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Abstract: Chemical composition of interfaces—free surfaces and grain boundaries—is 

generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs 

energy of segregation. Various components of the Gibbs energy of segregation, the 

standard and the excess ones as well as other thermodynamic state functions—enthalpy, 

entropy and volume—of interfacial segregation are derived and their physical meaning is 

elucidated. The importance of the thermodynamic state functions of grain boundary 

segregation, their dependence on volume solid solubility, mutual solute–solute interaction 

and pressure effect in ferrous alloys is demonstrated. 
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1. Introduction 

The fundamental laws of thermodynamics are applied in many fields of materials science. Their 

application is particularly important in the field of interfacial segregation, i.e. the accumulation of solute 

or impurity atoms at an interface. The segregation results in changing bonds at the interface and—in the 

case of grain boundaries (i.e. interfaces between two differently oriented crystals in a solid)—often in 

their weakening which results in reduction of material cohesion and consequently, in intergranular 

brittle fracture leading to irreversible degradation of the material [1]. Although numerous papers 

published in the last decades provide us with a database of chemical composition of interfaces under 

specific conditions (for reviews see e.g. [2,3]), it is more desirable to disclose general trends that are 

capable of predicting materials’ behavior under different thermal and structural conditions using 

appropriate thermodynamic variables [4,5]. Unfortunately, some thermodynamic data published in 

literature are of unclear physical meaning and their incorrect interpretation can result in 

misunderstanding of the fundamentals of interfacial segregation. To avoid this problem, we 

characterize individual components of the Gibbs energy of grain boundary segregation and 

consequently, their enthalpy, entropy and volume counterparts, and show the differences among them. 

Additionally, a reliable application of the basic thermodynamic state functions—the standard enthalpy 

and entropy of interfacial segregation—as well as of the excess volume is shown. 

2. LangmuirMcLean Segregation Isotherm 

Of the two different approaches describing interfacial segregation in a general way, i.e. the Gibbs 

segregation isotherm and the Langmuir–McLean segregation isotherm, the latter is more convenient 

(and thus applied as well) as it operates with characteristic changes of the Gibbs energy, G (e.g. [1,4,5]). In 

this approach the segregation of a solute I at an interface Φ in a binary M–I system can be understood 

as an exchange of the components M and I between Φ and the volume V [6]: 

  IMIM VV  (1)

The molar Gibbs energy of “reaction” (1), Gr, being the difference of the chemical potentials,  j  

(let us note that index j denotes any component in the system throughout the whole paper, i.e. j = I,M 

here, and  = ,V), of the right-hand and left-hand terms, is equal to zero in equilibrium [6]: 
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In Equation (2),   jMjj aRT ln0,
)(  , where 0,

)(
 Mj  is the standard chemical potential of pure 

component j at temperature T and structure of M (for j = M, we use simple notation “M” instead of the 
notation M(M)), and 

ja  is the activity of j at . As this definition is applicable to both the crystal 

volume V and the interface , we obtain: 
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with the standard molar Gibbs energy of segregation: 
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The activities in Equation (3) can be replaced by concentrations,   jj Xa
j

 , where j
 are the 

activity coefficients, and 
jX  are the atomic fractions of components j for  = ,V. Consequently: 
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in a binary M–I system, accepting 
IM XX  1  for both, the volume and the interface. In a 

multicomponent systems with limited amount of segregation sites, i.e. fraction of interface saturation 

X,sat [2], we may write Equation (5) as: 
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(5a)

In Equations (5) and (5a), GI is the Gibbs energy of segregation consisting of two terms, GI
0  

and E
IG  [1]: 

E
III GGG  0  (6)

where E
IG  is the partial molar excess Gibbs energy of segregation [1]: 
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Equation (5a) with condition (6) represents the general form of the segregation isotherm. It was 

derived without any non-thermodynamic assumption and, therefore, can be used to describe interfacial 

segregation independently of the system nature. However, a serious terminological misunderstanding 

exists as GI in Equations (5) and (5a) is frequently incorrectly called “excess Gibbs energy of 

segregation”, Gxs (e.g. [7]) or Gex (e.g. [8]). This ambiguous terminology thus evokes confusion. 

However, the meaning of excess in the sense of the Lewis theory of non-ideal solutions [9] is the only 

correct because it represents the deviations between real and ideal behavior (see Equation (6)). In fact, 

the adjective “interfacial excess” is an unnecessary over-determination because the term interfacial 

itself already denotes the extra contribution of interfaces with respect to the bulk, and therefore it 

should not be used in this context [5]. 

3. Thermodynamic State Functions in Interfacial Segregation and Their Physical Meaning 

It is evident from the considerations above that there exist three types of thermodynamic state 

functions of interfacial segregation. In the case of the Gibbs energy, one speaks about the Gibbs 

energy of segregation, the standard (ideal) Gibbs energy of segregation and the excess Gibbs energy 

of segregation, the latter characterizing the difference between the Gibbs energy of segregation and the 

ideal Gibbs energy of segregation. In the following, we will explain the physical meaning of all relevant 

thermodynamic quantities including the segregation volume which is rarely treated in such a detail. 

According to the basic thermodynamic definition:  

TSHG   (8)
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GI
0 is composed of the standard molar enthalpy, HI

0, and entropy, SI
0, of segregation, both of 

which are defined in the same way as GI
0 in Equation (4), i.e.: 
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where 0,
jh  and 0,V

jh , and 0,
js  and 0,V

js  are the respective molar enthalpy and entropy parts of the 

chemical potentials of solute j at  and V. Let us mention that SI
0 involves all entropy contributions 

except the configuration entropy [1,5]. As the segregation data are frequently correlated according to 

the Guttmann model of interfacial segregation in multicomponent systems [10], in which only the 

summary term E
IG  (which contains all interaction terms) appears: 

  E
IIIIII GSTHSTHG  00  (10)

where HI and SI are the molar enthalpy and molar entropy of segregation of I at interface . 

Application of the fundamental thermodynamic relationship to the grain boundary segregation 

provides us with [11]: 
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where  is the grain boundary energy and A is the grain boundary molar area. According to Equation (11) 

the molar segregation volume, VI, is defined as: 
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VI is constructed in the same way as other segregation quantities: 

   V
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Equation (13) is very close to Equation (1) in Reference [12] for  = GB supposing the relaxations 

terms  and Vr [12] are inherently implemented in the four terms of Equation (13). In the following we 

will discuss the segregation volume for grain boundaries. 

Similarly to GI (Equation (6)), VI also consists of two parts, the standard molar segregation 
volume, VI

0, and the partial molar excess segregation volume, E
IV : 

E
III VVV  0  (14)

As VI is not involved in any model, we will treat this quantity separately later.  

Let us note that in some cases the values of the thermodynamic variables are improperly interpreted, 

resulting in a lack of physical meaning. For example, this is the case when a single value of GI is 

determined on basis of the measurements of XI
 at different temperatures (e.g., with Equation (5)) but 

averaged over the whole temperature range so that it represents an effective value. Similarly, an 

averaging may be done for systems with different bulk compositions or over numerous interfaces of 

different crystallography in polycrystals. For details see e.g. References [1,5]. 
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3.1. Thermodynamic State Functions of Interfacial Segregation: GI, HI, SI and VI 

Among the state functions of this mode, the Gibbs energy of interfacial segregation, GI, is the 

most important one as it completely determines interfacial concentration, XI
, at temperature T for 

bulk atomic fraction, XI
V (cf. Equation (5a)). Its importance consists in reflecting the real behavior of 

the system as indicated by Equation (10). Principally, GI changes not only with changing temperature 

but also with changing concentrations XI
V and XI

 due to solute interaction (Figure 1). The 

corresponding values of HI and SI may also depend on temperature and concentration [1,5]. This 

means that these values can hardly provide us with any general information, e.g. about the anisotropy 

of grain boundary segregation, because any orientation dependence of HI and SI varies in a complex 

way with temperature and composition [1,5]. 

Figure 1. Schematic representation of the dependence of the types of GI
 (GI, GI° and 

E
IG ) appearing in Equation (6) on (a) bulk concentration, and (b) temperature, both in a 

binary system [1]. 

(a) 

(b) 

Besides GI, HI and SI, the segregation volume, VI, may be considered as another variable of 

equal importance. However, it seems that it has not been included in the description of interfacial 

segregation till now.  
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It follows from Equations (5a) and (12), that in case of a binary system M–I [13]: 
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Integration of Equation (15) results in an expression showing that the segregation volume plays an 

important role in grain boundary segregation under pressure: 
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(16)

where P0 is the normal pressure. This relationship is principally similar to Equation (4) given by 

Zhang and Ren [14]. 

3.2. Standard Molar Thermodynamic Functions of Interfacial Segregation: 0
IG , 0

IH , 0
IS , 0)( IPc  

and 0
IV  

The standard molar thermodynamic state functions possess a special importance in interfacial 

segregation as they have a very clear physical meaning. According to the definition (Equation (4)), 
0
IG  as a combination of standard chemical potentials, is principally independent of concentration 

(see Figure 1a). ΔGI
0 = ΔGI only if 0 E

IG , i.e. if γj
 = γj

V = 1 (Equations (5)–(7)). Certainly this 

represents a limitation although many systems behave nearly ideally (e.g. phosphorus in dilute Fe–P 

alloys [15,16]). Moreover, in an infinitesimally diluted solid solution the amount of interfacial solute 

enrichment is very low. Therefore it is highly probable that the solute atoms segregate at a those sites 

of the boundary which possess the lowest Gibbs segregation energy. Therefore, ΔGI
0 characterizes the 

interfacial segregation of element I at a specific site of interface Φ in the ideal system. ΔHI
0 and ΔSI

0 are 

defined in analogy to ΔGI
0 with corresponding physical meaning. According to Equations (3) and (8), the 

standard molar state functions control the relation between the activities at an interface and in the 

volume in the whole concentration range of a binary M–I system. Similarly to ΔGI
0 and according to 

Equations (9a) and (9b), ΔHI° and ΔSI° are concentration independent. Analogously to ΔGI
0, ΔHI

0 and 

ΔSI
0, we may define the standard molar specific heat of segregation, 0,)( V

IPc , as a combination of 

molar specific heats of pure substances, 0,)( 
jPc  and 0,)( V

jPc : 
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The value 0)( 0  IPc  results from the fact that 0,)( 
jPc  are insensitive to the presence of structural 

defects such as dislocations as well as grain boundaries [17], i.e. although an increase of Pc  was 

reported in case of nanocrystaline materials [18]. However, the different enhancements of Pc  of 

nanocrystalline palladium and copper were ascribed to lower densities of these substances in the 

nanometer-sized crystalline state [18] representing transition between crystalline and glassy states. In 

case of a large bicrystal with specified grain boundary we may well accept the relation 
0,

)(
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MjPMjP cc  . Then: 
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It means that ΔHI
0 and ΔSI

0 are independent of temperature and ΔGI
0 is thus a linear function of 

temperature. As the standard state is defined as pure component j at temperature T and structure of M, 
0,0,

)(
GB

M
GB

MI VV   and 0,0,
)(

V
M

V
MI VV  . Consequently,     00,0,0,
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MII VVVVV . It means that 

all non-zero contributions to VI originate from the real behavior of the system (VI = E
IV ). The fact 

that ΔVI
0 = 0 has a serious consequence for other standard state functions: According to Equation (12) 

and (SI
0/P)T = (VI

0/T)P, both ΔGI
0 and ΔSI

0, and consequently ΔHI
0 are independent of 

pressure. The independence of temperature and pressure is a principal property of ΔHI
0 and ΔSI

0 which 

thus change exclusively with the structure (i.e. energy) of the interface (or an interface site) and with 

the nature of the system. Therefore, ΔHI
0 and ΔSI

0 can be used for general purposes, for example, to 

characterize the anisotropy of interfacial segregation which is directly related to the grain boundary 

classification [1,5] despite their application is limited to ideal (infinitesimally diluted) systems. 

3.3. Excess Thermodynamic Functions of Interfacial Segregation: E
IG  and E

IV  

According to Equation (6), the excess molar Gibbs energy of segregation, E
IG , represents the 

difference between real and ideal behavior with respect to interfacial segregation and is exactly 

defined by the a combination of the activity coefficients (Equation (7)). It is thus evident that E
IG  

depends on composition and non-linearly on temperature (cf. schematic Figure 1b). However, the 

values of the activity coefficients are unknown and hardly measurable, particularly for interfaces. 

Therefore, E
IG  is usually approximated by various models, e.g. by the regular solid solution 

(Fowler) model for a binary system: 

0
2

X

X
G I

IM
E

I



   (19)

where αIM is the coefficient of binary I–I interaction in M, or by various models for segregation in 

multicomponent systems, e.g. by the Guttmann model:  


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MIJ

V
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V
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E
I XXXXG

,

)()(2   
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with the ternary interaction coefficients, IJ , characterizing the I–J interaction in M, where J represent 

other solutes in the system [10]. 
As only the summarizing term E

IG  is correlated according to the Guttmann model and the 

quantities E
IH  and E

IS  itself do not explicitly appear in the thermodynamic description of 

interfacial segregation, we will not discuss them. 
The effect of solute interaction (represented i.e. by IJ ) on grain boundary segregation is displayed 

in Figure 2. Here, the equilibrium composition is calculated for both the grain boundary of the binary 

M–I system in the temperature range 473–1673 K according to Equations (5) and (19) assuming a bulk 

concentration of XI
V = 0.001 (i.e. 0.1 at.%), interstitial segregation of I at the grain boundary and the 

values of HI
GB,0 = 30 kJ/mol and SI

GB,0 =  J/(mol·K) (as for P, Sb and Sn in -Fe). Figure 2 



Entropy 2014, 16 1469 

 

 

clearly shows the strong influence of the solute–solute interaction in the binary M–I alloy on the value 

of XI
GB. In case of attractive interaction, IM  0, the grain boundary concentration of the segregant 

obviously is increased. Even in case of relatively low values of IM, e.g. IM = +10 kJ/mol, the grain 

boundary enrichment of I is by tens of at.% higher than without interaction (IM = 0). Repulsive 

interaction decreases the solute enrichment to a similar extent. This behavior is well understood 

because repulsive interaction does not allow putting another atom of the same kind in close 

surrounding of the atom segregated at the interface while attractive interaction exhibits an opposite 

effect [19]. The effect of ternary interactions ( IJ , Figure 2b) is much less pronounced as that of the 

binary interactions [20]. 

Figure 2. Temperature dependence of XI
GB in (a) binary M–I alloy calculated according to 

Equations (5) and (19) using HI
GB,0 = 30 kJ/mol, SI

GB,0 =  J/(mol K), and various 

values of IM [19]; and (b) ternary M–I–J alloy with additionally HJ
GB,0 = 10 kJ/mol, 

SJ
GB,0 = 5 J/(mol·K) and XJ

V = 0.03. Ibin is XI
GB in the binary M–I(0.1 at.%) alloy [20].  

 
(a) 

 
(b) 
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Combination of Equations (12), (15) and (19) for a binary alloy with the above condition 
E

II VV   provides us with: 
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4. Examples of Application of Thermodynamic State Functions in Interfacial Segregation  

4.1. Relationship between ΔHI
0 and ΔSI

0 of Grain Boundary Segregation and Volume Solid Solubility 

The chemical potential of the solute I at the bulk solid solubility limit, XI
V,: 

,*0,,* ln V
I

V
I

V
I aRT   (22)

is related to the activity at the bulk solid solubility limit, aI
V,*. We can express the Gibbs energy of 

segregation in an M–I system at the limit of solid solubility, GI
*, as:  
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MM

V
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It follows from the basic thermodynamic relationships that: 
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Compilation of numerous literature data [21] shows that the activity of solute I at the solubility limit 

of numerous elements can be expressed by: 
vV

I
V
I Xa )( ,*,*   (25)

as is apparent in Figure 3. In Equation (25), v is the exponent which is characteristic for the host 

element. For many binary systems, the product T lnXI
V,* was found to be independent of temperature 

(Figure 4) [1,22]. It means that SI
V,* = SI

V,0 if conditions (24) and (25) are fulfilled, and: 
,*0* ln V

III aRTHH   (26)

i.e. [1,5]: 

 )(ln),( ,*)(*,,*0 TXTvRHXH V
ICSS

V
II    (27)

In Equation (27), )(*,  CSSH  is the molar enthalpy of segregation of a solute with complete volume 

solid solubility in solvent M, and the symbol  characterizes a specific grain boundary [1,5]. As the 

product T lnXI
V,* = const, the above mentioned condition of temperature independence of HI

0 is 

preserved. Equation (27) represents an extension and a refinement of the expression XI
/XI

V = K/XI
V,*, 

(K = 1.8–10.8) given by Hondros and Seah which relates the grain boundary enrichment ratio to the 

solid solubility limit [2], and the qualitative idea of Watanabe to extend this simple dependence to 

account for anisotropy of grain boundary segregation [23] and to construct the so called grain 

boundary segregation diagram. This idea was later experimentally proved [24]. The grain boundary 

segregation diagram for solute segregation in -iron at [100] symmetrical grain boundaries is shown in 

Figure 5 [1,5]. 
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Figure 3. Dependence of the activity at the volume solid solubility limit, aI
V,*, and 

corresponding atomic fraction, XI
V,*, for numerous solutes in -iron correlated according to 

Equation (25) [1,21]. 

 

Figure 4. Temperature dependence of the product T lnXI
V,* for various solutes in -iron [1,22]. 

 

Analysis of the measured data on segregation of phosphorus, silicon and carbon at individual grain 

boundaries in -iron show that the value of the exponent v = 0.77 [1,4,5] which is in good agreement 

with the value v = 0.6 obtained on basis of Equation (25) from data of Reference [21] (Figure 3). The 
value of )(*,  CSSH  varies from 8 to +8 kJ/mol according to the grain boundary character (the lower 

value corresponds to highly segregated general grain boundaries while the latter one corresponds to the 

special grain boundaries characterized by low segregation levels: for a detailed explanation of this 

characterization see e.g. [1]). 

The above mentioned measurements of grain boundary segregation in iron [1,4,5] provided us with 

the values of both HI
0 and SI

0. As an example, the dependence of HI
0 and SI

0 on the misorienation 
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angle for [100] symmetrical grain boundaries is shown in Figure 6. It is obvious that the orientation 

dependences of HI
0 and SI

0 are qualitatively equivalent for all segregating elements. 

Figure 5. Grain boundary segregation diagram for [100] symmetrical grain boundaries in 

-iron [1,4,5]. Notice that the lines characterizing the dependence of HI
0 on T lnXI

V,* are 

parallel for individual grain boundaries. The value of the slope in Equation (27) is v = 0.77. 

 

Figure 6. Anisotropy of (a) the standard enthalpy, HI
0, and (b) the standard entropy, SI

0, 

of Si, P and C segregation for [100] symmetrical grain boundaries in -iron [1,4,5]. 

 
(a) 
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Figure 6. Cont. 

 
(b) 

4.2. Compensation Effect in Grain Boundary Segregation 

In principle, we can express the change of the standard molar segregation Gibbs energy of interfacial 

segregation, GI
0, at constant temperature and pressure with a single intensive variable  as [25]: 
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Analogously, we can express HI
0 and SI

0 as: 
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We may define a temperature TCE as: 
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at which: 

0)(0  CEI TGd . (31)

It means that the change of HI
0 with changing  is compensated by corresponding changes of SI

0 

caused by a change of . Then TCE is the compensation temperature and the phenomenon is called 

compensation effect [1,5,26]. If we suppose that  is a variable describing the structure of the grain 

boundary, we can read Equation (31) as providing us with the constant value of the standard Gibbs 

energy of a solute at any grain boundary, i.e., all grain boundaries fulfilling the above conditions 

exhibit the same level of grain boundary segregation. If  represents the nature of the solute, all grain 
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boundaries will exhibit the same value of the grain boundary enrichment ratio, XI
/XI

V. The former 

case is documented for example on the basis of experimental data for phosphorus segregation at 

individual grain boundaries of -iron in Figure 7. Let us note that condition (31) does not identify a 

phase transformation characterized by minimum of the Gibbs energy: phase transformation is a sub-

category of the compensation effect. At TCE no transformation of the boundaries occurs but they 

coexist besides each other, despite the temperature changes in the vicinity of TCE [25,27].  

Integration of Equation (30) results in [1,5]: 

CE

ICE
I T

H
SS

)(
)(

0
,00 

 . (32)

Figure 7. Temperature dependence of the standard Gibbs energy of phosphorus 

segregation, GP
0, in -iron at various [100] symmetrical grain boundaries in [1,5]. 

 

The plot of the relation between HI
0 and SI

0 for solute segregation in -iron is shown in Figure 8. 

We can distinguish two branches of this dependence: they differ in the type of segregation site: the 

upper one corresponds to interstitial segregation (S0,CE = 56 J/(mol·K)) while the lower one to 

substitutional segregation (S0,CE = 5 J/(mol·K)) [1,4,5]. Individual full symbols of the same type 

correspond to the segregation of a solute at individual grain boundaries in -iron, empty symbols are 

data found in literature (for the sources of the data, see [1,5]). Let us note that various solutes 

segregating at the same type of the site also fit with a single dependence (i.e. with either upper or 

lower branch in Figure 8). The slope of both dependences corresponds to TCE = 930 K which suggests 

that the compensation temperature is characteristic for the matrix [1,5,28]. Splitting of the 

compensation effect into two branches confirms the fact that the compensation effect is only fulfilled if 

a single mechanism of the phenomenon is active. Therefore, it can be applied to otherwise independent 

standard quantities HI
0 and SI

0 albeit not to HI and SI which additionally change with temperature 

and composition. 
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Figure 8. Compensation effect in solute segregation at [100] symmetrical grain boundaries 

in -iron [1,4,5]. Upper branch corresponds to interstitial segregation, lower branches to 

substitutional one. 

 

Let us only briefly mention that Equations (27) and (32) with the above mentioned values of 
)(*,  CSSH  and S0,CE can be used to predict the values of HI

0 and SI
0 of any element at any grain 

boundary in -iron [1,4,5]. It is likely that such prediction may be done for other metallic solvents.  

We can also express the dependence of SI
0 on the volume solid solubility. Combination of 

Equations (27) and (32) provides us with: 
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

 (33)

where the notation site refers to the type of segregation, i.e., either interstitial or substitutional. Using 

the mentioned data, dependence (33) is shown in Figure 9. It is clearly seen that the majority of the 

experimental data corresponding to both individual grain boundaries (solid symbols) and to grain 

boundaries in polycrystals found in the literature (empty symbols) fit fairly well to the theoretical lines 

of individual branches (the upper line of each branch corresponds to special boundaries while the 

lower one to general boundaries). 

The compensation effect was observed not only in case of grain boundary and surface segregation 

but also for other interfacial properties, such as grain boundary migration and diffusion [5,26,27], and 

is present in many phenomena of physics, chemistry and biology [25].  

4.3. Segregation Volume and Pressure Dependence of Grain Boundary Segregation 

During time-dependent experimental studies of non-equilibrium segregation under constant stress, 

in the beginning a steep change of the grain boundary concentration is observed, followed by the 

return from an extreme value to a value almost corresponding to that measured without pressure or 

strain; see e.g. Figure 10 according to Reference [29]). 
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According to Equation (14) (where we use for simplicity X,sat = XGB,sat = 1, which is often applied in 
correlation of data on grain boundary segregation [1]), E

IV can be obtained from experimental data [29] 

on pressure/stress dependence of grain boundary segregation of solutes. According to our method [30] the 

peak-to-peak heights in original Auger spectra were transformed into concentrations supposing 

simplification of the alloy to a binary Fe–P system. This procedure provides us with the values of 

XP
GB = 0.303 representing the state under normal pressure and XP

GB = 0.308 for the state in the 
stressed sample after equilibration (Figure 10). According to Equation (14) we obtain E

PV  5.1 × 

106 m3/mol [13]. Similar value E
SV  5.5 × 106 m3/mol for sulphur was determined from the data 

of Misra [31] who studied grain boundary segregation of sulphur in a low-alloy steel (doped by 0.01 

wt.% S) under plastic stress conditions at 883 K by 343 MPa. However, no changes of XP
GB were 

observed after prolonged annealing of a phosphorus-doped 2.25Cr1Mo steel at 793 K under various 
loads [32] suggesting E

PV  = 0 and thus, ideal behavior of this system. 

Figure 9. Dependence of standard entropy of grain boundary segregation in -iron on the 

volume solid solubility term, (T lnXI
V,*)/TCE. Solid symbols refer to segregation at individual 

grain boundaries [4,5], empty symbols are literature data corresponding to measurements on 

polycrystals [1]. The dashed lines were calculated according to Equation (33). 

 

The value of E
IV can also be estimated in other ways. First, bulk

FeV   7.1 × 106 m3/mol if pure Fe is 

considered instead of the 2.6NiCrMoV steel [33]. As the average boundary density is of about 50% 

of the bulk density [33], GB
FeV 1.42 × 105 m3/mol. Based on the density of FeS (4.82 g/cm3 [34]), 

GB
SV  1.76 × 105 m3/mol if GB is regarded as a Fe-48 at.%S since the atomic fraction of S in 

2.6NiCrMoV is 48 at.% after stress-aging for 20 h [35]. Then bulk
SV  0.0002 × bulk

FeV   1.4 × 109 m3/mol, 

and E
SV  = 1.0 × 105 m3/mol. On the other hand, the values of E

SV  = 8.1 × 106 m3/mol,  
E

PV  = 3.0 × 106 m3/mol and E
SeV  = 3.0 × 106 m3/mol were calculated using the density 

functional theory technique for segregation of S, P and Se, respectively, at {012} grain boundary in  

Ni [36]. 
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Figure 10. Time dependence of grain boundary segregation of phosphorus in a 0.05 wt% 

P-doped low alloy steel at 773 K under tensile (▲) or compressive (●) stress of 30 MPa 

(according to Reference [29]). 

 

The value of E
IV  of the order of 106105 m3/mol may seem to be low. It suggests that the pressure 

dependence of GI and consequently of XI
GB is rather low: Even the value of E

IV  1 × 105 m3/mol 

under pressure/stress of 100 MPa causes a decrease of GI by 1 kJ/mol which represents a change of 

XI
GB in the order of several percent. This also explains why the equilibrium segregation under pressure 

only slightly differs from that under normal pressure [29] (see Figure 10).  
Let us now consider the effect of E

IV on XI
GB in more detail. Supposing the values HI

0 = 

30 kJ/mol and SI
0 = 25 J/(mol·K) (these values may represent e.g. phosphorus segregation in 

bcc iron [1]) and XI
V = 0.0001, the grain boundary concentration of the solute under normal pressure at 

temperature of 800 K is XI
GB(P = 0) = 0.1554 (i.e. 15.54 at.%). The pressure dependence of the 

calculated XI
GB is plotted in Figure 11 for the values of E

IV  ranging from 8 × 106 m3/mol to 0. It is 

obvious from Figure 11 that XI
GB starts to change when the pressure is higher than 10 MPa: under 

these higher pressures the increase of XI
GB becomes quite steep. We may conclude that although the 

effect of elastic deformation on grain boundary segregation is small the grain boundary segregation 

significantly changes with increasing pressure. At high hydrostatic pressures (P  10 GPa) this effect 

is rather large: In this case, the equilibrium grain boundary concentration should reach the values up to 

100 at.% (cf. Figure 11) [13]. However, during such treatment many other processes occur in the 

material, e.g. dynamic recrystallization, which will influence the final segregation level; in the present 

modeling these effects were not taken into account. 
Similarly to the basic thermodynamic state variables of segregation (HI

0 and SI
0; cf. Figure 6) 

we may expect that E
IV  will be anisotropic. Supposing HI

0 = 30 kJ/mol, SI
0 = 25 J/(mol·K) and 

E
IV  = 5  106 m3/mol, and HI

0 = 10 kJ/mol, SI
0 = 40 J/(mol·K) with E

IV  = 2  106 

m3/mol describe segregation of I at general and special grain boundary, respectively, the pressure 

dependence of XI
GB for both types of the grain boundaries at 800 K is shown in Figure 12 for XI

V = 

0.0001. As expected, the segregation level is lower at the special grain boundary compared to the 

general one. The concentration change at the special grain boundary requires higher pressure. 
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However, its increase may seem to be surprisingly steeper than in case of the general grain boundary. 

In both cases a complete saturation of the grain boundary is reached under ultimate pressures. 

Figure 11. Pressure dependence of XI
GB in a model M–I(0.01 at.%) alloy at 800 K for 

various values of E
IV  as indicated at the curves (in 106 m3/mol) [13]. 

 

Figure 12. Pressure dependence of XI
GB at special and general grain boundaries in a model 

M–I(0.01 at.%) alloy at 800 K. The values HI° = 30 kJ/mol, SI° = 25 J/(mol·K) and 
E

IV  = 5  106 m3/mol were used for general grain boundary, and HI° = 10 kJ/mol, 

SI° = 40 J/(mol·K) and E
IV  = 2  106 m3/mol for special grain boundary [13].  

 

The segregation volume E
IV  depends on various intensive variables. We will document it for 

example of XI
V and T. Differentiation of Equation (15) provides us with:  
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The first term at the right-hand side (in front of the brackets) is positive as well as the first (left) one in 

the brackets (supposing that less than half of the saturation limit is segregated) as XI
GB increases with 

increasing both pressure and XI
V. The sign of V

I
E

I XV   (i.e. slope of the concentration dependence 

of the segregation volume) will depend on the value of the term V
I

GB
I XPX 2 . Intuitively, we may 

expect the decrease of E
IV  (i.e. increase of its absolute value) with increasing XI

V (and thus with 

increasing XI
GB). For this case, V

I
GB
I XPX 2  should be positive and prevail over the first term in the 

brackets on the right hand side of Equation (34). In analogy to Equation (34), the dependence of E
IV  

on temperature is characterized by: 
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We may expect that (negative) value of E
IV  increases with increasing temperature and reaches the 

value 0 E
IV  at high temperatures (e.g. close to the melting point). To bring this expectation in 

accordance with Equation (35), the term in the complex brackets should be positive. As PX GB
I   is 

positive and TX GB
I   negative (segregation decreases with increasing temperature), the term in the 

edge brackets on the right-hand side of Equation (35) is negative. Therefore, TPX GB
I  2 on the 

right-hand side of Equation (35) must be negative and of higher absolute value than the other term in 

the complex brackets. Then   V
IXP

E
I TV ,/ > 0. 

Based on Equation (21) we may demonstrate the effect of pressure on the Fowler interaction 

coefficient, IM (cf. Equation (19)), as:  
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Supposing XGB,sat = 1 and XI
GB >> XI

V, we obtain: 
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The concentration dependences of the value of dIM/dP for various values of IM and E
IV  are 

shown in Figures 13 and 14. It is obvious that the value of the fraction on the right-hand side of 

Equations (36) and (37) is of the order of units in case of high grain boundary concentrations. It 

means that the value of dIM/dP is of the same order as E
IV , i.e. at the level of 106 m3/mol. This 

suggests that a change of IM by 1 kJ/mol results in an apparent change of GB
IX  when pressure or 

stress reaches values of the order of hundreds of MPa. The change of IM with pressure is more 



Entropy 2014, 16 1480 

 

 

pronounced for low grain boundary concentrations, however, the interaction in case of the dilute 

alloys can be neglected (cf. Equation (19)). It means that, usually, the pressure change of the 

interaction coefficient can be neglected.  

Figure 13. Concentration dependence of dIM/dP for various values of IM (in units of RT) 
in a binary M–I alloy for the value of E

IV  = 5 × 106 m3/mol. 

 

Figure 14. Concentration dependence of dIM/dP for various values of E
IV in a binary 

M–I alloy (in 106 m3/mol) for IM = 2RT. 
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5. Conclusions  

Application of basic thermodynamics to a field of material science with important practical 

consequences—interfacial segregation—is presented in detail. Based on the Langmuir–McLean 

segregation isotherm, individual modes of thermodynamic intensive variables—which are used to 

describe this phenomenon—are discussed from the point of view of their physical meaning together 

with their potential for application. To the best of our knowledge, the segregation volume is fully 

defined and discussed for the first time here. It is shown that the standard molar segregation volume is 

zero at any temperature according to the definition of the standard states while the partial molar excess 

segregation volume reaches non-zero values in real systems. It is concluded that the grain boundary 

segregation is not affected by pressure in ideal systems whereas the real systems exhibit apparent 

pressure dependence. The dependences of the standard molar enthalpy of segregation on the bulk solid 

solubility and the enthalpy–entropy compensation effect are displayed to enable formulation of a 

relationship between the standard molar entropy of grain boundary segregation and the volume bulk 

solid solubility. In addition, a fundamental relationship is derived between the segregation excess 

volume and pressure changes of the grain boundary concentration of the segregant, and various 

important consequences of the segregation volume are established.  
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