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Abstract: The Carnot factor versus enthalpy variation (heat) diagram has been used 

extensively for the second law analysis of heat transfer processes. With enthalpy variation 

(heat) as the abscissa and the Carnot factor as the ordinate the area between the curves 

representing the heat exchanging media on this diagram illustrates the exergy losses due  

to the transfer. It is also possible to draw the paths of working fluids in steady-state,  

steady-flow thermodynamic cycles on this diagram using the definition of “the equivalent 

temperature” as the ratio between the variations of enthalpy and entropy in an analyzed 

process. Despite the usefulness of this approach two important shortcomings should be 

emphasized. First, the approach is not applicable for the processes of expansion and 

compression particularly for the isenthalpic processes taking place in expansion valves. 

Second, from the point of view of rigorous thermodynamics, the proposed ratio gives the 

temperature dimension for the isobaric processes only. The present paper proposes to 

overcome these shortcomings by replacing the actual processes of expansion and 

compression by combinations of two thermodynamic paths: isentropic and isobaric. As a 

result the actual (not ideal) refrigeration and power cycles can be presented on equivalent 

temperature versus enthalpy variation diagrams. All the exergy losses, taking place in 

different equipments like pumps, turbines, compressors, expansion valves, condensers and 

evaporators are then clearly visualized. Moreover the exergies consumed and produced in 

each component of these cycles are also presented. The latter give the opportunity to also 

analyze the exergy efficiencies of the components. The proposed diagram is finally applied 

for the second law analysis of an ejector based refrigeration system. 
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1. Introduction 

Utilisation of ejector refrigeration cycles powered by waste heat or solar energy is an important 

alternative to absorption machines such as LiBr-H2O and H2O-NH3 [1,2]. Construction, installation 

and maintenance of such systems are relatively inexpensive compared to that of absorption machines. 

The temperature-entropy diagram is usually used to describe the behaviour of the ejector refrigeration 

cycles [3,4], however this diagram does not allow one to evaluate the irreversibilities, their distribution 

within the cycle, as well as the exergy efficiency of its components. The Carnot factor-enthalpy 

diagram has been used extensively for the second law analysis of heat transfer processes [5,6]. With 

enthalpy variation (heat) as the abscissa and the Carnot factor as the ordinate the area between the 

special curves, representing the heat exchanging media on this diagram, illustrates the exergy losses 

due to the transfer. The diagram has been applied for the thermodynamic analysis of individual heat 

exchangers [5] as well as for heat exchanger networks [6]. The introduction of the “equivalent 

temperature” allowed the sorption refrigeration cycles to be presented on this diagram [7]. Meanwhile 

the difficulties to present expansion and compression processes on the Carnot factor-enthalpy diagram 

limit its application to the ejector refrigeration cycles. The main objective of the present paper is to 

overcome this limitation by replacing the actual processes of expansion and compression by combinations 

of two thermodynamic paths: isobaric and isentropic. To explain this new approach the classical power 

cycle (Organic Rankine Cycle, ORC) and mechanical refrigeration cycle will be firstly presented on 

the Carnot factor-enthalpy diagram. Afterwards, following the work of Arbel et al. [8], the ejector 

refrigeration cycle will be presented as a superposition of the power and refrigeration cycles. It will 

allow presenting the ejector refrigeration cycle on the diagram. As a result the exergy losses as well as 

the exergies consumed and produced in each element of the ejector refrigeration cycle will be 

quantified and visualized on the diagram. 

2. Equivalent Temperature 

According to Prigogine [9] two thermodynamic processes are equivalent if the entropy production 

for each of them is the same. Following this definition, Bejan et al. [10] introduced the notion of  

“the equivalent temperature” as: 
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Given that the term (Tds) can be expressed as a function of enthalpy variation (dh):  

Tds dh v dP    (2)

Equation (1) can be rewritten as: 
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Neveu and Mazet [7] defined the equivalent temperature (Teq) simply by the ratio between the 

variations of enthalpy and entropy in an analyzed process: 
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The later relation gave the opportunity to present a refrigeration cycle on the Carnot factor-enthalpy 

diagram. The Carnot factor was associated with (Teq) by the following expression: 
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The comparison between Equations (3) and (4) shows that from the point of view of rigorous 

thermodynamics, the ratio (4) gives the correct equivalent temperature for isobaric processes only. 

This fact does not allow the application of the Carnot factor-enthalpy diagram [7] to compression  

and expansion processes. Moreover according to the definition (4) the equivalent temperature of a 

throttling process (dh = 0) is zero, as a result the exergy losses due to this process cannot be presented 

on such a diagram. Yet the application of ratio (4) is attractive because of its simplicity that already 

allowed the diagrammatic analysis of sorption refrigeration systems [5,6]. 

To keep the definition (4) for the analysis of ejector refrigeration cycles it is proposed to replace the 

adiabatic processes of expansion and compression by combinations of two thermodynamic paths: 

isentropic and isobaric. The value of Teq for an isentropic process equals to (∞) which means that, 

according to (5), Θeq = 1. For an isobaric process the values of Teq and Θeq may be calculated by using 

the formulas (4) and (5) respectively. The next section will illustrate the application of this new 

approach to an ORC cycle. 

3. Organic Rankine Cycle 

The T-s diagram of the analyzed ORC is illustrated in Figure 1. The cycle was studied by Khennich 

and Galanis [11]. The working fluid is R152a. The cycle is used to recover the waste heat contained in 

a low temperature airstream rejected by an industrial process. This flow enters the evaporator at the 
temperature T17 = 115 °C, the mass flow rate is sM  = 50 kg/s. The temperature of the cooling water at 

the condenser entry is T15 = 10 °C and the mass flow rate is pM . The working fluid receives heat at a 

relatively high pressure in the evaporator, is then expanded in a turbine, thereby producing useful 

work, and rejects heat at a low pressure in the condenser. It is then pumped to the evaporator. The 

isentropic efficiency of the pump is taken as ηp = 1. The isentropic efficiency of the turbine is equal to 

ηT = 0.8. The temperature difference between the external fluid inlet and the working fluid exit is taken 

as DT = 5 °C. The same DT is assumed for evaporator and condenser. The dimensionless value of the 
net power of the cycle α is obtained by dividing T P(W W )   by the following reference power: 
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working fluid 4.177 kg/s. Finally, the evaporation pressure is considered equal to PEv = 1000 kPa.  

(PCo < PEv < PSat(T3)). 

Figure 1. Temperature-entropy diagram of the ORC. 

 

The adiabatic expansion path 3–4 is replaced by the combination of the isentropic path 3–3s and  

the isobaric 3s–4. The mathematical model of the cycle was solved by using the EES [12] code which 

includes the thermodynamic properties of R152a. The computational results, including Θeq, the 

corresponding enthalpy variations as well as the exergy losses and exergy efficiencies of each 

component of the cycle are presented in Figure 2. 

Figure 2. Carnot factor based on the Eq. Temp., Enthalpy variations, Exergy losses and 

Exergy efficiencies of ORC components.  
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The Carnot factors corresponding to the isentropic expansion 3–3s and isentropic compression 1–2 

equal 1, because the equivalent temperatures are infinitely large. The largest exergy losses take place  

at the evaporator, 197.53 kW (47.29 kJ/kg) and represent 72.77% of the total exergy destroyed  

271.42 kW (64.99 kJ/kg) in the ORC system. However the exergy efficiency of the evaporator is 

relatively high, almost 80% which means that the further reduction of exergy losses may require an 

economically prohibitive increase in heat transfer area. The Θeq vs. ΔH results from Figure 2 are used 

to build the corresponding diagram presented in Figure 3. 

Figure 3. Carnot factor based on Eq. Temp. vs. enthalpy variation for the ORC (not to scale). 

 

Although Figure 3 is not to scale, the information shown represents exactly the quantitative results 

of the analysis. For example, the exergy destruction in the turbine, in (kJ/kg), illustrated by the green 

rectangle in Figure 3 is equal to: 
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This result is identical to the corresponding value shown in Figure 2. The way to draw this diagram 

is to follow a particle of working fluid all along the cycle. It should be noted that the same point on T-s 

diagram is characterized by different equivalent temperatures depending on the process with which it 

is associated; it is therefore represented by multiple points on the same vertical line in the Θeq-ΔH 

diagram. For example point 3 on Figure 1 is the final state for the evaporation process 3–2 (Θeq = 

0.1191) and the initial one for the expansion path 3–3s (Θeq = 1); as a result it is represented as two 

points on the same vertical line on Figure 3. Thus all the processes on the Θeq-ΔH diagram are 

presented by horizontal lines. The direction of the arrow corresponds to the direction of the working 
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flow. The isentropic expansion is presented by the line 3–3s at Θeq = 1; the frictional (adiabatic) reheat 

of the turbine by line 3s–4 at Θeq = 0.1924; the condensation by 4–1 at Θeq = 0.0381; the isentropic 

pumping by 1–2 at Θeq = 1 and the evaporation by 3–2 at Θeq = 0.1191. The external fluids, hot gas and 

cooling water are presented by lines 17–18 and 16–15 respectively. 

The closure of the energy balance of the cycle can be easily verified on this diagram. Indeed: 

    
Ev P Co TQ W Q W

1658.1  2.5  1543.2  146.9  29.4

  

   

  
 (7)

The results of the exergy analysis presented in Figure 2 are visually illustrated on the diagram of 

Figure 3. The exergy losses in each component of the ORC cycle are shown as surfaces and are the 

product of the enthalpy change ΔH in (kW) and the variation of the equivalent Carnot factor. The 

environmental temperature T0 = 283 K (10 °C) is taken equal to the water temperature in the 

condenser. Moreover the diagram allows visualizing the exergy produced and expended in each 

element. Their ratio gives the value of exergy efficiency, Brodyansky et al. [13]. For example  

the area a4–3–b4–4–3s–d4 corresponds to the exergy produced by the turbine. It is composed of  

two useful effects: the shaft work from the turbine (the area a4–3–b4–c4) and the exergy of the 

frictional reheat (the area c4–4–3s–d4). The expended exergy is presented by the area a4–3–3s–d4 and 

corresponds to the exergy produced in the ideal isentropic turbine. The exergies produced in the 

evaporator and condenser are a4–3–2–f4 and c4–16–15–e4 respectively; the expanded exergies are  

a4–17–18–f4 and c4–4–1–e4 respectively. 

4. Mechanical Refrigeration Cycle 

The refrigeration mechanical vapor compression cycle is shown in Figure 4. The working fluid is 

R152a, the same as for the ORC. It enters the compressor at T1 = −10 °C, (T1 = T4g + 6 °C) in the form 

of superheated steam (6 °C overheating at the outlet of evaporator). The isentropic compressor 

efficiency is ηComp = 0.85. At the entrance of the condenser the fluid is in the form of superheated 

steam. It flows through the condenser by giving up heat to the external fluid (water). At the inlet of the 

expansion valve it is in the form of subcooled liquid (6 °C subcooling at the outlet of the condenser)  

T3 = 20 °C, (T3 = T3f − 6 °C). It undergoes a pressure drop in the valve reaching the evaporation 

pressure at its outlet. Emerging from the valve, the fluid enters the evaporator as a liquid-vapor 

mixture. As it passes through the evaporator, it absorbs heat from the air, which enters at a temperature 

of 0 °C. The fluid finally leaves the evaporator in the form of superheated steam to be admitted into the 

compressor. The inlet temperature of the external fluid (water) in the condenser is 10 °C; a mass flow 

rate = 4 kg/s. The temperature difference between the refrigerant and the external fluid in the 

condenser and evaporator is DT = 10 °C. Refrigerant mass flow rate is = 0.15 kg/s. The flow regime is 

permanent and variations of the kinetic and potential energy are neglected. The throttling process 3–4 

is replaced by the combination of the isentropic expansion path 3–3s and the isobaric-isothermal  

path 4–3s. 

Similar to the ORC cycle the computational results, including Θeq, the corresponding enthalpy 

variations as well as the exergy losses and exergy efficiencies of each component of the refrigeration 

cycle are presented in Figure 5.  
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Figure 4. Temperature-entropy diagram of the vapor compression cycle. 

 

Figure 5. Carnot factor based on Eq. Temp., Enthalpy variations, Exergy losses and 

Exergy efficiencies of the Vapor compression cycle.  

 

Unlike the results for the ORC, Figure 5 illustrates that the biggest exergy losses take place in the 

heat exchangers of the refrigerating cycle. In the condenser, this translates into 41.77% of the total 

exergy destroyed in this cycle. The evaporator follows with 27.71% of the total exergy losses of the 

cycle. All exergy expended in the valve is destroyed by the irreversibility, thus its exergy efficiency is nil. 

The Θeq-ΔH diagram of the cycle is presented on Figure 6. The isentropic compression is presented 

by the line 1–2s at Θeq = 1; the frictional (adiabatic) reheat of the compressor by line 2s–2 at  

Θeq = 0.1269; the condensation by 2–3 at Θeq = 0.0579; the isentropic expansion path by 3–3s at Θeq = 1; 

the isobaric-isothermal path by 3s–4 at Θeq = −0.1011 and the evaporation by 4–1 at Θeq = −0.1008. 

The external fluids, air and cooling water are presented by lines 6–5 and 7–8 respectively. Again the 

closure of the energy balance of the cycle can be easily verified on this diagram: 
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Figure 6. Carnot factor based on Eq. Temp. vs. enthalpy variation for the vapor 

compression cycle (not to scale). 

 

The diagram reveals the nature of exergy losses in the throttling valve. Indeed they are presented as 

a summation of two areas: the first (f1–3–3s–g1–f1) corresponds to the lost potential to produce shaft 

work due to the expansion, the second (f1–g1–3s–4–f1) illustrates the exergy lost due to the reduced 

refrigeration capacity in the evaporator. 

The exergy produced by the compressor is presented by the area a1–1–2s–2s–2–c1. It is the sum of 

two components: the minimum shaft work to drive the isentropic compression (the area a1–1–2s–d1) 

and the exergy of the frictional reheat (the area d1–2s–2–c1). The expended exergy is presented by the 

area a1–1–b1–c1 and corresponds to the shaft work required to drive the real adiabatic compressor. 

The interpretation of the areas corresponding to exergies produced and expanded in heat exchangers 

are similar to the ORC case. 

5. Ejector Refrigeration System 

The ejector refrigeration cycle driven by solar energy is illustrated in Figure 7. The cycle has been 

studied under the condition of minimizing the total thermal conductance (UAt) of the three heat 

exchangers (generator, condenser and evaporator). The corresponding optimum value of pressure at 

the generator is PGe,opt = 3000 kPa resulting in a minimum total thermal conductance of  

UAt,min = 10.65 kW/K. The refrigerant used is R152a. External fluids at the generator, condenser and 
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evaporator are respectively: XcelTherm500, water and the anti-freezing fluid MEG 45% 

(monoethylene glycol 45%) as a coolant at low temperature. The refrigeration capacity has been set to 

a value of 10 kW. The minimum temperature difference in the heat exchangers is DT = 5 °C. The 

temperature of the fluid entering the generator is TGe,in = 105 °C, the temperature of the cooling water 

entering the condenser is TCo,in = 10 °C and the temperature of the refrigeration fluid entering the 

evaporator is TEv,in = 0 °C. 

Figure 7. The ejector refrigeration cycle driven by solar energy. 

 

Figure 8 illustrates the four sections of an ejector: nozzle, suction chamber, mixing chamber and 

diffuser. The computational model used in the present study is based on the hypothesis of constant area 

of mixing chamber Dahmani et al. [3]. 

Figure 8. Four sections of a one phase ejector. 

 

Figure 9 shows a temperature-entropy diagram of the processes taking place in the system presented 

on Figure 7 and the ejector on Figure 8. According to Dahmani et al. [3] the high pressure vapor at  
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saturated vapor from 6. The later expands to a pressure 7s, the same as at 7p. These two low pressure 
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streams mix irreversibly in a constant area chamber emerging at state 8. Finally this mixture is 

decelerated isentropically to state 1 in a diffuser. 

Figure 9. Temperature-Entropy diagram of the ejector refrigeration cycle. 

 

The states of the refrigerant at all points of Figures 7 and 8 are calculated according to the 

procedure described by Dahmani et al. [3] using the following inputs: R152a, pm  0.040896 kg / s

sm 0.036090 kg / s , (XcelTherm500, TGe,in = 105 °C), (Water, TCo,in = 10 °C), (MEG45%,  

TEv,in = 0 °C), DT = 5 °C, EvQ 10 kW . This procedure considers that the acceleration of the primary 

and secondary fluids from 4 to 7p and from 6 to 7s respectively as well as the deceleration of the 

mixture from 8 to 1 are reversible and adiabatic (see Figure 9). On the other hand the mixing process 

which occurs between planes 7 and 8 is adiabatic but irreversible resulting in a significant entropy 

increase (see Figure 9) and exergy destruction. We thus obtain the values of the pressure, the 

temperature, the entropy, etc. at all the states shown in Figures 7 and 8. In particular we obtain the 

entropy increase associated with the irreversible mixing process which takes place between planes 7 

(where the two streams have the same pressure, P7p = P7s = 128.4 kPa, but different velocities and 

entropies) and 8 (where the flow is fully mixed). Thus, s4 = s7p = 2.050 kJ/(kg·K), s6 = s7s = 2.131 kJ/(kg·K) 

and s8 = s1 = 2.160 kJ/(kg·K). We are also able to calculate the rate of exergy destruction associated 

with this irreversible mixing process. It should be noted that the rate of exergy destruction for the 

entire ejector is the same as that of the mixing process since the expansion of the two fluids and the 

deceleration of the mixture in the diffuser are considered to be reversible. 

Following the work of Arbel et al. [8], the ejector refrigeration cycle can be presented as a 

superposition of the power (2–3–4–7p–8–1) and refrigeration (2–5–6–7s–8–1) sub-cycles. By using 

the isentropic and isobaric paths between points (4, 1) and (6, 1) these two sub-cycles are presented 

separately on Figure 10. The power cycle is named Upper Cycle (UC) and refrigeration cycle  

Lower Cycle (LC). 
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Figure 10. Splitting of the ejector refrigeration cycle into two sub-cycles: Upper Cycle 

(UC) and Lower Cycle (LC). 

 

The power sub-cycle or Upper Cycle (UC) shown in Figure 10 is drawn using the intensive 

properties (temperature, pressure, specific entropy) of states 1, 2, 3 and 4 calculated by the  

Dahmani et al. [3] model for the cycle of Figure 9. It shows that the primary or motive fluid enters the 

ejector at state 4 and exits at state 1 with a considerable entropy increase caused by the irreversible 

phenomena taking place in the ejector. Similarly, the refrigeration sub-cycle or Lower Cycle (LC) of 

Figure 10 drawn with the intensive properties of states 1, 2, 5 and 6 (calculated by the model for the 

cycle of Figure 9) shows the corresponding entropy increase for the secondary or entrained fluid which 

enters the ejector at state 6 and exits at state 1. It should be noted that the two sub-cycles have the same 

intensive properties at states 1 and 2. The mass flow rates for the upper and lower sub-cycles are equal 

to primary and secondary mass flow rates of the ejector respectively. 
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The computational results, including Θeq, the corresponding enthalpy variations as well as the exergy 

losses and exergy efficiencies of each component of the two sub-cycles are presented in Figure 11. 

Figure 11. Carnot factor based on Eq. Temp., Enthalpy variations, Exergy losses and 

Exergy efficiencies of Upper (UC) and Lower (LC) sub-cycles.  

 

 

The irreversibility of the phenomena occurring in the entire ejector (see Figure 9) is equal to the 

sum of those occurring in the turbine of the Upper Cycle and the compressor of the Lower Cycle 

between states 4–1 and 6–1 respectively. 

The Θeq-ΔH diagrams of the two sub-cycles are presented on Figure 12. For the UC the isentropic 

expansion of the motive stream is presented by the line 4–4s at Θeq = 1; the frictional (adiabatic) reheat 

by line 4s–1 at Θeq = 0.0304. For the LC the isentropic compression is presented by the line 6–6s at  

Θeq = 1 whereas the frictional (adiabatic) reheat of the compressor is by line 6s–1 at Θeq = 0.0529. The 

presentations of the processes in heat transfer equipment are similar to the diagrams on Figures 3 and 6.
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Figure 12. Carnot factor based on Eq. Temp. vs. enthalpy variation for the Upper (UC) and 

Lower (LC) sub-cycles (not to scale). 
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The difference between this result and the corresponding value in Figure 11 is (0.01) kJ/kg (i.e., less 

than 1%) and is due to rounding of errors. 

Given that the ejector and the condenser are the pieces of equipment which connect the two  

sub-cycles, UC and LC, the exergy losses in (kW) calculated separately in these two components will 

therefore be added. 

   
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  
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      det(Condenser) 12 12 eq 12 eq 1211UC LC
Ex H H

0.3321
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


 

(11)

Figure 13 is the zooming of the useful exergy produced (the left diagram) and the exergy expended 

(the right diagram) in the ejector taken from Figure 12. 

Figure 13. The areas representing exergy produced and the exergy expended in the ejector 

(not to scale). 

 

Based on Figure 13 the exergy efficiency in (%) is defined as:  

in det(EJ CO) 6s6 16s eq 16sejector
ex

T det(EJ TU) 44s 14s eq 14s

W Ex H H
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 (12)

This value is relatively low and emphasises the necessity to improve the thermodynamic efficiency 

of the ejector in the ejector refrigeration cycle. 

6. Conclusions 

 A special Carnot factor-enthalpy diagram based on “the equivalent temperature” has been 

proposed to analyse the exergy performance of ejector refrigeration cycles. 
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 The exergy losses as well as the exergies consumed and produced in each component of the 

ejector refrigeration cycle are qualitatively visualized on the diagram. 

 The diagram pinpoints the low exergy efficiency of the ejector inside the ejector refrigeration cycle. 
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Nomenclature 

A Area m2 

DT Temperature difference between working fluid and external fluid °C 

e Specific flow exergy kJ/kg 

Eq. Temp. Equivalent Temperature  

detEx  Exergy destruction rate kW 

E  Exergy rate (Inlet) kW 

E  Exergy rate (Outlet) kW 

GWP Global warming potential, relative to CO2  

h Specific enthalpy kJ/kg 

flm  Mass flowrate of working fluid kg/s 

p sM , M   Mass flowrate of sink and source kg/s 

ODP Ozone depletion potential, relative to R11  

ORC Organic Rankine Cycle  

P Pressure kPa, MPa

Q  Heat transfer rate kW 

s Specific entropy kJ/kg-K 

T, Temp, t Temperature, (t) is in K °C, K 

UA Thermal conductance kW/K 

W  Power input or output kW 

ΔH Enthalpy variation rate: ΔH = m  Δh kW 

Greek symbols 

α Non-dimensional net power output  

η Efficiency  

∆ Difference  

Θ Carnot Factor, Θ = (1 − T0/T)  
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Subscripts 

0 Dead state  

1, 2…3*… States of thermodynamic cycle  

Co Condenser, condensation  

CO, comp Compressor, compression  

CR Critical  

det Destruction, destroyed  

Ej Ejector  

Ev Evaporator, evaporation  

Eq, eq Equivalent  

ex exergetic  

fl Fluid  

g  Saturated vapor   

Ge Generator  

in Inlet, Input  

is  Isentropic   

LC Lower Cycle  

min Minimal, minimum  

opt Optimal  

out Outlet, Output  

p Sink, primary  

P Pump  

ref reference  

s Source, secondary  

SCH Superheating  

SRef Subcooling  

t Total  

T, TU Turbine  

UC Upper Cycle  

VC Control volume  

w Specific work (inlet or outlet)  
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