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Abstract: Transfer entropy is a frequently employed measure of conditional co-dependence
in non-parametric analysis of Granger causality. In this paper, we derive analytical
expressions for transfer entropy for the multivariate exponential, logistic, Pareto (type
I − IV) and Burr distributions. The latter two fall into the class of fat-tailed distributions
with power law properties, used frequently in biological, physical and actuarial sciences.
We discover that the transfer entropy expressions for all four distributions are identical and
depend merely on the multivariate distribution parameter and the number of distribution
dimensions. Moreover, we find that in all four cases the transfer entropies are given by the
same decreasing function of distribution dimensionality.
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1. Introduction

Granger causality is a well-known concept based on dynamic co-dependence [1]. In the framework
of Granger causality, the cause precedes and contains unique information about the effect. The concept
of Granger causality has been applied in a wide array of scientific disciplines from econometrics to
neurophysiology, from sociology to climate research (see [2,3] and references therein), and most recently
in cell biology [4].



Entropy 2014, 16 1744

Information theory has increasingly become a useful complement to the existing repertoire of
methodologies in mathematical statistics [5,6]. Particularly, in the area of Granger causality, transfer
entropy [7], an information theoretical measure of co-dependence based on Shannon entropy, has been
applied extensively in non-parametric analysis of time-resolved causal relationships. It has been shown
that (conditional) mutual information measured in nats and transfer entropy coincide in definition [8–10].
Moreover, for Gaussian-distributed variables, there is a tractable equivalence by a factor of two between
transfer entropy and a linear test statistic for Granger causality [11]. Although similar equivalences for
non-Gaussian variables have been given in [8], it should be remarked that such equivalences cannot be
generalized to non-Gaussian distributions as the linear models underlying the construction of linear test
statistics for Granger causality are rendered invalid under assumptions of non-Gaussianity.

The aim of this paper is to present closed-form expressions for transfer entropy for a number of
non-Gaussian, unimodal, skewed distributions used in the modeling of occurrence rates, rare events and
‘fat-tailed’ phenomena in biological, physical and actuarial sciences [12]. More specifically, we will
derive expressions for transfer entropy for the multivariate exponential, logistic, Pareto (type I − IV)
and Burr distributions. As for real-world applications, the exponential distribution is the naturally
occurring distribution for describing inter-arrival times in a homogeneous Poisson process. In a similar
manner, the exponential distribution can be used to model many other change of state scenarios in
continuous settings, e.g., time until the occurrence of an accident given certain specifications. The
logistic distribution is of great utility given its morphological similarity to the Gaussian distribution and
is frequently used to model Gaussian-like phenomena in the presence of thicker distribution tails. The
Pareto distribution (in either of its forms) is used in modeling of size related phenomena such as size of
incurred casualties in non-life insurance, size of meteorites, and size of trafficked files over the Internet.
The Burr distribution is another distribution used in non-life insurance to model incurred casualties, as
well as in econometrics where it is used to model income distribution.

The specific choice of these distributions is contingent upon the existence of unique expressions for
the corresponding probability density functions and Shannon entropy expressions. A counter-example is
given by the multivariate gamma distribution, which although derived in a number of tractable formats
under certain preconditions [12,13], lacks a unique and unequivocal multivariate density function and
hence a unique Shannon entropy expression.

Another remark shall be dedicated to stable distributions. Such distributions are limits of
appropriately scaled sums of independent and identically distributed variables. The general tractability
of distributions with this property lies in their “attractor” behavior and their ability to accommodate
skewness and heavy tails. Other than the Gaussian distribution (stable by the Central Limit Theorem), the
Cauchy-Lorentz distribution and the Lévy distribution are considered to be the only stable distributions
that can be expressed analytically. However, the latter lacks analytical expressions for Shannon entropy
in the multivariate case. Expressions for Shannon entropy and transfer entropy for the multivariate
Gaussian distribution have been derived in [14] and [11], respectively. Expressions for Shannon entropy
and transfer entropy for the multivariate Cauchy-Lorentz distribution can be found in the Appendix.

As a brief methodological introduction, we will go through a conceptual sketch of Granger causality,
the formulation of the linear models underlying the above-mentioned test statistic, and the definition of
transfer entropy before deriving the expressions for our target distributions.
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2. Methods

Employment of Granger causality is common practice within cause-effect analysis of dynamic
phenomena where the cause temporally precedes the effect and where the information embedded in
the cause about the effect is unique. Formulated using probability theory, under H0, given k lags and the
random variables A and B and the set of all other random variables C in any arbitrary system, B is said
to not Granger-cause A at observation index t, if

H0 : At ⊥⊥ {Bt−1, . . . , Bt−k}|{At−1, . . . , At−k, Ct−1, . . . , Ct−k} (1)

where⊥⊥ denotes probabilistic independence. Henceforth, for the sake of convenience, we implement the
following substitutions: X = At, Y = {B}t−kt−1 and Z = {A,C}t−kt−1. It is understood that all formulations
in what follows are compatible with any multivariate setting. Thus, one can parsimoniously reformulate
the hypothesis in Equation (1) as:

H0 : X ⊥⊥ Y |Z (2)

The statement above can be tested by comparing the two conditional probability densities: fX|Z and
fX|Y Z [15].

2.1. Linear Test Statistics

In parametric analysis of Granger causality, techniques of linear regression have been the dominant
choice. Under fulfilled assumptions of ordinary least squares’ regression and stationarity, the hypothesis
in Equation (2), can be tested using the following models:

H0 : X = β1 + Zβ2 + ε (3)

H1 : X = γ1 + Zγ2 + Y γ3 + η (4)

where the β and γ terms are the regression coefficients, and the residuals ε and η are independent
and identically distributed following a centered Gaussian N(0, σ2). Traditionally, the F-distributed
Granger-Sargent test [1], equivalent to the structural Chow test [16], has been used to examine the
statistical significance of the reduction in residual sum of squares in the latter model compared to the
former. In this study however, we will focus on the statistic G(X, Y |Z) = ln (Varε/Varη) [11,17]. This
statistic is χ2-distributed under the null hypothesis, and non-central χ2-distributed under the alternate
hypothesis. There are two types of multivariate generalizations of G(X, Y |Z); one by means of total
variance, using the trace of covariance matrices [18], and one by generalized variance, using the
determinant of covariance matrices [11,17]. For a thorough discussion on the advantages of either
measure we refer the reader to [18,19]. Choosing the latter extension, the test statistic in G(X, Y |Z)

can be reformulated as:

G(X, Y |Z) = ln

(
|Σε|
|Ση|

)
= ln

(
|ΣXZ | · |ΣY Z |
|ΣZ | · |ΣXY Z |

)
(5)

where the last equality follows the scheme presented in [11].
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2.2. Transfer Entropy

Transfer entropy, a non-parametric measure of co-dependence is identical to (conditional) mutual
information measured in nats (using the natural logarithm). Mutual information is a basic concept, based
on the most fundamental measure in information theory, the Shannon entropy, or, more specifically, the
differential Shannon entropy in the case of continuous distributions. The differential Shannon entropy
of a random variable S with a continuous probability density fS with support on S is

H(S) ≡ −E[logb fS] = −
∫
S
fS logb fSds (6)

where b is the base of the logarithm determining the terms in which the entropy is measured; b = 2 for
bits and b = e for nats [14,20]. The transfer entropy for the hypothesis in Equation (2) is defined as [7]:

T (Y → X|Z) = H(X|Z)−H(X|Y, Z)

= H(X,Z)−H(Z) +H(Y, Z)−H(X, Y, Z) (7)

Interestingly, for Gaussian variables one can show that G(X, Y |Z) = 2 · T (Y → X|Z) [11]. Naturally,
such equivalences fail when using other types of distributions that do not meet the requirements of linear
models used to construct G(X, Y |Z).

In the following, we shall look at closed-form expressions for transfer entropy for the multivariate
exponential, logistic, Pareto (type I − IV) and Burr distributions. Before deriving the results, it should
be noted that all marginal densities of the multivariate density functions in this study are distributed
according to the same distribution; i.e., the marginal densities of a multivariate exponential density are
themselves exponential densities.

3. Results

In this section we will derive the expression for transfer entropy for the multivariate exponential
distribution. The remaining derivations follow an identical scheme and are presented in the Appendix.
The differential Shannon entropy expressions employed in this study can be found in [21].

The multivariate exponential density function for a d-dimensional random vector S is:

fS =
d∏
i=1

α + i− 1

θi
exp

(
si − λi
θi

)[ d∑
i=1

exp

(
si − λi
θi

)
− d+ 1

]−(α+d)
(8)

where S ∈ Rd, si > λi, θi > 0 for i = 1, ..., d and α > 0. For the multivariate exponential distribution
the differential Shannon entropy of S is:

H(S) = −
d∑
i=1

log

(
α + i− 1

θi

)
+ (α + d)

d∑
i=1

1

α + i− 1
− d

α
(9)

Thus, transfer entropy for a set of multivariate exponential variables can be formulated as:
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T (Y → X|Z) =H(X,Z)−H(Z) +H(Y, Z)−H(X, Y, Z)

=−
dX∑
i=1

log

(
α + i− 1

θ
(X)
i

)
−

dZ∑
i=1

log

(
α + dX + i− 1

θ
(Z)
i

)

+ (α + dX + dZ)

(
dX∑
i=1

1

α + i− 1
+

dZ∑
i=1

1

α + dX + i− 1

)

− dX + dZ
α

+

dZ∑
i=1

log

(
α + i− 1

θ
(Z)
i

)
− (α + dZ)

(
dZ∑
i=1

1

α + i− 1

)

+
dZ
α
−

dZ∑
i=1

log

(
α + i− 1

θ
(Z)
i

)
−

dY∑
i=1

log

(
α + dZ + i− 1

θ
(Y )
i

)

+ (α + dZ + dY )

(
dZ∑
i=1

1

α + i− 1
+

dY∑
i=1

1

α + dZ + i− 1

)

− dZ + dY
α

+

dX∑
i=1

log

(
α + i− 1

θ
(X)
i

)
+

dZ∑
i=1

log

(
α + dX + i− 1

θ
(Z)
i

)

+

dY∑
i=1

log

(
α + dX + dZ + i− 1

θ
(Y )
i

)
− (α + dX + dZ + dY )(

dX∑
i=1

1

α + i− 1
+

dZ∑
i=1

1

α + dX + i− 1
+

dY∑
i=1

1

α + dX + dZ + i− 1

)

+
dX + dZ + dY

α
(10)

which, after simplifications, reduces to

T (Y → X|Z) =

dY∑
i=1

log

(
1 +

dX
α + dZ + i− 1

)

− dY

[
dX∑
i=1

1

α + i− 1
+

dZ∑
i=1

(
1

α + dX + i− 1
− 1

α + i− 1

)]

+ (α + dZ + dY )

dY∑
i=1

1

α + dZ + i− 1

− (α + dX + dZ + dY )

dY∑
i=1

1

α + dX + dZ + i− 1
(11)

where dX represents the number of dimensions in X , and where α is the multivariate distribution
parameter. As stated previously, the expression in Equation (11) holds for the multivariate logistic,
Pareto (type I − IV) and Burr distributions as proven in the Appendix. For the specific case of
dX = dY = dZ = 1, the transfer entropy expression reduces to:

T (Y → X|Z) = log

(
α + 2

α + 1

)
− 1

α + 2
(12)
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In any regard, T (Y → X|Z) depends only on the number of involved dimensions and the
parameter α. The latter parameter, α, operates as a multivariate distribution feature and does not have
a univariate counterpart. This result indicates that the value assigned to the conditional transfer of
information from the cause to the effect decreases with increasing values of α. However, the impact
of the multivariate distribution parameter α in this decrease, shrinks rather rapidly as the numbers of
dimensions increase.

4. Conclusions

The distributions discussed in this paper are frequently subject to the modeling of natural phenomena,
and utilized frequently within biological, physical and actuarial engineering. Events distributed
according to any of the discussed distributions are not suitable for analysis using linear models and
require non-parametric models of analysis or transformations where feasible.

The focus of this paper has been on non-parametric modeling of Granger causality using transfer
entropy. Our results show that the expressions for transfer entropy for the multivariate exponential,
logistic, Pareto (type I − IV) and Burr distributions coincide in definition and are dependent on the
multivariate distribution parameter α, and the number of dimensions. In other words, the transfer entropy
expressions are independent of other parameters of the multivariate distributions.

As underlined by our result, the value of transfer entropy depends in a declining manner on the
multivariate distribution parameter α as the number of dimensions increase.
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A. Appendix

A.1. Multivariate Logistic Distribution

The multivariate logistic density function for a d-dimensional random vector S is:

fS =
d∏
i=1

α + i− 1

θi
exp

(
−si − λi

θi

)[ d∑
i=1

exp

(
−si − λi

θi

)
+ 1

]−(α+d)
(13)

with S ∈ Rd, θi > 0 for i = 1, ..., d and α > 0. For the multivariate logistic distribution the differential
Shannon entropy of S is:

H(S) = −
d∑
i=1

log

(
α + i− 1

θi

)
+ (α + d)Ψ(α + d)− αΨ(α)− dΨ(1) (14)

where Ψ(s) = d
ds

ln Γ(s) is the digamma function. Thus, the transfer entropy for the multivariate logistic
distribution can be formulated as:

T (Y → X|Z) =H(XZ)−H(Z) +H(Y Z)−H(XY Z)

=−
dX∑
i=1

log

(
α + i− 1

θ
(X)
i

)
−

dZ∑
i=1

log

(
α + dX + i− 1

θ
(Z)
i

)
+ (α + dX + dZ)Ψ(α + dX + dZ)− αΨ(α)− (dX + dZ)Ψ(1)

+

dZ∑
i=1

log

(
α + i− 1

θ
(Z)
i

)
− (α + dZ)Ψ(α + dZ) + αΨ(α) + dZΨ(1)

−
dZ∑
i=1

log

(
α + i− 1

θ
(Z)
i

)
−

dY∑
i=1

log

(
α + dZ + i− 1

θ
(Y )
i

)
+ (α + dZ + dY )Ψ(α + dZ + dY )− αΨ(α)− (dZ + dY )Ψ(1)

+

dX∑
i=1

log

(
α + i− 1

θ
(X)
i

)
+

dZ∑
i=1

log

(
α + dX + i− 1

θ
(Z)
i

)

−
dY∑
i=1

log

(
α + dX + dZ + i− 1

θ
(Y )
i

)
− (α + dX + dZ + dY )Ψ(α + dX + dZ + dY )

+ αΨ(α) + (dX + dZ + dY )Ψ(1) (15)

which, after simplifications, using the identity

Ψ(α + d) = Ψ(α) +
d∑
i=1

1

α + i− 1
(16)

reduces to

T (Y → X|Z) =

dY∑
i=1

log

(
1 +

dX
α + dZ + i− 1

)
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− dY

[
dX∑
i=1

1

α + i− 1
+

dZ∑
i=1

(
1

α + dX + i− 1
− 1

α + i− 1

)]

+ (α + dZ + dY )

dY∑
i=1

1

α + dZ + i− 1

− (α + dX + dZ + dY )

dY∑
i=1

1

α + dX + dZ + i− 1
(17)

A.2. Multivariate Pareto Distribution

The multivariate Pareto density function of type I − IV for a d-dimensional random vector S is:

fS =
d∏
i=1

α + i− 1

γiθi

(
si − µi
θi

)(1/γi)−1
(

1 +
d∑
i=1

(
si − µi
θi

)1/γi
)−(α+d)

(18)

with S ∈ Rd, si > µi, γi > 0 and θi > 0 for i = 1, ..., d and α > 0. Other types of the multivariate
Pareto density function are obtained as follows:

• Pareto III by setting α = 1 in Equation (18).

• Pareto II by setting γi = 1 in Equation (18).

• Pareto I by setting γi = 1 and µi = θi in Equation (18).

For the multivariate Pareto distribution in Equation (18) the differential entropy of S is:

H(S) = −
d∑
i=1

log

(
α + i− 1

γiθi

)
+ (α + d)

[
Ψ(α + d)−Ψ(α)

]
−
[
Ψ(1)−Ψ(α)

](
d−

d∑
i=1

γi

)
(19)

Thus, the transfer entropy for the multivariate Pareto density function of type I − IV can be
formulated as:

T (Y → X|Z) =H(X,Z)−H(Z) +H(Y, Z)−H(X, Y, Z)

=−
dX∑
i=1

log

(
α + i− 1

γ
(X)
i θ

(X)
i

)
−

dZ∑
i=1

log

(
α + dX + i− 1

γ
(Z)
i θ

(Z)
i

)
+ (α + dX + dZ)

[
Ψ(α + dX + dZ)−Ψ(α)

]
−
[
Ψ(1)−Ψ(α)

](
dX + dZ −

dX∑
i=1

γ
(X)
i −

dZ∑
i=1

γ
(Z)
i

)

+

dZ∑
i=1

log

(
α + i− 1

γ
(Z)
i θ

(Z)
i

)
− (α + dZ)

[
Ψ(α + dZ)−Ψ(α)

]
+
[
Ψ(1)−Ψ(α)

](
dZ −

dZ∑
i=1

γ
(Z)
i

)

−
dZ∑
i=1

log

(
α + i− 1

γ
(Z)
i θ

(Z)
i

)
−

dY∑
i=1

log

(
α + dY + i− 1

γ
(Y )
i θ

(Y )
i

)
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+ (α + dZ + dY )
[
Ψ(α + dZ + dY )−Ψ(α)

]
−
[
Ψ(1)−Ψ(α)

](
dZ + dY −

dZ∑
i=1

γ
(Z)
i −

dY∑
i=1

γ
(Y )
i

)

+

dX∑
i=1

log

(
α + i− 1

γ
(X)
i θ

(X)
i

)
+

dZ∑
i=1

log

(
α + dX + i− 1

γ
(Z)
i θ

(Z)
i

)

+

dY∑
i=1

log

(
α + dX + dZ + i− 1

γ
(Y )
i θ

(Y )
i

)
− (α + dX + dZ + dY )

[
Ψ(α + dX + dZ + dY )−Ψ(α)

]
+
[
Ψ(1)−Ψ(α)

](
dX + dZ + dY −

dX∑
i=1

γ
(X)
i −

dZ∑
i=1

γ
(Z)
i −

dY∑
i=1

γ
(Y )
i

)
(20)

which, after simplifications, reduces to

T (Y → X|Z) =

dY∑
i=1

log

(
1 +

dX
α + dZ + i− 1

)

− dY

[
dX∑
i=1

1

α + i− 1
+

dZ∑
i=1

(
1

α + dX + i− 1
− 1

α + i− 1

)]

+ (α + dZ + dY )

dY∑
i=1

1

α + dZ + i− 1

− (α + dX + dZ + dY )

dY∑
i=1

1

α + dX + dZ + i− 1
(21)

A.3. Multivariate Burr Distribution

The multivariate Burr density function for a d-dimensional random vector S is:

fS =
d∏
i=1

(α + i− 1)picis
ci−1
i

(
1 +

d∑
j=1

pjs
cj−1
j

)−(α+d)
(22)

with S ∈ Rd, si > 0, ci > 0, di > 0 for i = 1, ..., n and α > 0. For the multivariate Burr distribution the
differential entropy of S is:

H(S) =−
d∑
i=1

log(α + i− 1) + (α + d)
[
Ψ(α + d)−Ψ(α)

]
−

d∑
i=1

log (ci ci
√
pi)

+
[
Ψ(α)−Ψ(1)

]( d∑
i=1

ci − 1

ci

)
(23)

Thus, the transfer entropy for the multivariate Burr distribution can be formulated as:

T (Y → X|Z) =H(XZ)−H(Z) +H(Y Z)−H(XY Z)

=−
dX∑
i=1

log(α + i− 1)−
dZ∑
i=1

log(α + dX + i− 1)
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+ (α + dX + dZ)
[
Ψ(α + dX + dZ)−Ψ(α)

]
−

dX∑
i=1

log

(
c
(X)
i

c
(X)
i

√
p
(X)
i

)
−

dZ∑
i=1

log

(
c
(Z)
i

c
(Z)
i

√
p
(Z)
i

)

+
[
Ψ(α)−Ψ(1)

]( dX∑
i=1

c
(X)
i − 1

c
(X)
i

+

dZ∑
i=1

c
(Z)
i − 1

c
(Z)
i

)

+

dZ∑
i=1

log(α + i− 1)− (α + dZ)
[
Ψ(α + dZ)−Ψ(α)

]
+

dZ∑
i=1

log

(
c
(Z)
i

c
(Z)
i

√
p
(Z)
i

)
−
[
Ψ(α)−Ψ(1)

]( dZ∑
i=1

c
(Z)
i − 1

c
(Z)
i

)

−
dZ∑
i=1

log(α + i− 1)−
dY∑
i=1

log(α + dZ + i− 1)

+ (α + dZ + dY )
[
Ψ(α + dZ + dY )−Ψ(α)

]
−

dZ∑
i=1

log

(
c
(Z)
i

c
(Z)
i

√
p
(Z)
i

)
−

dY∑
i=1

log

(
c
(Y )
i

c
(Y )
i

√
p
(Y )
i

)

+
[
Ψ(α)−Ψ(1)

]( dZ∑
i=1

c
(Z)
i − 1

c
(Z)
i

+

dY∑
i=1

c
(Y )
i − 1

c
(Y )
i

)

+

dX∑
i=1

log(α + i− 1) +

dZ∑
i=1

log(α + dX + i− 1)

+

dY∑
i=1

log(α + dX + dY + i− 1)

− (α + dX + dZ + dY )
[
Ψ(α + dX + dZ + dY )−Ψ(α)

]
+

dX∑
i=1

log

(
c
(X)
i

c
(X)
i

√
p
(X)
i

)
+

dZ∑
i=1

log

(
c
(Z)
i

c
(Z)
i

√
p
(Z)
i

)

+

dY∑
i=1

log

(
c
(Y )
i

c
(Y )
i

√
p
(Y )
i

)

−
[
Ψ(α)−Ψ(1)

]( dX∑
i=1

c
(X)
i − 1

c
(X)
i

+

dZ∑
i=1

c
(Z)
i − 1

c
(Z)
i

+

dY∑
i=1

c
(Y )
i − 1

c
(Y )
i

)
(24)

which, after simplifications, reduces to

T (Y → X|Z) =

dY∑
i=1

log

(
1 +

dX
α + dZ + i− 1

)

− dY

[
dX∑
i=1

1

α + i− 1
+

dZ∑
i=1

(
1

α + dX + i− 1
− 1

α + i− 1

)]

+ (α + dZ + dY )

dY∑
i=1

1

α + dZ + i− 1
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− (α + dX + dZ + dY )

dY∑
i=1

1

α + dX + dZ + i− 1
(25)

B. Appendix

B.1. Multivariate Cauchy-Lorentz Distribution

The multivariate Cauchy-Lorentz density function for a d-dimensional random vector S is:

fS =
Γ(1+d

2
)

√
π1+d

(
1 + s21 + s22 + ...+ s2d

)− 1+d
2 (26)

for S ∈ Rd. Interestingly, Equation (26) is equivalent to the multivariate t-distribution with one degree of
freedom, zero expectation, and an identity covariance matrix [21]. For the case of d = 1, Equation (26)
reduces to the univariate Cauchy-Lorentz density function [22]. The differential entropy of S is:

H(S) = − log

(
Γ
(
1+d
2

)
√
π1+d

)
+

1 + d

2

[
Ψ

(
1 + d

2

)
−Ψ

(
1

2

)]
(27)

Thus, the transfer entropy T (Y → X|Z) for the multivariate Cauchy-Lorentz distribution can be
formulated as:

T (Y → X|Z) =H(XZ)−H(Z) +H(Y Z)−H(XY Z)

− log

(
Γ
(
1+dX+dZ

2

)
√
π1+dX+dZ

)

+
1 + dX + dZ

2

[
Ψ

(
1 + dX + dZ

2

)
−Ψ

(
1

2

)]
+ log

(
Γ
(
1+dZ

2

)
√
π1+dZ

)
− 1 + dZ

2

[
Ψ

(
1 + dZ

2

)
−Ψ

(
1

2

)]

− log

(
Γ
(
1+dY +dZ

2

)
√
π1+dY +dZ

)

+
1 + dY + dZ

2

[
Ψ

(
1 + dY + dZ

2

)
−Ψ

(
1

2

)]
+ log

(
Γ
(
1+dX+dY +dZ

2

)
√
π1+dX+dY +dZ

)

− 1 + dX + dY + dZ
2

[
Ψ

(
1 + dX + dY + dZ

2

)
−Ψ

(
1

2

)]
(28)

which, after simplifications, using the identity in Equation (16), reduces to

T (Y → X|Z) = log

(
Γ
(
1+dZ

2

)
Γ
(
1+dX+dY +dZ

2

)
Γ
(
1+dX+dZ

2

)
Γ
(
1+dY +dZ

2

))+
1 + dX + dZ

2
ξ

(
dX + dZ

2

)
− 1 + dZ

2
ξ

(
dZ
2

)
+

1 + dY + dZ
2

ξ

(
dY + dZ

2

)
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− 1 + dX + dY + dZ
2

ξ

(
dX + dY + dZ

2

)
(29)

where

ξ(a) =
a∑
i=1

1

i− 0.5
(30)

is obtained after a simplification of the digamma function.
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