other hand,
If β = 0, that is the maximum likelihood estimator entails the unbounded influence functions because
the term t(y)− µ is unbounded in y for theses models.

6. Duality of Maximum Entropy and Minimum Divergence

In this section, we discuss a dualistic interplay between statistical model and estimation. In statistical
literature, the maximum likelihood estimation has a special position over other estimation methods
in the sense of efficiency, invariance and sufficiency; while the statistical model has been explored
various candidates in the presence of misspecification. For example, we frequently consider a Laplace
distribution for estimating a Gaussian mean, which leads to the sample median as the maximum
likelihood estimator for the mean of the Laplace distribution. In this sense, there is an unbalance in
the employment for the model and estimator. In principle, we can select arbitrarily different generator
functions U0 and U1 so that the U1-estimation gives consistency under the U0-model. There is a natural
question which situation happens if we consider the U -estimation under the U -model?

Let MU be a U -model defined by

MU = {fU(x, θ) := u(θ>t(x)− κU(θ)) : θ ∈ Θ}, (28)

where Θ = {θ ∈ Rk : κU(θ) < ∞}. The the U -loss function under the U -model for a given data set
{X1, · · · , Xn} is defined by

LU(θ) = − 1

n

n∑
i=1

ξ(fU(Xi, θ)) +

∫
U(ξ(fU(x, θ)))dΛ(x),

which is reduced to

LU(θ) = −θ>t̄+ κU(θ) + bU(θ), (29)
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where t̄ = 1
n

∑n
i=1 t(Xi) and

bU(θ) =

∫
U(ξ(θ>t(x)− κU(θ))dΛ(x). (30)

The estimating equation is given by

∂

∂θ
LU(θ) = −t̄+

∂

∂θ
κU(θ) +

∂

∂θ
bU(θ),

which is written by

∂

∂θ
LU(θ) = −t̄+ Ef(·,θ){t(X)}.

Hence, if we consider the U -estimator for a parameter η by the transformation of θ defined by
ϕ(θ) = Ef(·,θ){t(X)}, then the U -estimator η̂U is nothing but the sample mean t̄. Here we confirm that
the transformation ϕ(θ) is one-to-one as follows. The Jacobian matrix of the transformation is given by

∂

∂θ
ϕ(θ) =

∫
u′(θ>t(x)− κU(θ))

{
t(x)− ∂

∂θ
κU(θ))

}{
t(x)− ∂

∂θ
κU(θ))

}>
dΛ(x),

since the first identity for MU leads to

∂

∂θ

∫
fU(x, θ)dΛ(x) =

∫
u′(θ>t(x)− κU(θ))

{
t(x)− ∂

∂θ
κU(θ)

}
dΛ(x) = 0.

Therefore, we conclude that the Jacobian matrix is symmetric and positive-definite since u′(t)

is a positive function from the assumption of the convexity for U , which implies that ϕ(θ) is
one-to-one. Consequently, the estimator θ̂U for θ is given by ϕ−1(t̄). We summarize these results in
the following theorem.

Theorem 5. Let MU be a U -model with a canonical statistic t(X) as defined in Equation (28). Then the
U -estimator for the expectation parameter η of t(X) is always t̄, where t̄ = 1

n

∑n
i=1 t(Xi).

Remark 2. We remark that the empirical Pythagorean theorem holds as in

LU(θ) = LU(θ̂U) +DU(θ̂U , θ),

since we observe that

LU(θ)− LU(θ̂U) = (θ̂U − θ)>t̄+ κU(θ) + bU(θ)− κU(θ̂U) + bU(θ̂U),

which gives another proof for which θ̂U is ϕ−1(t̄). The statistic t̄ is a sufficient statistic in the sense that
the U -loss function LU(θ) is a function of t̄ as in Equation (29). Accordingly, the U -estimator under
U -model is a function only of t̄ from the observations X1, · · · , Xn. In this extension, the MLE is a
function of t̄ under the exponential model with the canonical statistic t(X).

Let us look at the case of the β-power divergence. Under the β-power model given by

Mβ = {fβ(x, θ) := {κβ(θ) + βθ>t(x)}
1
β : θ ∈ Θ},
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the β-loss function is written by

Lβ(θ) = −βθ>t̄+ κβ(θ) + bβ(θ),

where

bβ(θ) =
1

β + 1

∫
{κβ(θ) + βθ>t(x)}

1+β
β dΛ(x).

The β-power estimator for the expectation parameter of t(X) is exactly given by t̄.

7. Discussion

We concentrate on elucidating the dual structure of the U -estimator under the U -model, in which
the perspective extends the relation of the maximum likelihood under the exponential model with a
functional degree of freedom. Thus, we explore a rich and practical class of duality structures; however,
there remains an unsolved problem when we directly treat the space F as an differentiable manifold,
see [39] for an infinite dimensional exponential family. The approach here is not a direct extension of an
infinite dimensional manifold, but a path geometry in the following sense. For all pairs of elements of F
the geodesic curve connecting the pair is represented in an explicit form in the class of ∗Γ(U) connections
in our context.

TheU -divergence approach was the first trial to introduce a dually flat structure toF which is different
from the alpha-geometry. However, there are many related studies. For example, a nonparametric
information geometry on the space of all functions without constraints for positivity and normalizing
is discussed in Zhang [40]. Amari [41] characterizes (ρ, τ)-divergence with decomposable dually flat
structure, see also [42]. If ρ is an identity function and τ(s) = (d/ds)U(s), (ρ, τ)-divergence is no less
than U -divergence. In effect we confine ourselves to discussing the U -divergence class for the sake of
the direct estimability for U -estimator.

The duality between the maximum entropy and the minimum divergence has been explored in the
minimax theorem for a zero-sum game between a decision maker and Nature. The pay-off function is
taken by the cross U -entropy in which Nature tries to maximize the pay-off function under the mean
equal constraint; the decision maker tries to minimize the pay-off function. The equilibrium is given
by the minimax solution, which is the maximum U -entropy distribution, see [43] for the extensive
discussion and the relation with Bayesean robustness. The observation explored in this paper is closely
related with this minimax argument, however the duality between the statistical model and estimation is
focused on, where the minimum U -divergence leads to projection onto the U -model.

In principle, the U -estimator is applicable for all the statistical model since U -loss function is written
by a sample as well as the log-likelihood function. If the choice of the model is different from the
U -model, then U -estimator has different performance from the present situation. For example, we
consider an exponential model (U(s) = exp(s)), and a β-estimator (U(s) = (1 − βs)1/β for getting
a robustness property for outlying observations, cf. [19,20]. In such situations, the duality property is
no longer valid, since the β-estimator for the parameter of the exponential model is not a function of
the sufficient statistic t̄ defined in Theorem 5. Thus, we have to pay attention to another aspect than the
duality structure in the presence of outlying, or misspecification for the statistical model. Furthermore,
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another type of divergence measures including projective power divergence is recommended to perform
super robustness, cf. [21,44].

We presented the method of generalized maximum entropy based on the proposed entropy measure,
as an extension of the classical maximum entropy method based on the Boltzmann-Gibbs-Shannon
entropy. Practical applications of MaxEnt are actively followed in ecological and computational
linguistic researches based on the classical maximum entropy, cf. [45,46]. Difficult aspects are discussed,
in which the MaxEnt is apt to be over-learning on data sets because it basically employs the maximum
likelihood estimator. There is a great potential for the proposed method to implement these research
fields in order to overcome these difficult aspects, by selecting an appropriate generator function. A
detailed discussion is beyond the scope of the present paper; however, it will be challenged in the near
future with concrete objectives motivated by real data analysis.
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Appendix: Derivation for G(U),Γ(U) and ∗Γ(U)

We apply the general formula for the Riemannian metric and the pair of linear connections discussed
in [29] to U -divergence DU(f, g). The Riemannian metric is defined by

G
(U)
ij (θ) =

∂2

∂θi∂θj1
DU(fθ, fθ1)

∣∣∣
θ1=θ

.

Hence G(U)
ij (θ) is expressed by Equation (10). Next the pair of linear connections Γ(U) and ∗Γ(U) are

defined by

Γ
(U)
ij,k(θ) =

∂3

∂θi∂θj∂θk1
DU(fθ, fθ1)

∣∣∣
θ1=θ

.

and

∗Γ
(U)
ij,k(θ) =

∂3

∂θi∂θj∂θk1
DU(fθ1 , fθ)

∣∣∣
θ1=θ

which means Equations (11) and (12), respectively. We confirm the formula for G(U),Γ(U) and ∗Γ(U).
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