
Entropy 2014, 16, 1493-1500; doi:10.3390/e16031493 

 

entropy 
ISSN 1099-4300 

www.mdpi.com/journal/entropy 

Article 

An Entropy Measure of Non-Stationary Processes 

Ling Feng Liu, Han Ping Hu *, Ya Shuang Deng and Nai Da Ding 

School of Automation, Huazhong University of Science & Technology, Wuhan 430074, China;  

E-Mails: vatanoilcy@163.com (L.F.L.); dys0377@163.com (Y.S.D.); orochi-iori@163.com (N.D.D.) 

* Author to whom correspondence should be addressed; E-Mail: hphu@mail.hust.edu.cn. 

Received: 23 January 2014; in revised form: 21 February 2014 / Accepted: 12 March 2014 / 
Published: 17 March 2014 
 

Abstract: Shannon’s source entropy formula is not appropriate to measure the uncertainty 

of non-stationary processes. In this paper, we propose a new entropy measure for 

non-stationary processes, which is greater than or equal to Shannon’s source entropy. The 

maximum entropy of the non-stationary process has been considered, and it can be used as a 

design guideline in cryptography. 
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1. Introduction 

Information science considers an information process, uses the probability measure for random states 

and Shannon’s entropy as the uncertainty function of these states [1–3]. For a stationary source, the 

probability and the Shannon’s entropy can be determined by using statistical physics methods, while for 

a non-stationary source, all the statistical physics methods fail, thus the Shannon entropy measure may 

not be available. Till now, the entropy of non-stationary process is still not fully understood, except for 

some specific types of non-stationary process [4] that use the following entropy formula to measure  

the uncertainty: 

( , ) ln ( , )H P x t P x t dx   (1) 

This kind of non-stationary process requires a known probability function, and the probability 

function is deterministically varied. This formula will fail if the probability function of the 

non-stationary process is stochastically varied. For a non-stationary process, if its parametric is a 
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stationary random variable, then this kind of non-stationary process can be considered as a piecewise 

stationary process, and many papers use the following source entropy formula, proposed by Shannon, to 

measure the uncertainty [5–9]: 

,

( ) log ( )i i i i i
i i j

H p H P p j p j    (2)

where for each possible state i there will be a set of probabilities pi(j) of producing the various possible 

symbols j. 

In this paper, we will consider the non-stationary process, with its parametric be a stationary random 

variable. We will show that the entropy of this kind of non-stationary process should not be measured by 

Shannon’s source entropy (Equation (2)). Actually, Shannon’s source entropy Equation (2) is only used 

for a stationary process with multiple-states, not for non-stationary processes. In our paper, we will 

propose an entropy formula to measure the uncertainty of non-stationary processes. Our entropy 

measure is greater than or equal to Shannon’s source entropy formula. These two measures are equal if 

and only if the process is stationary. Our entropy measure can be used as a complexity criterion of 

non-stationary processes and as a design guideline for cryptographic uses. 

The rest of this paper is organized as follows: Section 2 shows that Shannon’s source entropy formula 

is not appropriate to measure the uncertainty of non-stationary processes. In Section 3, a new entropy 

formula is proposed to measure the uncertainty of non-stationary processes and some properties are 

presented. In Section 4, the maximum entropy of the non-stationary process is considered. Section 5 

concludes the paper. 

2. The Limitation of Shannon’s Source Entropy in Non-Stationary Process 

First, let’s consider the following two examples, one is for discrete source and the other is for 

continuous source: 

Example 1. Consider a discrete source of two kinds of symbol 0 and 1. This discrete source varies 

between the states “1” and “2” randomly with probabilities P1 = 0.2 and P2 = 0.8. For state “1”, the 

probability of producing the symbol 0 is 0.4, and producing the symbol 1 is 0.6. For state “2”, the 

probability of producing the symbol 0 is 0.3, and producing the symbol 1 is 0.7. Obviously, this discrete 

source is non-stationary. By using Shannon’s source entropy Equation (2), we have H = 0.6233. By 

calculating the entropy of the 01 sequences which generated by this discrete source, we have H approaches 

to 0.629 with the sequence length increased, which is bigger than Shannon’s source entropy measure. 

Example 2. Consider a continuous source of a parameter-varied normal distribution N(μ, 1), which 

parameter μ varies between μ1, μ2, …, μn randomly with probabilities p1, p2, … ,pn. Obviously, this 

continuous source is non-stationary. By using Shannon’s source entropy Equation (2), we have  

H = 0.5ln2πe, which is not relevant to μ. Then, the uncertainty of this non-stationary source equals to the 

uncertainty of normal distribution source with fixed μ as N(0, 1), which is not convinced (the variation of 

parameter μ also brings some of uncertainty when determining the states). 
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Therefore, Shannon’s source entropy formula is not appropriate to measure the uncertainty of a 

non-stationary process. The entropy of non-stationary processes is always bigger than Shannon’s source 

entropy measure. Next, we will analyze why this happens. 

Let s1s2…si(1)si(1)+1…si(2)si(2)+1…sN be a symbol sequence generated by the source of Example 3, 

which s1s2…si(1) is generated by a fixed random parameter, si(1)+1…si(2) is generated by a fixed random 

parameter, and so on. For the first symbol s1, its uncertainty can be written as h(p) o H1. Here, h(p) is the 

uncertainty of varying parameter, and H1 is the uncertainty of symbol s1 with a known parameter. “o” is 

an operator which has the following properties:  

(1) 0 o a = a. 

(2) a o b = b o a ≥ max(a, b). 

(3) a o b = a if and only if b = 0. 

For the symbol s2, its uncertainty is H2, without h(p) for its parameter is determined. For the symbol 

si(1)+1, its uncertainty is h(p) o Hi(1)+1, …. Then the average uncertainty of this non-stationary source can 

be written as: 

( ) 1 ( 1)

( ) 1 ( 1)

1
lim ( ( ) )

| ... |

1
      ( )

| ... |

i

N
i j i j

i i i i
i ii j i j

N
h p H

N E s s

h p p H p H
E s s


 

 

 



 





(3)

here, E|si(j)+1…si(j+1)| is the average length of symbol sequence by each parameter. The “=” holds if and 

only if the source is stationary, which degenerate to Shannon’s source entropy measure. 

3. The Entropy of Non-Stationary Process and Its Properties 

According to the Boltzmann-Gibbs theorem, we should consider all the possible states and their 

probabilities when we measure the uncertainty of a source. Consider a non-stationary process which 

varies randomly in n kinds of possible states. The probabilities of each states are p1, p2, …, and pn 

respectively. For the state i, the output variable satisfies the probability density function fi. The 

probability of generating a N-length sequence by this non-stationary source is: 

1

( )
N

j j
ji

p f

 (4)

Then, the uncertainty of the N-length sequence is: 

1 11 1

( ) log( ( ))
N N

j j j j
j ji i

h p f p f dx
  

      (5)

The average uncertainty of this non-stationary process is: 

lim /
N

H h N


 (6)

Theorem 1. 
11 1

log( ) log
N N N

i i i i
ii i

f f dx f f dx
 

    

Proof. First, we consider the case N = 2. We have: 
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1 2 1 2 1 2 1 2 1 1 2 2 1 2

1 1 1 2 2 1

log ( log log )

                                  log log

f f f f dx dx f f f f f f dx dx

f f dx f f dx

 

 

   
 

 

Assume the equation holds when N = k. Then for N = k + 1, denote
1

( )
k

i
i

f f k


 , then we have: 

1 1

1 1 1 1
1 1

log( ) ( ) log( ( ) ) ( ) log ( ) log
k k

i i k k k k
i i

f f dx f k f f k f dx f k f k f f
 

   
 

        

1

1

log
k

i i
i

f f dx




   

Thus, concluding our proof. 

According to Equations (5) and (6) and theorem 1, the entropy of the non-stationary process can be 

written as: 

( ) log( )i i i i
i i

H p f p f dx    (7)

Equation (7) is the entropy formula of the non-stationary process when the states vary discretely. For 

a continuously case, the entropy formula can be written as: 

( ( ) ) log( ( ) )y yH g y f dy g y f dy dx    (8)

Here, g(y) is the probability density function of the varying state and fy is the probability density 

function of the output variable for each state y. We have that by using the entropy equations (7) and (8) 

instead of Shannon’s source entropy, there are no such inconsistencies as proposed in examples 1 and 2. 

Theorem 2. Let HS and H be the Shannon’s entropy measure and our entropy measure of a 

non-stationary process respectively, H(p) be the Shannon’s entropy of the varying states. We have the 

following inequality hold: 
( )s sH H H H p    

Proof. We use Equation (7) as our entropy formula (states vary discretely). For the continuous case, it 

can be proven similarly. 

We consider H – Hs, and have: 

1

1

( ( ) log( ) )

           (( ) log( ) log )

            = log( )

n

s i i i i i i
i i i

n

i i i i i i i
i i i

i i
i i

i i

H H p f p f dx p H

p f p f p f f dx

p f
p f dx

f





   

  



  

  


 

Due to i i
i

i

p f
p

f
 , we have: 

log  = ( log ) log ( )s i i i i i i i i
i i i

H H p f p dx f p p dx p p H p           

Thus, we have H < Hs + H(p). Additionally, consider the following functional F: 

log( )i i
s i i

i i

p f
F H H p f dx

f
      
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It is easily to prove that functional F reaches its minimum when f1 = f2 = … = fn, we have: 

1
1 1

1

log( ) log( ) 0i
i i i

i i

f p
F p f dx p f p dx

f
         

Thus, we have H ≥ Hs, which concluding our proof. 

Theorem 2 shows that the entropy of non-stationary process is greater than or equal to the Shannon’s 

entropy measure. These two measures are equal if and only if the process is stationary. Furthermore,  

H < Hs + H(p) means that the entropy of non-stationary process cannot be written as the sum of Hs and 

H(p), although its uncertainty is brought by these the aspects. In another word, they are not independent 

of each other. 

4. Maximum Entropy and Its Application in Cryptography 

In recent years, chaotic systems were regarded as an important pseudorandom source in the design of 

random number generators [10–12]. As we know, chaotic systems may be attacked by phase space 

reconstruction and nonlinear prediction techniques. If the system is abiding references [13–15] propose 

a chaotic system with varying parameters to resist these attacks. However, the varying method is rather 

simple. A more secure method is to vary the parameters in a random-like way, then the output sequence 

come to be non-stationary. Entropy is an important criterion in cryptographic use. With our entropy 

formula of non-stationary process, we can compare the different varying methods and guide us to design 

a varying method in order to make the entropy maximum. It can be expressed as the following 

mathematical problem. 

P1. The maximum of functional: 

( ) log( )i i i i
i i

H p f p f dx     

under the condition 1i
i

p   and 0 ≤ pi ≤ 1. 

Design a Lagrange functional: 

1 2( ) log( ) ( ... 1)i i i i n
i i

L p f p f dx p p p         

Solve the following equations: 

0

0

i

L

p

L



 

 

 

Compare these extreme values in order to get the maximum entropy and the corresponding pi. 

Consider the discrete case (the output variables of each states are discrete). Assume the 

non-stationary process is varying in n kinds of possible states a1, a2, … , an with probabilities p1, p2, … , 

pn. For each state ai, the output variables are b1, b2, … , bN and the probabilities are fi1, fi2, … , fiN 

respectively. Then, the entropy of this non-stationary process is: 

1 1 1

( log )
N n n

i ij i ij
j i i

H p f p f
  

    (9)
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By using the above Lagrange method, we have that the entropy (9) reach its maximum value when the 

following equation holds: 

1 2
1 1 1

1n n n

i i i i i iN
i i i

p f p f p f
N  

        

The maximum entropy is logN which equals to the stationary uniform distribution. 

For the continuous case (the output variables of each states are continuous), the method is similar. 

Next, we show two simple examples. 

Example 3. Consider a non-stationary process which varies between two possible states a1 and a2 with 

probabilities p1 and p2 respectively. For state a1, the output variables are b1 and b2 with probabilities f11 

= 0.75 and f12 = 0.25. For state a2, the output variables are b1 and b2 with probabilities f21 = 1/3 and f22 

= 2/3. By solving the maximum entropy problem, we have that the entropy reaches its maximum value 

when p1 = 0.4, p2 = 0.6, and Hmax = log2. 

Example 4. Consider a non-stationary process which varies in two states a1 and a2 with probabilities p1 

and p2 respectively. For state a1, the output variables satisfy the normal distribution N(0, 1). For state 

a2, the output variables satisfy the normal distribution N(1, 1). By solving the maximum entropy 

problem, we have that the entropy reaches its maximum value when p1 = 0.5, and Hmax = 1.5304. 

Figure 1 shows the relation between the Entropy and p1. 

Figure 1. The relation between the entropy and p1. 

 

5. Conclusions 

In this paper, we first prove that Shannon’s source entropy is not appropriate to measure the 

uncertainty of non-stationary processes. Then, we propose an entropy formula to measure the 

uncertainty of such non-stationary processes. Our entropy measure is greater than or equal to Shannon’s 

source entropy formula. These two measures are equal if and only if the process is stationary. 

Furthermore, we study the maximum entropy of our entropy formula. The maximum entropy can be 

used as a guideline for constructing a non-stationary source in cryptographic uses. 
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