
Entropy 2014, 16, 2568-2591; doi:10.3390/e16052568

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

A Relevancy, Hierarchical and Contextual Maximum Entropy
Framework for a Data-Driven 3D Scene Generation

Mesfin Dema * and Hamed Sari-Sarraf

Department of Electrical and Computer Engineering, Texas Tech University, 2500 Broadway,

Lubbock, TX 79409, USA; E-Mail: hamed.sari-sarraf@ttu.edu

* Author to whom correspondence should be addressed; E-Mail: mesfin.dema@ttu.edu.

Received: 16 January 2014; in revised form: 16 April 2014 / Accepted: 4 May 2014 /

Published: 9 May 2014

Abstract: We introduce a novel Maximum Entropy (MaxEnt) framework that can generate

3D scenes by incorporating objects’ relevancy, hierarchical and contextual constraints in a

unified model. This model is formulated by a Gibbs distribution, under the MaxEnt

framework, that can be sampled to generate plausible scenes. Unlike existing approaches,

which represent a given scene by a single And-Or graph, the relevancy constraint (defined

as the frequency with which a given object exists in the training data) require our approach

to sample from multiple And-Or graphs, allowing variability in terms of objects’ existence

across synthesized scenes. Once an And-Or graph is sampled from the ensemble, the

hierarchical constraints are employed to sample the Or-nodes (style variations) and the

contextual constraints are subsequently used to enforce the corresponding relations that

must be satisfied by the And-nodes. To illustrate the proposed methodology, we use desk

scenes that are composed of objects whose existence, styles and arrangements (position

and orientation) can vary from one scene to the next. The relevancy, hierarchical and

contextual constraints are extracted from a set of training scenes and utilized to generate

plausible synthetic scenes that in turn satisfy these constraints. After applying the proposed

framework, scenes that are plausible representations of the training examples are

automatically generated.

Keywords: 3D scene generation; maximum entropy; And-Or graphs

OPEN ACCESS

Entropy 2014, 16 2569

1. Introduction

In recent years, the need for 3D models and modeling tools is growing due to high demands in

computer games, virtual environments and animated movies. Even though there are many graphics

software in the market, these tools cannot be used by ordinary users due to their steep learning curve.

Even for the graphic experts, creating a large number of 3D models is a tedious and time consuming

procedure, requiring the need for automaton.

Though it is in its infant stage, automating the procedures of generating 3D contents, either by using

design guidelines or learning from examples, has become one of the active research areas in the

computer graphics community. In order to capture or represent the underlying pattern of a given

object/scene, state-of-the-art machine learning algorithms have been used in recent years to automatically

or semi-automatically generate 3D models that encompass a variety of objects/scenes by learning optimal

styles and arrangements of the constituent parts/objects. Yet, there remain numerous challenges in creating

a fully-automated scene generation system that can model complex scenarios. We hereby discuss our

contribution towards achieving the ultimate goal of designing a fully-automated scene generation system.

In this paper, we present a novel approach that can model a given scene by multiple And-Or graphs

and sample them to generate plausible scenes. Using a handful training scenes, we extract three major

constraints namely: Relevancy, hierarchical and contextual constraints. Each of these major constraints

is represented by many sub-constraints that are extracted from each object or pairs of objects in every

scene. These constraints are then used to generate plausible scenes by sampling from a probability

distribution with maximum entropy content.

The work presented here builds on our previous work [1,2] by introducing a relevancy constraint to

the existing hierarchical and contextual model. The proposed framework is capable of sampling from

multiple, conceptually similar And-Or graphs.

The organization of the paper is as follows. Section 2 presents the existing works that are related to our

approach. Section 3 describes the necessary mathematical formulations required in scene generation. Here,

we first describe knowledge representation of scenes with And-Or graphs, and then discuss the importance

and the intuition behind using the relevancy, hierarchical and contextual constraints for scene generation.

Next, we introduce the MaxEnt framework that integrates these constraints into a single, unified framework

and represents the scene generation problem as sampling from a Gibbs distribution. The Gibbs distribution

is chosen using a maximum entropy model selection criterion and has the capability of learning constraints

from the training scenes. Then, parameter estimation of the Gibbs distribution via the feature pursuit

strategy is explained. Finally, a technique to sample from the Gibbs distribution is discussed in this section

and a pseudocode summarizing the above steps is presented. Section 4 presents the implementation details

of the proposed approach. In Section 5, we report the results and analysis followed by a comparison of our

framework with an existing approach. Finally, in Sections 6, we present a summary of our

accomplishments and make some concluding remarks.

2. Related Works

Our approach benefits from some of the most recent works in the fields of computer vision and

graphics. In this section, we briefly describe these works and point out their relevance to our approach.

Entropy 2014, 16 2570

2.1. Stochastic Grammar of Images

As grammar defines the rules of composing a sentence, most objects in images can also be

composed of parts that are constrained with a set of contextual and non-contextual constraints [3]. In

recent years, stochastic grammar of images has been used in many computer vision applications for

modeling intra-class variations in a given object (scene), as well as for integrating contextual cues in

object recognition tasks [4–7]. These works [4–7] represent an object by a single And-Or graph that is

capable of generating a large number of template configurations. In the And-Or graph, the Or-node

embeds the parts’ variations in terms of shape or style (the hierarchical constraints), while the And-node

enforces contextual constraints between the nodes. In [4], Chen et al. used an And-Or graph to model

clothes by composing from their parts, such as collar, sleeve, shoulder, etc. They used a Stochastic

Context Free Grammar (SCFG) to model hierarchical constraints and a Markov Random Field (MRF)

to enforce contextual constraints to parse templates from the And-Or graph. Their composite model is

formulated by a Gibbs distribution that can be sampled by Markov Chain Monte Carlo (MCMC)

techniques. Similarly, Xu et al. [5] and Porway et al. [6,7] used an And-Or graph representation to

model human faces, rigid objects and aerial images, which are also modeled as a Gibbs distribution.

In these works, using a single And-Or graph in [4–6] is reasonable, as objects are mostly composed

of known parts. However, using a single And-Or graph to represent objects in aerial images [7] or in

3D furniture scenes [1] is too restrictive and perhaps unrealistic since the model assumes the existence

of each node in the graph. In this paper, we introduce a relevancy constraint that adds flexibility in

terms of object existence to represent scenes by multiple, conceptually similar And-Or graphs.

Depending on the relevance of a given part in an object (or objects in a scene), nodes in the And-Or

graph may be turned ON or OFF and, hence, the parts (or objects) may or may not exist in the output

objects (or scenes). The proposed model is a generalization of the hierarchical and contextual models

used in [1,4–7], which reduces to a single And-Or graph if every part in an object (or every object in a

scene) is equally relevant and exists in all training examples.

2.2. Component-Based Object Synthesis

As stochastic grammar of images is used to model intra-class variations in images, recent works [8,9]

manage to incorporate these variations in 3D object modeling. The approaches presented in [8,9]

formulate a way to compose a 3D object from its parts. In [8], Chaudhuri et al. proposed a probabilistic

reasoning model that automatically suggests compatible parts to a model being designed by the user in

real-time. In [9], Kalogerakis et al. proposed an automatic data-driven 3D object modeling system

based on Bayesian network formulation. Their system learns object category, style and number of parts

from training examples and synthesizes new instances by composing from the components. Even

though these approaches manage to show the effectiveness of their models, neither of the approaches

learns the spatial arrangements of the constituent parts. While in [8] spatial arrangements are handled

through user inputs, Kalogerakis et al. [9] used pre-registered anchor points to attach parts of an object.

As a result, these frameworks cannot be used to model 3D scenes where the constituent objects as well

as their arrangements can vary significantly from one scene to the next.

Entropy 2014, 16 2571

2.3. Furniture Arrangement Modeling

In [10], Merrell et al. proposed an interactive furniture arrangement system. Their framework

encodes a set of interior design guidelines into a cost function that is optimized through Metropolis

sampling. Since the framework proposed in [10] uses design guidelines to formulate constraints, the

approach is tailored to a specific application.

As opposed to [10], Yu et al. [11] proposed an automatic, data-driven furniture arrangement system

that extracts contextual constraints from training examples and encodes them as a cost function. Scene

synthesis is then pursued as cost minimization using simulated annealing. In their approach, Yu et al.

used first moments to represent the contextual constraints. As such, in cases where these constraints

are bimodal or multimodal, the first moment representation becomes inadequate. Furthermore, their

approach outputs a single synthesized scene in one run of the algorithm, requiring one to run the

algorithm multiple times if additional synthesized scenes are desired. A potential problem with this

approach is that since each synthesized scene is optimized independently using the same mean-based

constraints, the range of variations between the synthesized instances will be small.

Although the above approaches [10,11] manage to produce plausible 3D scenes by arranging

furniture objects, they all require a set of predefined objects to exist in every synthesized scene. As a

result, these approaches fail to capture the variability of the synthesized scenes in terms of objects’

existence and style variations.

Recently, Fisher et al. [12] proposed a furniture arrangement system that integrates furniture

occurrence model with the arrangement model. Their occurrence model, which is an adaptation of

Kalogerakis et al. [9], is formulated by a Bayesian network that samples the objects as well as their

corresponding styles to be used in the synthesized scene. On the other hand, the arrangement model

encodes contextual constraints by a cost function, which is optimized through a hill climbing technique. In

addition to incorporating an occurrence model, Fisher et al. [12] represented the constraints in the

arrangement model with Gaussian mixtures, allowing them to capture the multimodal nature of the

constraints effectively. While this approach avoids the limitations of the representation used in [11], it too

can only output a single synthesized scene in one run of the algorithm. Every time a scene is generated,

the peaks of the Gaussian mixtures are favored that eventually results in synthesizing similar scenes

(see Section 5.2). Furthermore, although the work of [12] integrates the occurrence model with the

arrangement model, these components are not-unified (i.e. a Bayesian network for occurrence model

and a cost minimization using hill climbing for arrangement model).

Our approach presented here is different from the existing works [10–12] for three main reasons.

Firstly, as is the case with our previous works [1,2], our approach uses histograms to represent

contextual constraints. By representing constraints with histograms, multimodal constraints can be

adequately captured. Secondly, our approach samples multiple scenes simultaneously in a single run of

the algorithm and the optimization can be considered as histogram-matching of constraints. In order to

match these histogram constraints between the training and synthesized scenes, the proportion of

synthesized scenes sampled from each bin must be similar to that of training scenes observed from the

same bin. This means, our approach can effectively sample from low probability as well as high probability

bins and the synthesis scenes encompass a wide range of variations. Thirdly, as opposed to [12], our

Entropy 2014, 16 2572

approach integrates a relevancy and hierarchical model (or equivalently an occurrence model) with the

contextual model (or equivalently an arrangement model) in a unified MaxEnt framework.

3. Mathematical Formulation

In this section, we present the mathematical groundwork that is necessary to formulate 3D scene

generation as sampling from a Gibbs distribution under the MaxEnt model selection criterion.

3.1. And–Or Graph Representation

Over the past decade, many computer vision based applications have used an And-Or graph as a concise

knowledge representation scheme [3]. In the And-Or graph, the And node enforces the co-existence of the

variables, while the Or-node provides the mutually-exclusive choices over a given variable. All of the

existing approaches assume that a single And-Or graph is enough for knowledge representation, which

requires the existence of every node. In our approach, we eliminate this restrictive assumption by

allowing the realization of the nodes based on their relevance for a given scene. As a result, our

approach can sample from multiple, conceptually similar And-Or graphs that are a possible

interpretation of a given scene.

In our specific example, the And-Or graph represents desk scenes whose nodes are objects that

constitute the scene. We can generate a large number of And-Or graphs to represent desk scenes by

allowing the nodes to be sampled as either ON or OFF. This indirectly represents the relevancy of

objects in the scene. As an example, we represent the desk scenes by composing a maximum of

seven objects (i.e., those seen at least once in the training set) that are connected by dotted lines.

These dotted lines, indicating the existence of an And relationship, enforce different contextual

constraints such as relative position and orientation between objects. Furthermore, some of these

nodes are represented as an Or node, indicating the variation in objects’ style as observed in the

training examples; see Figure 1.

Assuming that the nodes in the And-Or graphs are identified for a given scene, 3D scene generation

reduces to parsing the graph by first sampling the existence of each object based on their relevancy to

the scene. Then, for each object with style variations (Or nodes), a style is sampled based on its

probability as observed in the training examples. Finally, contextual constraints between the nodes that

are turned ON are enforced. As an example, the first stage defines the existence of objects as: “The

desk scene contains table, chair and computer”. The second stage defines the style of objects that are

turned ON from the first stage as: “The desk scene contains a fancy table, a chair and a laptop

computer”. The final stage enforces contextual constraints between the objects defined from the

previous stages as: “The desk scene is arranged such that the laptop computer is at the center of a

fancy table and the chair is in front of the fancy table”.

In this paper, a single instance of every node is considered. However, the number of instances of

each node can also be considered as a variable. In such cases, it can integrated in the And-Or graph and

be sampled during scene generation [7].

In order to represent 3D scene generation with And-Or graphs as discussed before, we define the tuple

࣡ ൌ 〈ࣰ, ࣝ, ࣪〉 (1)

Entropy 2014, 16 2573

where ࣰ represents the nodes (i.e., objects) defined in the scene, ࣝ represents a set of contextual

constraints defined between the nodes, and ࣪ represents a probabilistic distribution defined on the graph.

Figure 1. Example of And-Or graph representation for desk scenes. Each node is

connected (dotted lines) to every other node, but for clarity, only a subset of such

connections is shown.

Each node ݒ ∈ ࣰ is defined as

ݒ ൌ ሾ݁, ,݋ ,ݏ ϕሺ݋ሻሿ (2)

where ݁	߳	ሼ0,1ሽ (ON or OFF) represents the existence of object ݏ ;݋ ∈ ሼ1,… , ሻ|ሽ represents the style݋ሺݏ|

of object ݋; and ϕሺ݋ሻ represents physical attributes (position, scale and orientation) of the object ݋.

Moreover, ϕሺ݋ሻ ൌ ሾp, σ, ሿߠ , where p ൌ ሺݔ, ,ݕ ሻݖ marks the centroid of the object, σ ൌ ሺߪ௅, ,ௐߪ ுሻߪ
represents the dimensions of the bounding box, and ߠ represents the orientation of the object as

projected onto the XY-plane. In our implementation, we extract seven unique object categories with a

maximum of two styles.

3.2. Constraints

The following constraints are used in the MaxEnt model selection criterion to sample scenes from a

Gibbs distribution.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Entropy 2014, 16 2574

3.2.1. Relevancy Constraint

In order to allow the sampling of nodes as ON or OFF, we learn the objects’ relevancy to the scene.

To incorporate this constraint in our model, we compute a relevancy term using the object existence

information from the training examples. This constraint is then used to sample an And-Or graph for a

given scene.

Given the existence of each object as ON or OFF, the relevancy of an object can be computed as:

ܴ௢ ൌ
∑ ݁ሺ݋, ݅ሻ|ௌ|
௜ୀଵ

|ܵ|
; ݋ ൌ 1,… , |ܸ| (3)

where ݁ሺ݋, ݅ሻ represents the existence of object ݋ in scene ݅, |࣭| represents the total number of scenes (࣭)

and |ࣰ| is the total number of unique objects observed in the training examples. For the example shown in

Figure 1, in which there are four training or observed scenes, one can compute ࣬௧௔௕௟௘ ൌ 1	 and
	࣬௣௔௣௘௥ ൌ 0.25. This indicates that during scene generation, all of the synthesized scenes must have a

table and 25% of the synthesized scenes are expected to have a paper. The observed constraint is

therefore used to define the relevancy of objects in the synthesized scenes.

3.2.2. Hierarchical Constraint

The hierarchical constraint is used to incorporate intra-class variations of object styles for scene

generation, and it is represented by the Or-nodes in the graph. By counting the frequency of a given

object style is observed from the training data, we can synthesize scenes that obey this style proportion.

Using object existence information as well as the corresponding style used in a given scene, we can

define the proportion of object ݋ appearing with style	݆, where ݆ is style index, as:

࣢௢ሺ݆ሻ ൌ
∑ ݁ሺ݋, ݅ሻߜሺݏሺ݋, ݅ሻ െ ݆ሻ|࣭|
௜ୀଵ

∑ ݁ሺ݋, ݅ሻ|࣭|
௜ୀଵ

; ݋ ൌ 1,… , |ࣰ| (4)

where the Dirac-Delta function ߜሺሻ will be unity only when object ݋ is observed to have style ݆ in
scene ݅. For the training examples shown in Figure 1, we can compute ࣢௖௢௠௣௨௧௘௥ሺݐ݈ܾ݁ܽݐሻ ൌ 1 3⁄ and

࣢௖௢௠௣௨௧௘௥ሺ݈ܽ݌݋ݐ݌ሻ ൌ 2 3⁄ . This term encodes the probability of sampling a given style of an object

during scene generation.

In our experiment, since we consider at most a two-category style of objects, ࣢ has a maximum of

two dimensions for every object categories.

3.2.3. Contextual Constraint

Objects in a given scene are assumed to be constrained contextually by design preferences and/or

physical constraints. The contextual pattern of the underlying constraint can be learned from training

examples and can be used to generate plausible synthetic scenes. In our approach, we defined a set of

pairwise contextual sub-constraints as shown in Table 1. To capture the multimodal nature of the

contextual sub-constraints extracted from training samples, these sub-constraints are modeled with

histograms. We assume that the pairwise sub-constraints defined in Table 1 are enough to extract the

arrangements of objects from the training examples. In addition to the constraints defined in Table 1,

Entropy 2014, 16 2575

we also use other indirect contextual constraints (i.e., intersection and visual balance) that are

discussed in Section 4.

Table 1. Defined Relationships.

Relationships ሺशሻ Formula

Relative position in X axis ݔ௢ െ ௢ᇱݔ

Relative position in Y axis ݕ௢ െ ௢ᇱݕ

Relative Orientation ߠ௢ െ ௢ᇱߠ

Histograms are extracted for each contextual sub-constraints defined in Table 1 as:

ࣝ௟ሺܾሻ ൌ
#ሺ ௟ंሺϕ௢, ϕ௢ᇱሻ ൌ ܾሻ

#൫ ௟ंሺϕ௢, ϕ௢ᇱሻ൯
; ݋ ് ,ᇱ݋ ݈ ൌ 1,… , |ࣝ| (5)

where ݈ represents the contextual sub-constraint index, ܾ refers to the bin location in the histogram, #
is a counting function, #ሺ ௟ंሺϕ௢, ϕ௢ᇱሻ ൌ ܾሻ counts values falling in bin ܾ and #൫ ௟ंሺϕ௢, ϕ௢ᇱሻ൯ counts

values falling in any bin of the histogram for sub-constraint ݈ . Here, ࣝ௟ is modeled by a 32-bin

histogram, resulting in a total of |ࣝ| ൌ 3 ൈ Cଶ
଻ ൌ 63 histograms representing the contextual constraint.

3.3. Maximum Entropy Framework

In our approach, we use the MaxEnt model selection criteria to identify a probability distribution

that best fits the constraints extracted from the training set.

As Jaynes stated in [13], with the availability of limited information to select a generative

probability distribution of interest, one can employ a variety of model selection strategies, of which the

maximum entropy criterion is proven to be the most reliable and the least biased. This model selection

criterion is briefly described below.

Given an unobserved true distribution ࣠ሺ࣭ሻ that generates a particular scene 	ሺ࣭ሻ , an unbiased

distribution	࣪ሺ࣭ሻ that approximates ࣠ሺ࣭ሻ is the one with maximum entropy, satisfying the constraints

simultaneously [13]. Using a set of constraints that can be extracted from the training scenes as observed

constraints of	࣠ሺ࣭ሻ, an unbiased probability distribution is selected using the MaxEnt criterion as follows:

෨࣪ ሺ࣭ሻ ൌ argmax
࣪

ቄ–෍࣪ሺ࣭ሻ log൫࣪ሺ࣭ሻ൯ቅ

௢࣬	݋ݐ	ݐ݆ܾܿ݁ݑݏ
࣠ ൌ 	࣬௢

࣪	, ݋ ൌ 1,… , |ࣰ|	
																		࣢௢

࣠ ൌ ࣢௢
࣪, ݋ ൌ 1,… , |ࣰ|

																		ࣝ௟
࣠ ൌ ࣝ௟

࣪ , ݈ ൌ 1,… , |ࣝ|

(6)

Solving the above constrained optimization problem results in the following Gibbs distribution [13,14]:

෨࣪ ሺ࣭; Λሻ ൌ
1

ܼሺ࣭; Λሻ
݁ሼെࣟሺ࣭; Λሻሽ (7)

where:

ࣟሺ࣭; Λሻ ൌ෍ሼߣ௢࣬࣬௢
࣪ ൅ ௢࣢,࣢௢ߣ〉

࣪〉ሽ

|ࣰ|

଴ୀଵ

൅෍〈ߣ௟
ࣝ, ࣝ௟

࣪〉

|ࣝ|

௟ୀଵ

Here, Λ ൌ ൛ߣ௢࣬, ,௢࣢ߣ ௟ߣ
ࣝൟ, ∀௞,௟	represents the Lagrange multipliers.

Entropy 2014, 16 2576

Comparing the energy term ࣟሺ࣭; Λሻ in Equation (7) with similar models used in [3,4], the first two

terms in our model are Context-Free-Grammar and the third term is a Context-Sensitive-Grammar

(Markov Random Field (MRF)). Our Context-Free-Grammar term captures the variability in terms of

object’s relevance and style by pooling long-range relationships from many scenes. On the other hand,

the MRF component enforces local contextual constraints within each scene, representing the short-range

relationships. A more detailed explanation of the MRF component for scene generation is described in

our previous work [1].

In order to sample from the Gibbs distribution given in Equation (7), the Λ parameters must first be

determined. In [14,15], these parameters are learned using a gradient descent technique.

3.4. Parameter Estimation

The parameters of the Gibbs distribution ෨࣪ ሺ࣭; Λሻ is computed iteratively for each constraint as

ݐ௢࣬ሺߣ ൅ 1ሻ ൌ ሻݐ௢࣬ሺߣ ൅ ሺ࣬௢ߟ
࣪ െ ࣬௢

࣠ሻ
ݐ௢࣢ሺߣ ൅ 1ሻ ൌ ሻݐ௢࣢ሺߣ ൅ ሺ࣢௢ߟ

࣪ െ࣢௢
࣠ሻ

௟ߣ
ࣝሺݐ ൅ 1ሻ ൌ ௟ߣ

ࣝሺݐሻ ൅ ൫ࣝ௟ߟ
࣪ െ ࣝ௟

࣠൯
(8)

where ߟ represents the learning rate.

In order to learn parameters, scenes must be sampled by perturbing the objects’ relevancy (࣬), style

assignments (࣢) and spatial arrangement (ࣝ), respectively.

Computing the parameters for relevancy, hierarchical and contextual simultaneously is

computationally expensive. As a result, these constraints are decoupled in such a way that we first

sample scenes to obey the relevancy constraints. Once the relevancy constraint is obeyed, we sample

the hierarchical constraints for objects that exist in each scene. Finally, scenes are sampled to capture

the contextual constraints observed from the training examples. With each type of constraint, a greedy

parameter optimization approach called feature pursuit [6,7,15] is followed that iteratively picks a

single sub-constraint and updates the corresponding parameter while fixing the remaining parameters.

This optimization approach is described next.

3.5. Feature Pursuit

As discussed, we use three types of constraints (relevancy, hierarchical and contextual), each of

which is represented by multiple sub-constraints, specifically, |ࣰ| sub-constraints for relevancy, |ࣰ|
sub-constraints for hierarchical and |ࣝ| sub-constraints for contextual; see Equation (8). The

parameters for these sub-constraints must be learned in order to match the constraints with those from

the training examples. This is accomplished by the feature pursuit strategy.

In feature pursuit strategy, sub-constraints are selected one at a time from the pool of ࣷ sub-constraints.

The selected sub-constraint is optimized until the divergence between the true distribution and that

obtained from the approximate distribution reaches a minimum value.

The scene synthesis procedure is initialized by random sampling. Thereafter, a sub-constraint ࣷା is

selected by first computing the squared Euclidean distance followed by picking the most diverging

sub-constraint as given in Equations (9) and (10); respectively:

݀ሺ ௖ࣧ
࣠, ௖ࣧ

࣪ሻ ൌ ሺ ௖ࣧ
࣪ െ ௖ࣧ

࣠ሻଶ, ∀ࣷ (9)

Entropy 2014, 16 2577

ࣷା ൌ argmax
ࣷ

ሼ݀ሺ ௖ࣧ
࣠, ௖ࣧ

࣪ሻሽ. (10)

where ࣧ߳	ሼ࣬,࣢, ࣝሽ.
The corresponding parameter for the sub-constraint ࣷା is then learned iteratively using Equation (8)

until its deviation ݀൫ ࣷࣧశ
࣠ , ࣷࣧశ

࣪ ൯ is minimal. If through the selection process a sub-constraint is

reselected, the estimated parameter values from the last selection are used to initialize the

corresponding values in the new optimization cycle.

The intuition behind the feature pursuit strategy is that the sub-constraint with the highest deviation

between the true and the approximate distributions should be prioritized and learned in order to bring

the two distributions as close as possible.

As more sub-constraints are selected, more parameters are tuned and the sampled scenes come to

resemble the patterns observed in the training scenes.

3.6. Sampling

In order to sample from the Gibbs distribution defined in Equation (7), a Metropolis sampling

technique [16,17] is used. In Metropolis sampling, a new scene configuration ࣭∗ is proposed by

randomly picking a scene ः from the synthesized scenes and perturbing the configuration with respect

to the selected sub-constraint	ࣷା as given by Equation (10). After the perturbation, the corresponding

sub-constraints for the new configuration are extracted and the probability ෨࣪ ሺ࣭∗ሻ is evaluated. The

transition to the new configuration (࣭ → ࣭∗) is then accepted with a probability of ߙ such that:

ሺ࣭ߙ → ࣭∗ሻ ൌ min ቆ1,
෨࣪ ሺ࣭∗ሻ
෨࣪ ሺ࣭ሻ

ቇ. (11)

where ෨࣪ ሺ࣭ሻ and ෨࣪ ሺ࣭∗ሻ are the probability of the old (࣭) and the new (࣭∗) configurations, respectively,

as computed by Equation (7).

To give an example, assuming that we are working on contextual constraints (ࣧ ൌ ࣝ) and the

selected sub-constraint ࣷା (from Equation (10)) is the relative position of table to chair in the x-axis,

the corresponding ߣ parameter is first estimated using Equation (8). A scene is randomly picked from

the synthesized scenes and a new configuration is proposed by perturbing the position of either the

chair or the table along the x-axis (sampled uniformly from a specified range of positions). Using the

sub-constraints extracted after the perturbation and the ߣ parameter, the probability is computed using

Equation (7). The new configuration is then either accepted or rejected depending on the acceptance

probability computed using Equation (11).

The sampling, feature pursuit, and parameter estimation are continuously applied until the energy

overall divergence between the two distribution constraints, as given by Equation (12), is minimal.

݀ሺ ࣠ࣧ, ࣪ࣧሻ ൌ෍݀ሺ ௖ࣧ
࣠, ௖ࣧ

࣪ሻ
ࣷ

 (12)

Given a set of training scenes 	࣭࣠ , we can generate a set of synthetic scenes ࣭࣪ using the

pseudocodes shown in Algorithm 1 and Algorithm 2. In our implementations, we have used	߳ଵ ൌ
	0.1, ߳ଶ ൌ 0.1, and ߟ ൌ 1.

Entropy 2014, 16 2578

Algorithm 1. This pseudocode synthesizes 3D scenes by sampling from the Gibbs

distribution. Lines 2 and 3 define the input and output of the algorithm. Line 4 initializes

synthetic scenes randomly. Line 5 constrains the synthetic scenes with respect to relevancy

(ࣧ ൌ ࣬). Line 6 constrains the synthetic scenes with respect to hierarchy (ࣧ ൌ࣢).

Finally, Line 7 constrains the synthetic scenes with respect to context (ࣧ ൌ ࣝ).

1 function ࣭࣪ = Synthesize_Scenes(࣭࣠)
2 // Input: A set of training scenes ࣭࣠

3 // Output: A set of synthetic scenes ࣭࣪
4  Initialize synthetic scenes ࣭࣪
5  ࣭࣪= Constrain_Scenes(࣭࣪, ࣭࣠, ࣧ ൌ ࣬)
6  ࣭࣪= Constrain_Scenes (࣭࣪, ࣭࣠, ࣧ ൌ࣢)
7  ࣭࣪= Constrain_Scenes (࣭࣪, ࣭࣠, ࣧ ൌ ࣝ)

Algorithm 2. This pseudocode synthesizes scenes that are constrained with respect to	ࣧ.

Lines 2 and 3 extract constraints defined by ࣧ from the training and synthesized scenes;

respectively. Line 4 initializes the parameters of the Gibbs distribution. Lines 5–25 repeatedly

update the parameters and perturb scenes until convergence. Lines 6 and 7 compute the

deviation of sub-constraints defined by ࣧ and select the most deviating sub-constraint

(ࣷା). Lines 8–23 perturb scenes with respect to ࣷା and update them using Metropolis

sampling until convergence.

1 function ࣭࣪ = Constrain_Scenes (࣭࣪, ࣭࣠, ࣧ)
2  Using all training scenes ࣭࣠ extract constraints ࣧ࣠
3  Using all synthetic scenes ࣭࣪ extract constraints ࣧ࣪
4  Initialize λ	=0, where ߣ ∈ Λ
5  Repeat
6  Compute ݀ሺ ௖ࣧ

࣠, ௖ࣧ
࣪ሻ ∀ࣷ using (9)

7  Select a constraint ࣷା using (10)
8  Repeat
9  Update ߣ for constraint ࣷା using (10)
10  Initialize ࣭࣪

∗
 by ࣭࣪

11  For i=1:Iter_Max
12  Pick a synthetic scene ः uniformly from		࣭࣪

∗

13  Perturb ः for ࣷା and propose ࣭࣪
∗
(See Section 4.2)

14  Extractࣧ࣪∗
15  Compute ෨࣪ ൫࣭࣪

∗
; Λ൯ using (9)

16  Compute ߙ൫࣭࣪ → ࣭࣪
∗
൯ using (13)

17  Draw a random number uniformly ݀݊ܽݎ	߳	ሾ0,1ሿ
18  If ݀݊ܽݎ ൑ ൫࣭࣪ߙ → ࣭࣪

∗
൯

19 ࣭࣪ ← ࣭࣪
∗

20 ࣧ࣪ ←ࣧ࣪∗
21 Else
22 ࣭࣪

∗
← ࣭࣪

23  Compute ݀൫ ࣷࣧశ
࣠ , ࣷࣧశ

࣪ ൯ for constraint ࣷାusing (11)
24  Until ݀൫ ࣷࣧశ

࣠ , ࣷࣧశ
࣪ ൯ ൏ ߳ଵ

25  Until ݀ሺࣧ࣠,ࣧ࣪ሻ ൏ ߳ଶ using (12)

Entropy 2014, 16 2579

4. Implementation

In this section, we explain the implementation details for generating plausible and visually

appealing synthetic scenes using the proposed approach.

4.1. Additional Contextual Constraints

In addition to the constraints mentioned earlier, we also considered criteria that help to make the

synthesized scenes more plausible and visually appealing. These considerations are detailed next.

4.1.1. Intersection Constraint

The model described thus far has no provisions for prohibiting the occurrence of intersecting

objects. To remedy this shortcoming, we incorporate the intersection constraint, which uses the

projection of object’s bounding box on the XY-plane (top-view of the scenes). For every pair of

objects ݋ and	݋′, the intersection constraint is defined as:

,݋ሺߴ ሻ′݋ ൌ
௫௬ሺܣ ݋ ∩ ሻ′݋

௫௬ሺܣ ሻ݋
 (13)

where ܣ௫௬ሺ	݋	 ∩ ሻ is the area of the intersection on the XY-plane between pairs of objects, and′݋	

,݋ሺߴ Defined in this way, the intersection term .݋ ሻ is the area of the object݋	௫௬ሺܣ ሻ will have a value′݋

between 0 and 1, where 0 indicates no intersection and 1 indicates that object ݋ is contained in

object	݋′, as viewed from the top. Ideally, two objects should not intersect unless there is a parent-child

support. During scene perturbation, setting the intersection threshold too close to zero causes a

significant computational cost since random perturbations often produce intersecting objects. On the

other hand, setting this threshold too close to one allows objects to intersect with each other, resulting

in a large number of implausible scenes. We, therefore, experimented with this value and found 0.1 to

be a reasonable compromise for the desk scene example.

While intersection can be encoded as a soft constraint in the energy expression (e.g., see [11]), it is

used here as a hard constraint defined in the scene perturbation step. If the perturbed configurations

result in intersecting objects (the intersection ratio is above the predefined threshold of 0.1), it is

discarded and the scene is perturbed again. This process is repeated until the intersection between

objects in a given scene is below the threshold. In addition to playing a role in the scene perturbation

process, as described in the next section, the intersection constraint is utilized to identify the parent-child

support between objects by integrating it with object contact information.

4.1.2. Parent-Child Support

To demonstrate the parent-child support criteria, consider a laptop placed on a table. Usually, the

laptop is contained in the table, as seen from the top view (XY projection of the scene) and it is in

contact with the table if viewed from the side. The contact constraint, formulated by Equation (14), is

expected to be very small for two objects with a parent-child relationship.

,݋ሺߞ ሻ′݋ ൌ |݉݅݊௭ሺ݋ሻ െ |ሻ′݋௭ሺݔܽ݉ (14)

Entropy 2014, 16 2580

where ݉݅݊௭ሺ݋ሻ is the height of the bottom (݉݅݊௭) surface of object ݋ and ݉ܽݔ௭ሺ݋′ሻ is the height of

the top (݉ܽݔ௭) surface of object ݋′.
Using Equations (13) and (14), it can be computed that ߴሺ݈ܽ݌݋ݐ݌, ሻ݈ܾ݁ܽݐ ൌ 1 (assuming the laptop

is completely contained in the table) and	ߞሺ݈ܽ݌݋ݐ݌, ሻ݈ܾ݁ܽݐ ≅ 0. These two results indicate that table is

a parent of laptop, or conversely, laptop is a child of table. After identifying the parent-child support

relations from the set of training examples, every child object is set to be placed on top and within the

boundary of its parent object during scene synthesis. Objects that do not have a parent (for example

chair or table) are set to lay on the floor, and their position is sampled on the XY plane inside a room

with pre-specified dimensions. Using our training examples, it is identified that that computer, phone,

paper, book and lamp are the children of table and, therefore, their centroid position on the XY plane is

sampled within the boundary of their parent.

In this section, parent-child support is formulated based on the assumption that child objects

normally exist on top of the bounding box of their parent. Although this is a valid assumption for the

training scenes that are used in our experiment, it will fail for the general case when a parent object has

many supporting surfaces. As a result, this assumption needs to be relaxed by first segmenting out any

supporting surfaces of a given object and evaluating the parent-child relationship on each surface.

During scene generation, this will add additional contextual constraints on the height of objects (along

the Z-axis). Therefore, the height of each object can also be sampled in a similar fashion as the relative

position along the X- and Y-axis.

4.1.3. Visual Balance

Unlike the intersection constraint that restricts the synthesis of intersecting objects, visual balance,

which largely depends on personal preference, is implemented as a soft constraint. As a result, the

visual balance constraint is incorporated on children objects by modifying the energy expression

defined in Equation (7) as:

ࣟሺ࣭; Λሻ ൌ ෍ሼߣ௢࣬࣬௢
࣪ ൅ ௢࣢,࣢௢ߣ〉

࣪〉ሽ

|ࣰ|

௢ୀଵ

൅෍〈ߣ௟
ࣝ, ࣝ௟

࣪〉

|ࣝ|

௟ୀଵ

൅ w୴ୠࣟ୴ୠ	. (15)

Here, ࣟ୴ୠ	is the visual balance cost, and w୴ୠ determines how much this term should influence the

scene generation. In [10] Merrell et al. incorporated a visual balance criterion over a single scene

containing furniture objects to be arranged in a room. Here, the visual balance criterion defined in [10] is

adapted for a set of scenes with a parent-child support as given by:

ࣟ୴ୠ ൌ ෍ብ
∑ ߬ሺ݋, ሻp௫௬௢௢݋௫௬ሺܣሻߩ

∑ ߬ሺ݋, ሻ௢݋௫௬ሺܣሻߩ
െ p௫௬

ఘ ብ

ห࣭࣪ห

௜ୀଵ

 (16)

where ߩ refers the parent object, ߬ሺ݋, ሻߩ ∈ ሼ0,1ሽ is an indicator function and it will be 1 if ߩ is a parent
of	݋, p௫௬௢ is the ሺݔ, p௫௬ ,݋ ሻ position of objectݕ

ఘ is the ሺݔ, ሻ position of the parent, ‖∙‖ is the normݕ

operator and ห࣭࣪ห is the number of synthesized scenes.

To clarify what ࣟ୴ୠ is measuring, compare the scene shown in Figure 2a with that in Figure 2b. In

Figure 2a, the child objects are aggregated to one side resulting in an unbalanced “load” across the

table. As a result, this is considered to be an unbalanced scene incurring a higher visual balance cost

Entropy 2014, 16 2581

(computed to be 15.7 using Equation (16) for a single scene). On the other hand, child objects are more

evenly distributed across the table in Figure 2b resulting in a much lower visual balance cost (similarly

computed to be 0.5). As a result, the visual balance cost favors a more balanced arrangement of

children objects.

The reason for handling visual balance as an energy term (as opposed to incorporating it into the

model as an additional contextual sub-constraint) is that the visual balance constraint adds significant

complexity to the feature pursuit procedure. To clarify, if for example the maximum deviating

sub-constraint in feature pursuit happens to be relative position in the X-axis between lamp and paper,

either of the objects can be perturbed along the X-axis and decide whether to accept or reject the proposed

configuration. However, visual balance depends on not just a pair of objects, but on all children

objects. Moreover, visual balance can be modified by perturbing a large combination of constraints.

Note that since all the other constraints are normalized counts, the w୴ୠ weight should be set to a

small value to avoid overweighting this constraint as compared to the other contextual constraints. In

our experiments, we have used	w୴ୠ ൌ 0.05.

Figure 2. Comparison of visual balance criteria (a) an unbalanced scene (b) a balanced scene.

4.1.4. Front and Back Side Determination

In order to synthesize scenes with the appropriate orientation of objects, the scene generation

approach should incorporate a way to identify the front versus the back sides of objects. In Yu et al. [11],

the back side of an object is determined by first computing the distance from each side of the object to

the nearest wall and selecting the side with smallest distance. Here, since the training scenes do not

contain walls, we defined an imaginary wall and extract the orientation of each object. The imaginary

wall is defined parallel to the X-axis and is set to lay above all the existing objects in the positive

Y-axis in every scene; see Figure 3. Using this imaginary wall, the back side is defined to be the

nearest side of the object to the wall (by computing the midpoints of each side and selecting the side

having the maximum y value). The chair is of course treated differently as it normally faces the table

and as a result, its nearest side to the wall is the front side. Once the proper side for each object is

detected, a vector originating from the centroid to the detected side of each object is defined; see

Figure 3. The angle between the vector and the positive Y-axis is computed and used as the orientation

feature for objects. For synthesis, object models are manually oriented to zero degrees (i.e. their back

side faces the positive Y-axis, except for the chair). The sampled orientation using our framework is

then applied to generate the synthetic scenes.

(a) (b)

Entropy 2014, 16 2582

Figure 3. Computation of orientation vector.

4.2. Scene Initialization and Perturbation

In the proposed framework, ห࣭࣪ห ൌ 50 initial synthetic scenes are randomly sampled. In all of these

scenes, the relevancy of each object is assumed unity, which resulted in placing every object in every
scene, i.e. ݁ሺ݋, ݅ሻ ൌ 1, ∀௢∀௜	∈	ห࣭࣪ห. For objects with multiple styles, the first style is the one selected for

initialization and the corresponding dimensions are assigned as	σ ൌ ሺߪ௅, ,ௐߪ ுሻ. For objects with noߪ

parents (such as table or chair) the positional features are randomly sampled to any location in the

room, i.e.,ݔ ൌ ݕ	ோ௢௢௠ሻ, andߪሺ݀݊ܽݎ ൌ the centroid along ;ݐ݂	ோ௢௢௠ is set to 500ߪ ோ௢௢௠ሻ , whereߪሺ݀݊ܽݎ
the Z-axis is obtained from the height of the object, i.e., ݖ ൌ ఙಹ

ଶ
; and the orientation is sampled as

ߠ ൌ ሺെ݀݊ܽݎ గ

ଶ
, గ
ଶ
ሻ. On the other hand, for child objects their positional features are contained in and

supported by their parents, i.e., ݔ ൌ ݕ ఘ,௫ሻ, andߪሺ݀݊ܽݎ ൌ ఘ,௬൯ߪ൫݀݊ܽݎ , where ߪఘ,௫ and ߪఘ,௬ are the

extents of the parent along the X and Y axes; the centroid along the Z-axis is computed as the height of
the parent plus half of that of the object, i.e., ݖ ൌ ఘ,ுߪ ൅

ఙಹ
ଶ

; and the orientation is initialized as

ߠ ൌ ሺെ݀݊ܽݎ గ

ଶ
, గ
ଶ
ሻ.

Once the scenes are randomly initialized, they are then perturbed and sampled to ultimately match

the constraints extracted from the training examples. Depending on the type of constraint being

optimized, the scene perturbation is performed as follows. If relevancy constraint is selected (ࣧ ൌ ࣬)

for a given sub-constraint	ࣷା, a scene ः is randomly picked from the synthesized scenes	࣭࣪. Then, the

existence of the object in scene ः corresponding to 	ࣷା is randomly sampled as ݁ ൌ ሼ0,1ሽ and the݀݊ܽݎ

probability of the new configuration is either accepted or rejected based on Equation (13).

Similarly, if hierarchical constraint is selected (ࣧ ൌ࣢) for a given sub-constraint	ࣷା, a scene ः is

randomly picked from the synthesized scenes	࣭࣪. Then, the style of the object in scene ः corresponding to

	ࣷା is randomly sampled as ݏ ൌ .௞ሻ|ሻ and the configuration is updated according to Equation (13)݋ሺݏ|ሺ݀݊ܽݎ

Finally, if contextual constraint is selected (ࣧ ൌ ࣝ) for a given sub-constraint	ࣷା, a scene ः is

randomly picked from the synthesized scenes	࣭௦௬௡∗ in which both objects (݋ and	݋′) expressed by 	ࣷା

exist. Then, one of the objects (either ݋ or is randomly picked and the corresponding feature (′݋	

expressed in 	ࣷା is perturbed. Since we have defined the intersection constraint as a hard constraint, the

perturbed object’s feature is used to check if the intersection ratio with any other object in that scene is

below the defined threshold. If any of the intersection ratios falls above the threshold, the perturbation

is discarded and a new sample is generated. This procedure is repeated a maximum of ܯ ൌ 250

iterations and is either accepted or rejected based on Equation (13). The perturbations are defined as:

Imaginary Wall

Entropy 2014, 16 2583

 For child object:
o For relative position in X, ݔ ൌ ఘ,௫ሻߪሺ݀݊ܽݎ
o For relative position in Y, ݕ ൌ ఘ,௬൯ߪ൫݀݊ܽݎ
o For relative orientation, ߠ ൌ ሺെ݀݊ܽݎ గ

ଶ
, గ
ଶ
ሻ.

 For non-child object:

o For relative position in X,	ݔ ൌ ோ௢௢௠ሻߪሺ݀݊ܽݎ
o For relative position in Y, ݕ ൌ ோ௢௢௠ሻߪሺ݀݊ܽݎ
o For relative orientation, ߠ ൌ ሺെ݀݊ܽݎ గ

ଶ
, గ
ଶ
ሻ.

5. Results

In this section, we present the results from the proposed MaxEnt based scene generation framework.

Our training dataset contains |࣭࣠| ൌ22 manually designed desk scenes with different object existence,

styles, position and orientation; four of these training scenes are shown in Figure 1. These training

scenes are designed using the models as described in Table 2. To help visualizing what is described in

Table 2, we included the different 3D models used to represent computers in Figure 4. During scene

synthesis, we considered every object model of a given style to have equal probability and a model is

sampled uniformly.

Table 2. 3D Models used in Training Scenes.

Object ID Object Name
Models used for each styles

Style 1 Style 2

1 Table 1 1
2 Chair 5 -
3 Computer 4 1
4 Lamp 3 -
5 Phone 1 1
6 Book 2 2
7 Paper 1 -

Figure 4. Different styles of computer models: (a)–(d) laptop style models (e) tablet style model.

(a)

(b)

(c)

(d)

(e)

Entropy 2014, 16 2584

Using the training examples, a set of relevancy, hierarchical and contextual constraints are extracted

and used as observed constraints to sample a set of synthetic scenes. As described in Section 3.4, we

decouple these constraints in such a way that we first sample scenes to obey the relevancy constraint.

Once this is accomplished, we sample the hierarchical constraints for objects that exist in each scene.

Finally, scenes are sampled to capture the contextual constraints observed from the training examples.

Once the relevancy constraints are extracted from the training and a synthetic scene, feature pursuit

is applied by continuously sampling the existence of the objects in the synthetic scenes and updating

the parameters until the divergence is minimal. The result of this procedure can be seen in Figure 5,

which indicates that the relevancy constraint between training and synthetic scenes is matched at the

end of this step.

Figure 5. Relevancy constraint optimization.

After the relevancy constraint is matched, the hierarchical constraint is optimized until the objects’

style proportion is matched for those with multiple styles; see Figure 6. For objects with a single style

(chair, lamp and paper in our example), there is no Or-node defined and, therefore, the proportion is

not changed. Again, we can see from Figure 6 that our proposed framework is able to match the

hierarchical constraints by sampling the objects’ style variations.

Figure 6. Hierarchical constraint optimization.

(a) Table: 1 – Normal , 2 – Fancy (b) Computer: 1– Laptop, 2 – Tablet

Entropy 2014, 16 2585

Figure 6. Cont.

After both the relevancy and hierarchical constraints are satisfied, the final step is imposing

contextual constraints on the synthetic scenes. Using the pairwise relations defined in Table 1, a total

of 63 (Cଶ
଻ ∗ 3) contextual constraints (i.e., histograms with 32 bins) are extracted from the training as

well as the synthetic scenes. Subsequently, feature pursuit is applied to match the sets of contextual

constraints to produce the final scenes as shown in Figure 7.

Figure 7. Set of randomly selected plausible synthesized scenes.

(c) Phone: 1 – Smart, 2 – Regular (d) Book: 1 – Group , 2 – Single

Scene 46 Scene 28 Scene 35

Scene 42 Scene 7 Scene 1

Scene 33 Scene 45 Scene 49

Entropy 2014, 16 2586

Figure 7. Cont.

It can be seen from Figure 7 that the proposed framework is able to learn from the training data and

generate scenes that capture the observed relevancy, style and contextual variations.

5.1. Analysis

To assess the performance of our proposed framework, 31 test subjects were first shown a few

scenes from the training data to establish a reference for scene acceptability. Thereafter, they were

presented the 50 synthesized scenes and were asked to rate each scene into five categories: Very bad (1),

bad (2), fair (3), good (4) and very good (5). Furthermore, for better understanding of the ratings, the

participants were asked to justify their rating. The ratings were then consolidated and are represented

in Figure 8. In the color-bar graph of Figure 8a, we have added a rating termed as “invalid rating”.

This represents unexpected responses from the participants (such as “awkward viewpoint”, and “the

paper is too dark”) that are discarded while computing the average ratings per scene shown in Figure

8(b). It is observed that only 26% of the scenes are rated as implausible (defined as a rating of less than

fair) by the observers; see Figure 8b.

Figure 8. Human observer Ratings of Synthesized Scenes.

We would like to mention that our objective here is not so much to quantify the plausible scenes but

rather to quantify the implausible ones, as we would expect less inter-subject variability in the latter

than the former. This allowed us to quantify and report our approach’s tendency to generate

implausible scenes.

Scene 8 Scene 13 Scene 32

(a) Rating Counts versus Scene ID (b) Average Rating versus Scene ID

Entropy 2014, 16 2587

5.2. Comparison with Existing Approach

In Section 2, we mentioned the advantage of the MaxEnt framework over the existing approaches

for scene generation application. In comparison with the MaxEnt framework, the existing

approaches [10,11,12] optimize a single output scene in one run of their algorithms. A potential

problem with these approaches is that since each synthesized scene is optimized independently using

the same constraints, they often sample the most probable object arrangements. As a result, the range

of variations of the output scenes is small.

Among the existing approaches, Fisher et al. [12] work is the most recent and has a significant

overlap with our proposed approach. As a result, we compare the MaxEnt framework with the work of

Fisher et al. [12] using a 3D dining scene. For this comparison, we only considered the arrangement

model of Fisher et al. [12] with our contextual framework, assuming that the number of objects and

their styles are predefined in both approaches.

Given a sample training scene shown in Figure 9a, the centroid of each object along X and Y axis is

extracted. As proposed by Fisher et al. [12], the training scene shown in Figure 9a is amplified to 200

scenes. To amplify the size of the training data, the positions of the chairs are jittered by sampling

from a bivariate Gaussian distribution with zero mean and a variance of 5 inches; see Figure 9b.

Thereafter, Fisher et al. [12] represented the training data by a conditional Probability Density

Function (PDF) using Gaussian Mixture Models (GMM); see Figure 9c. In our approach, we represent

the training data by a 2D histogram; see Figure 9d.

Figure 9. Training data preparation: (a) 3D dining scene (b) training data amplification (c)

probability density function of the training data (represented by Gaussian Mixture Models)

(d) Histogram of training data (30x30 bins).

In order to synthesize new scenes, Fisher et al. [12] defined a layout score that integrates the

conditional PDF of pair of objects with collision, proximity and overhang penalty. These penalty terms

prevent objects from penetrating and colliding with each other as well as levitating in the air.

Thereafter, scene generation procedure is implemented in Fisher et al. [12] as follows. Starting from

a random configuration of objects in a single scene, object’s position is iteratively perturbed and the

layout score is computed. The perturbed scene is accepted when the layout score is maximized. This

procedure is repeated until a certain stopping criterion is reached; here a maximum number of iteration

is used as a stopping criterion. In Figure 10, a sample scene synthesis procedure as proposed in [12] is

shown. As it can be seen from this figure, the layout score is maximum when the chair positions are

arranged around the peak of each Gaussian in the GMM.

(a) (b) (c) (d)

Entropy 2014, 16 2588

Figure 10. Scene generation proposed in Fisher et al. [12] (a) Initial scene (b) Final scene:

Red circles represent position of chairs and contours represent the PDF used to model the

training data.

(a) (b)

On the other hand, the scene generation procedure in our approach is implemented as follows. First,

the energy term of the Gibbs distribution defined in Equation (7) is redefined using the 2D histogram

and additional terms to incorporate proximity, collision and overhang penalties. Using the observed

scenes shown in Figure 9b, a bivariate histogram is extracted; see Figure 9d. Thereafter, multiple

synthesis scenes (set to 100) are initialized and the corresponding histogram is extracted; see Figures 11a,b.

As expected, the initial scenes are random and uniformly distributed in both dimensions. Under the

MaxEnt framework, synthesis scenes are perturbed and updated until the observed histogram matches

the synthesis histogram while obeying the penalties. As the optimization converges, the distribution of

the synthesis scenes matches that of the observed scenes; see Figures 11c,d.

Figure 11. MaxEnt scene generation: (a) Initial synthesis scenes distribution (b) Histogram

of initial synthesis scenes (c) Final synthesis scenes distribution (d) Histogram of final

synthesis scenes.

In order to compare the approach proposed by Fisher et al. [12] with MaxEnt framework, one needs

to generate equal number of scenes and analyze the distribution of the scenes. Since Fisher et al. [12]

approach generates a single synthesis scene at a time, their algorithm is run 100 times to generate 100

scenes. On the other hand, the MaxEnt framework synthesizes multiple instances and a single run is

enough since the number of synthesis scenes is set to 100. The output of the two approaches is

compared by fixing the number of iteration in each optimization to 1000; see Figure 12.

(a) (b)

(c) (d)

Entropy 2014, 16 2589

Figure 12. Synthetic scene distribution comparison (a), (b) Scene distribution and

corresponding histogram generated by using the approach discussed in Fisher et al. [12],

(c), (d) Scene distribution and corresponding histogram generated by our approach; where

red points represent synthetic scenes while green points represent observed (training) scenes.

From these figure, one can see that Fisher et al. approach synthesizes most of the scenes at the peak of

the Gaussians in GMM; see Figures 12a,b. As a result, the variability of the scenes generated from their

approach has a small variability. On the other hand, the scenes generated with the MaxEnt framework have

a larger variability and it captures the observed distribution very well; see Figures 12c,d.

6. Conclusions

In this paper, we proposed a novel automatic, data-driven 3D scene generation framework based on

MaxEnt model selection criterion. Unlike the existing methods, our framework incorporates relevancy,

hierarchical and contextual constraints into a unified framework. By integrating the relevancy

constraint into the model, our approach manages to sample from multiple, conceptually-similar

And-Or graphs, allowing variability in terms of object existence.

In addition to introducing a relevancy constraint into a hierarchical and contextual MaxEnt

framework, we incorporated different contextual constraints namely: Intersection constraint, parent-child

support and visual-balance criteria. As a result, the proposed approach is capable of generating

plausible synthetic scenes with wide range of variations.

In order to evaluate the plausibility of the scenes generated using the proposed framework, we

gathered feedback from human graders. Form this evaluation procedure, more than 70% of the scenes

are rated above fair and the average rating of all scenes is obtained to fall above fair. This evaluation

confirms that the proposed framework is capable of generating a reasonable number of plausible

scenes automatically.

Thereafter, a comparison of the proposed framework with the existing approaches is discussed.

During the comparison, it is demonstrated that the proposed framework captures the variability of the

observed scenes and generate scenes with larger variability as compared with the existing approaches.

As a final note, although the applicability of the proposed approach is illustrated with only an

exemplary desk scene in this paper, the framework can be used to synthesize any scene. Given a scene

that is composed of objects/parts and constrained by relevancy, hierarchical and contextual constraints,

the same process detailed in Algorithms 1 and 2 can be readily used to generate synthesized scenes.

For example, suppose we want to utilize the proposed framework to synthesize plausible living room

scenes by arranging furniture objects such as couches, tables, a TV set, side-tables, etc. As illustrated

(a) (b) (c) (d)

Entropy 2014, 16 2590

in this paper, first, a set of training living room scenes are collected and parsed to extract the objects in

the scene, their styles, as well as their relative position and orientation. This observed information is

then represented by histogram constraints. Thereafter, similar to the desk scene example, a set of

randomly synthesized living room scenes are generated and their corresponding histograms are

extracted. Finally, the synthesized scenes are perturbed and updated until their histograms converge to

the observed histograms.

Author Contributions

The authors contributed equally in conceiving, designing and analyzing the approach as well as

preparing this manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Dema, M.A.; Sari-Sarraf, H. A maximum entropy based data-driven 3D scene generation. Int. J.

Semantic Comput. 2013, 7, 69–85.

2. Dema, M.A.; Sari-Sarraf, H. 3D scene generation by learning from examples. In Proceedings of the

IEEE International Symposium on Multimedia (ISM), Irvine, CA, USA, 10–12 December 2012;

pp. 58–64.

3. Zhu, S.C.; Mumford, D. A stochastic grammar of images. Foundation and Trends in Computer

Graphics and Vision 2006, 2, 259–362.

4. Chen, H.; Xu, Z.; Liu, Z.; Zhu, S.C. Composite templates for cloth modeling and sketching.

CVPR 2006, 1, 943–950.

5. Xu, Z.; Chen, H.; Zhu, S.C.; Luo, J. A hierarchical compositional model for face representation

and sketching. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 955–969.

6. Porway, J.; Yao, B; Zhu, S.C. Learning compositional models for object categories from small

sample sets. In Object Categorization: Computer and Human Vision Perspectives; Dickson, S.J.,

Leonardis, A., Schiele, B., Tarr, M.J., Eds.; Cambridge Press: New York, NY, USA, 2009;

pp. 241–256.

7. Porway, J.; Wang, Q.; Zhu, S.C. A hierarchical and contextual model for aerial image parsing. Int.

J Comput. Vision 2010, 88, 254–283.

8. Chaudhuri, S.; Kalogerakis, E.; Guibas, L.; Koltun, V. Probabilistic reasoning for assembly-based

3D modeling. ACM Trans. Graph. 2011, 30, 35:1–35:10.

9. Kalogerakis, E.; Chaudhuri, S.; Koller, D.; Koltun, V. A probabilistic model for component-based

shape synthesis. ACM Trans. Graph.2012, 31, 55:1–55:11.

10. Merrell, P.; Schkufza, E.; Li, Z.; Agrawala, M.; Koltun, V. Interactive furniture layout using

interior design guidelines. ACM Trans. Graph. 2011, 30, 87:1–87:10.

11. Yu, L.; Yeung, S.; Tang, C.; Terzopoulos, D.; Chan, T.F.; Osher; S.J. Make it home: Automatic

optimization of furniture arrangement. ACM Trans. Graph. 2011. 30, 86:1–86:11.

Entropy 2014, 16 2591

12. Fisher, M.; Ritchie, D.; Savva, M.; Funkhouser, T.; Hanrahan, P. Example-based synthesis of 3D

object arrangements. ACM Trans. Graph. 2012. 31, 135:1–135:11.

13. Jaynes, E. Discrete prior probabilities: The entropy principle. In Probability Theory: The Logic of

Science; Bretthorst, G.L., Ed.; Cambridge Press: Cambridge, UK, 2003; pp. 343–371.

14. Malouf, R. Maximum entropy models. In Handbook of Computational Linguistics and Natural

Language Processing; Clark, A., Fox, C., Lappin, S., Eds.; Wiley Blackwell: West Sussex, UK,

2010; pp. 133–155.

15. Zhu, S.C.; Wu, Y.; Mumford, D. Filters, Random Fields and Maximum Entropy (FRAME):

Towards a unified theory for texture modeling. Int. J. Comput. Vision 1998, 27, 1–20.

16. Walsh, B. Markov Chain Monte Carlo and Gibbs Sampling. Available online:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.4064 (accessed on 8 May 2014).

17. Rutenbar, R.A. Simulated annealing algorithms: An overview. IEEE Circ. Dev. Mag. 1989, 5, 19–26.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

