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Abstract:

 Conditional independence tests have received special attention lately in machine learning and computational intelligence related literature as an important indicator of the relationship among the variables used by their models. In the field of probabilistic graphical models, which includes Bayesian network models, conditional independence tests are especially important for the task of learning the probabilistic graphical model structure from data. In this paper, we propose the full Bayesian significance test for tests of conditional independence for discrete datasets. The full Bayesian significance test is a powerful Bayesian test for precise hypothesis, as an alternative to the frequentist’s significance tests (characterized by the calculation of the p-value).
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1. Introduction

Barlow and Pereira [1] discussed a graphical approach to conditional independence. A probabilistic influence diagram is a directed acyclic graph (DAG) that helps model statistical problems. The graph is composed of a set of nodes or vertices, which represent the variables, and a set of arcs joining the nodes, which represent the dependence relationships shared by these variables.

The construction of this model helps us understand the problem and gives a good representation of the interdependence of the implicated variables. The joint probability of these variables can be written as a product of their conditional distributions, based on their independence and conditional independence.

The interdependence of the variables [2] is sometimes unknown. In this case, the model structure must be learned from data. Algorithms, such as the IC-algorithm (inferred causation) described in Pearl and Verma [3], have been designed to uncover these structures from the data. This algorithm uses a series of conditional independence tests (CI tests) to remove and direct the arcs, connecting the variables in the model and returning a DAG that minimally (with the minimum number of parameters and without loss of information) represents the variables in the problem.

The problem of constructing the DAG structures based on the data motivates the proposal of new powerful statistical tests for the hypothesis of conditional independence, because the accuracy of the structures learned is directly affected by the errors committed by these tests. Recently proposed structure learning algorithms [4–6] indicate that the results of CI tests are the main source of errors.

In this paper, we propose the full Bayesian significance test (FBST) as a test of conditional independence for discrete datasets. FBST is a powerful Bayesian test for a precise hypothesis and can be used to learn the DAG structures based on the data as an alternative to the CI tests currently in use, such as Pearson’s chi-squared test.

This paper is organized as follows. In Section 2, we review the FBST. In Section 3, we review the FBST for the composite hypothesis. Section 4 gives an example of testing for conditional independence that can be used to construct a simple model with three variables.



2. The Full Bayesian Significance Test

The full Bayesian significance test was presented by Pereira and Stern [7] as a coherent Bayesian significance test for sharp hypotheses. In the FBST, the evidence for a precise hypothesis is computed.

This evidence is given by the complement of the probability of a credible set, called the tangent set, which is a subset of the parameter space in which the posterior density of each of the elements is greater than the maximum of the posterior density over the null hypothesis. This evidence is called the e-value, ev(H), and has many desirable properties as a statistical support. For example, Borges and Stern [8] described the following properties:


	(1)

	provides a measure of significance for the hypothesis as a probability defined directly in the original parameter space.



	(2)

	provides a smooth measure of the significance, both continuous and differentiable, of the hypothesis parameters.



	(3)

	has an invariant geometric definition, independent of the particular parameterization of the null hypothesis being tested or the particular coordinate system chosen for the parameter space.



	(4)

	obeys the likelihood principle.



	(5)

	requires no ad hoc artifice, such as an arbitrary initial belief ratio between hypotheses.



	(6)

	is a possibilistic support function, where the support of a logical disjunction is the maximum support among the support of the disjuncts.



	(7)

	provides a consistent test for a given sharp hypothesis.



	(8)

	provides compositionality operations in complex models.



	(9)

	is an exact procedure, making no use of asymptotic approximations when computing the e-value.



	(10)

	allows the incorporation of previous experience or expert opinions via prior distributions.





Furthermore, FBST is an exact test, whereas tests, such as the one presented in Geenens and Simar [9], are asymptotically correct. Therefore, the authors consider that a direct comparison between FBST and such test is not relevant in the context of this paper; considering, as future research, the comparison using small samples, in which case, FBST is still valid.

A more formal definition is given below.

Consider a model in a statistical space described by the triple, (Ξ, Δ, Θ), where Ξ is the sample space, Δ, the family of measurable subsets of Ξ and Θ the parameter space (Θ is a subset of ℜn).

Define a subset of the parameter space, Tφ (tangent set), where the posterior density (denoted by fx) of each element of this set is greater than φ.



[image: there is no content]



(1)




The credibility of Tφ is given by its posterior probability,



[image: Entropy 16 01376e1]



(2)




where  [image: Entropy 16 01376f8] (θ) is the indicator function.



[image: Entropy 16 01376e2]








Defining the maximum of the posterior density over the null hypothesis as [image: there is no content], with the maximum point at [image: there is no content],



[image: there is no content]



(3)




and defining [image: there is no content] as the tangent set to the null hypothesis, H0, the credibility of T* is κ*.

The measure of the evidence for the null hypothesis (called the e-value), which is the complement of the probability of the set T*, is defined as follows:



[image: Entropy 16 01376e3]



(4)




If the probability of the set, T*, is large, the null set falls within a region of low probability, and the evidence is against the null hypothesis, H0. However, if the probability of T* is small, then the null set is in a region of high probability, and the evidence supports the null hypothesis.


2.1. FBST: Example of Tangent Set

Figure 1 shows the tangent set for a null hypothesis H0 : μ = 1, for the posterior distribution, fx, given bellow, where μ is the mean of a normal distribution and τ is the precision (the inverse of the variance [image: there is no content]):

Figure 1. Example of a tangent set for the null hypothesis, H0 : μ = 1.0. In (a) and (b), the posterior distribution, fx, is shown, with the red line representing the points in the null hypothesis (μ = 1). In (c), the contours of fx show that the points of maximum density in the null hypothesis, [image: there is no content], have a density of [image: there is no content]. The tangent set, T*, of the null hypothesis, H0, is the set of points inside the green contour line (points with a density greater than f*), and the e-value of H0 is the complement of the integral of fx, as bounded by the green contour line.



[image: Entropy 16 01376f1 1024]







[image: there is no content]



(5)







3. FBST: Compositionality

The relationship between the credibility of a complex hypothesis, H, and its elementary constituent, Hj, j = 1, . . . , k, under the full Bayesian significance test, was analyzed by Borges and Stern [8].

For a given set of independent parameters, (θ1, . . . , θk) ∈ (Θ1 × . . . × Θk), a complex hypothesis, H, can be given as follows:



[image: there is no content]



(6)




where [image: there is no content] is a subset of the parameter space, Θj, for j = 1, . . . , k and is constrained to the hypothesis, H, which can be decomposed into its elementary components (hypotheses):



[image: there is no content]








The credibility of H can be evaluated based on the credibility of these components. The evidence in favor of the complex hypothesis, H (measured by its e-value), cannot be obtained directly from the evidence in favor of the elementary components; instead, it must be based on their truth function, Wj (or cumulative surprise distribution), as defined below. For a given elementary component (Hj) of the complex hypothesis, H, [image: there is no content] is the point of maximum density of the posterior distribution (fx) that is constrained to the subset of the parameter space defined by hypothesis Hj:



[image: there is no content]



(7)




The truth function, Wj, is the probability of the parameter subspace (region Rj(v) of the parameter space defined below), where the posterior density is lower than or equal to the value, v:



[image: there is no content]



(8)




The evidence supporting the hypothesis, Hj, is given as follows:



[image: there is no content]



(9)




The evidence supporting the complex hypothesis can be then described in terms of the truth function of its components as follows.

Given two independent variables, X and Y, if Z = XY, with cumulative distribution functions FZ(z), FX(x) and FY(y), then:



[image: there is no content]



(10)




Accordingly, we define a functional product for cumulative distribution functions, namely,



[image: there is no content]



(11)




The same result concerning the product of non-negative random variables can be expressed by the Mellin convolution of the probability density functions, as demonstrated by Kaplan and Lin [10], Springer [11] and Williamson [12].



[image: there is no content]



(12)




The evidence supporting the complex hypothesis can be then described as the Mellin convolution of the truth function of its components:



[image: there is no content]



(13)




The Mellin convolution of two truth functions, W1 ⊗ W2, is the distribution function; see Borges and Stern [8]:



[image: there is no content]



(14)




The Mellin convolution W1 ⊗ W2 gives the distribution function of the product of two independent random variables, with distribution functions W1 and W2; see Kaplan and Lin [13] and Williamson [12]. Furthermore, the commutative and associative properties follow immediately for the Mellin convolution,



[image: there is no content]



(15)





3.1. Mellin Convolution: Example

An example of a Mellin convolution to find the product of two random variables, Y1 and Y2, both of which have a Log-normal distribution, is given below.

Assume Y1 and Y2 to be continuous random variables, such that:



[image: there is no content]



(16)




We denote the cumulative distributions of Y1 and Y2 by W1 and W2, respectively, i.e.,



[image: there is no content]



(17)




where fY1 and fY2 are the density functions of Y1 and Y2, respectively. These distributions can be written as a function of two normally distributed random variables, X1 and X2:



[image: there is no content]



(18)




We can confirm that the distribution of the product of these random variables (Y1 · Y2) is also Log-normal, using simple arithmetic operations:



[image: there is no content]



(19)




The cumulative density function of Y1 · Y2 (W12(y12)) is defined as follows:



[image: there is no content]



(20)




where fY1·Y2 is the density function of Y1 · Y2.

In the next section, we show different numerical methods for use in the convolution and condensation procedures, and we apply the results of these procedures to the example given here.



3.2. Numerical Methods for Convolution and Condensation

Williamson and Downs [14] developed the idea of probabilistic arithmetics. They investigated numerical procedures that allow for the computation of a distribution using arithmetic operations on random variables by replacing basic arithmetic operations on numbers with arithmetic operations on random variables. They demonstrated numerical methods for calculating the convolution of probability distributions for a set of random variables.

The convolution for the multiplication of two random variables, X1 and X2 (Z = X1 · X2), can be written using their respective cumulative distribution functions, FX1 and FY2:



[image: there is no content]



(21)




The algorithm for the numerical calculation of the distribution of the product of two independent random variables (Y1 and Y2), using their discretized marginal probability distributions (fY1 and fY2) is shown in Algorithm 1 (an algorithm for a discretization procedure is given by Williamson and Downs [14]). The description of Algorithm 1 is given below.

Algorithm 1. Find the distribution of the product of two random variables.







	1:
	procedure Convolution(Y1, Y2, fY1, fY2)
	▹ Discrete pdf of Y1 and Y2



	2:
	 f ← array(0, size ← n2)
	▹ f and W has n2 bins



	3:
	 W ← array(0, size ← n2)
	



	4:
	 y1y2 ← array(0, size ← n2)
	▹ keep Y1 * Y2



	5:
	 for i ← 1, n do
	▹ f1 and f2 have n bins



	6:
	  for j ← 1, n do
	



	7:
	   f [(i − 1) · n + j] ← fY1 [i] · fY2 [j]
	



	8:
	   y1y2[(i − 1) · n + j] ← Y1[i] * Y2[j]
	



	9:
	  end for
	



	10:
	 end for
	



	11:
	 sortedIdx ← order(y1y2)
	▹ find order of Y1 * Y2



	12:
	 f ← f [sortedIdx]
	▹ sort f according to Y1 * Y2



	13:
	 W [1] ← f [1]
	



	14:
	 for i ← k, n2do
	▹ find cdf of Y1 · Y2



	15:
	  W [k] ← f [k]
	



	16:
	  W [k] ← W [k] +W [k − 1]
	



	17:
	 end for
	



	18:
	 return W
	▹ Discrete cdf of Y1 · Y2



	19:
	end procedure
	









	(1)

	The algorithm has as inputs two discrete variables, Y1 and Y2, as well as their respective probabilistic density functions (pdf): fY1 and fY2.



	(2)

	The algorithm finds the products (Y1 · Y2 and fY1 · fY2), resulting in N2 bins, if fY1 and fY2 each have N bins.



	(3)

	The values of Y1 · Y2 are sorted in increasing order.



	(4)

	The values of fY1 · fY2 are sorted according to the order of Y1 · Y2.



	(5)

	The cumulative density function (cdf) of the product Y1 · Y2 is found (it has N2 bins).





The numerical convolution of the two distributions with N bins, as described above, returns a distribution with N2 bins. For a sequence of operations, such a large number of bins would be a problem, because the result of each operation would be larger than the input for the operations. Therefore, the authors have proposed a simple method for reducing the size of the output to N bins without introducing further error into the result. This operation is called condensation and returns the upper and lower bounds of each of the N bins for the distribution resulting from the convolution. The algorithm for the condensation process is shown in Algorithm 2. The description of Algorithm 2 is given below.

Algorithm 2. Find the upper lower bound for a cdf for condensation.







	1:
	procedure HorizontalCondensation(W)
	▹ Histogram of a cdf with n2 bins



	2:
	 Wl ← array(0, size ← n)
	



	3:
	 Wu ← array(0, size ← n)
	



	4:
	 for i ← 1, n do
	



	5:
	  Wl [i] ← W [(i − 1) · n + 1]
	▹ lower bound after condensation



	6:
	  Wu [i] ← W [i · n]
	▹ upper bound after condensation



	7:
	 end for
	



	8:
	 return [Wl,Wu]
	▹ Histograms with upper/lower bounds



	9:
	end procedure
	









	(1)

	The algorithm has as input a cdf with N2 bins.



	(2)

	For each group of N bins (there are N groups of N bins), the value of the cdf at the first bin is taken as the lower bound, and the value of the cdf at the last bin is taken as the upper bound.



	(3)

	The algorithm returns a cdf with N bins, where each bin has a lower and an upper bound.












3.2.1. Vertical Condensation

Kaplan and Lin [13] proposed a vertical condensation procedure for discrete probability calculations, where the condensation is done using the vertical axis, instead of the horizontal axis, as used by Williamson and Downs [14].

The advantage of this approach is that it provides greater control over the representation of the distribution; instead of selecting an interval of the domain of the cumulative distribution function (values assumed by the random variable) as a bin, we select the interval from the range of the cumulative distribution in [0, 1], which should be represented by each bin.

In this case, it is also possible to focus on a specific region of the distribution. For example, if there is a greater interest in the behavior of the tail of the distribution, the size of the bins can be reduced in this region, consequently increasing the number of bins necessary to represent the tail of the distribution.

An example of such a convolution that is followed by a condensation procedure using both approaches is given in Section 3.1. For this example, we used discretization and condensation procedures, with the bins uniformly distributed over both axes. At the end of the condensation procedure, using the first approach, the bins are uniformly distributed horizontally (over the sample space of the variable). For the second approach, the bins of the cumulative probability distribution are uniformly distributed over the vertical axis on the interval [0, 1]. Algorithm 3 shows the condensation with the bins uniformly distributed over the vertical axis.

Algorithm 3. Condensation with the bins vertically uniformly distributed.







	1:
	procedure VerticalCondensation(W,f,x)
	▹ Histograms of a cdf and pdf, and breaks in the x-axis.



	2:
	 breaks ← [1/n, 2/n, ..., 1]
	▹ uniform breaks in y-axis



	3:
	 Wn ← array (0, size ← n]
	



	4:
	 xn ← array (0, size ← n]
	



	5:
	 lastbreak ← 1
	



	6:
	 i ← 1
	



	7:
	 for all b ∈ breaks do
	



	8:
	  w ← first(W ≥ b)
	▹ find break to create current bin



	9:
	  if W [w] ≠ b then
	▹ if the break is within a current bin



	10:
	   ratio ← (b − W [w − 1])/(W [w] − W [w − 1])
	



	11:
	    [image: there is no content]
	



	12:
	   W [i − 1] ← b
	



	13:
	   Wn [i] ← b
	



	14:
	   f [i − 1] ← f [w − 1] + ratio · f [w]
	



	15:
	   f [i] ← (1 − ratio) · f [w]
	



	16:
	  else
	



	17:
	   xn [i] ← x [w]
	



	18:
	   Wn [i] ← W [w]
	



	19:
	  end if
	



	20:
	  lastbreak ← b
	



	21:
	  i ← i + 1
	



	22:
	 end for
	



	23:
	 return [Wn, xn]
	▹ Histograms with upper/lower bounds



	24:
	end procedure
	








Figure 2 shows the cumulative distribution functions of Y1 and Y2 (Section 3.1) after they have been discretized with bins uniformly distributed over both the x- and y-axes (horizontal and vertical discretizations). Figure 3 shows an example of convolution followed by condensation (based on the example in Section 3.1), using both the horizontal and vertical condensation procedures and the true distribution of the product of two variables with Log-normal distributions.

Figure 2. Example of different discretization methods for the representation of the cdf of two random variables (Y1 and Y2) with Log-normal distributions. In (a) and (c), respectively, the cdf of Y1 and Y2 are shown, with the bins uniformly distributed over the x-axis. In (b) and (d), respectively, the cdf of Y1 and Y2 are shown, with the bins uniformly distributed over the y-axis.



[image: Entropy 16 01376f2 1024]





Figure 3. Example of the convolution of two random variables (Y1 and Y2) with Log-normal distributions. The result of the convolution Y1 ⊗ Y2, followed by horizontal condensation (bins uniformly distributed over the x-axis), is shown in (a), and the result of vertical condensation (bins uniformly distributed over the y-axis) is shown in (b). The true distribution of the product Y1 · Y2 is shown in (c) and (d), respectively, for the horizontal and vertical discretization procedures.



[image: Entropy 16 01376f3 1024]









4. Test of Conditional Independence in Contingency Table Using FBST

We now apply the methods shown in the previous sections to find evidence of a complex null hypothesis of conditional independence for discrete variables.

Given the discrete random variables, X, Y and Z, with X taking values on {1, . . . , k} and Y and Z serving as categorical variables, the test for conditional independence Y ⫫ Z|X can be written as the complex null hypothesis, H:



[image: there is no content]



(22)




The hypothesis, H, can be decomposed into its elementary components:



[image: there is no content]








Note that the hypotheses, H1, . . . , Hk, are independent. For each value, x, taken by X, the values taken by variables Y and Z are assumed to be random observations drawn from some distribution p(Y,Z|X = x). Each of the elementary components is a hypothesis of independence in a contingency table. Table 1 shows the contingency table for Y and Z, which take values on {1, . . . , r} and {1, . . . , c}, respectively.

Table 1. Contingency table of Y and Z for X = x (hypothesis Hx); nyzx is the count of [Y,Z] = [y, z] when X = x.









	
	Z = 1
	Z = 2
	···
	Z = c





	Y = 1
	n11x
	n12x
	···
	n1cx



	Y = 2
	n21x
	n22x
	···
	n2cx



	···
	···
	···
	···
	···



	Y =r
	nr1x
	nr2x
	···
	nrcx








The test of the hypothesis, Hx, can be set up using the multinomial distribution for the cell counts of the contingency table and its natural conjugate prior, i.e., the Dirichlet distribution for the vector of the parameters θx = [θ11x, θ12x, . . . , θrcx].

For a given array of hyperparameters αx = [α11x, . . . , αrcx], the Dirichlet distribution is defined as:



[image: there is no content]



(23)




The multinomial likelihood for the given contingency table, assuming the array of observations nx = [n11x, . . . , nrcx] and the sum of the observations [image: there is no content], is:



[image: there is no content]



(24)




The posterior distribution is thus a Dirichlet distribution, fn(θx):



[image: there is no content]



(25)




Under hypothesis Hx, we have Y ⫫ Z|X = x. In this case, the joint distribution is equal to the product of the marginals: p (Y = y, Z = z|X = x) = p (Y = y|X = x) p (Z = z|X = x). We can define this condition using the array of parameters, θx. In this case, we have:



[image: there is no content]



(26)




where [image: there is no content] and [image: there is no content].

The elementary components of hypothesis H are as follows:



[image: there is no content]



(27)




The point of maximum density of the posterior distribution that is constrained to the subset of the parameter space defined by hypothesis Hx can be estimated using the maximum a posteriori (MAP) estimator under hypothesis Hx (the mode of parameters, θx). The maximum density ( [image: there is no content]) is the posterior density evaluated at this point.



[image: there is no content]



(28)




where [image: there is no content].

The evidence supporting Hx can be written in terms of the truth function, Wx, as defined in Section 3:



[image: there is no content]



(29)




The evidence supporting Hx is:



[image: there is no content]



(30)




Finally, the evidence supporting the hypothesis of conditional independence (H) is given by the convolution of the truth functions that are evaluated at the product of the points of maximum posterior density, for each component of hypothesis H:



[image: there is no content]



(31)




The e-value for hypothesis H can be found using modern mathematical integration methods. An example is given in the next section, using the numerical convolution, followed by the condensation procedures described in Section 3.2. Applying the horizontal condensation method results in an interval for the e-value (found using the lower and upper bounds resulting from the condensation process) and in a single value for the vertical procedure.


4.1. Example of CI Test Using FBST

In this section, we describe an example of the CI test using the full Bayesian significance test for conditional independence using samples from two different models. For both models, we test whether the variable, Y, is conditionally independent of Z given X.

Two probabilistic graphical models (M1 and M2) are shown in Figure 4, where the three variables, X, Y and Z, assume values in {1, 2, 3}. In the first model (Figure 4a), the hypothesis of independence H : Y ⫫ Z|X is true, but in the second model (Figure 4b), the same hypothesis is false. The synthetic conditional probability distribution tables (CPTs) used to generate the samples are given in Appendix.

Figure 4. Simple probabilistic graphical models. (a) Model M1, where Y is conditionally independent of Z given X; (b) Model M2, where Y is not conditionally independent of Z given X.



[image: Entropy 16 01376f4 1024]





We calculate the intervals for the e-values and compare them, for hypothesis H of conditional independence, for both models: EvM1 (H) and EvM2 (H). The complexity hypothesis, H, can be decomposed into its elementary components:



[image: there is no content]








For each model, 5000 observations were generated; the contingency table of Y and Z for each value of X is shown in Table 2. The hyperparameters of the prior distribution were all set to one, because, in this case, the prior is equivalent to a uniform distribution (from Equation (23)):


Table 2. Contingency tables of Y and Z for a given value of X for 5000 random samples. (a,c,e): samples from Model M1 (Figure 4a) for X = 1, 2, and 3, respectively; (b,d,f): samples from Model M2 (Figure 4b) for X = 1, 2, and 3, respectively.



	
(a) Model M1 (for X = 1)




	






	

	
Z = 1

	
Z = 2

	
Z = 3

	






	
Y = 1

	
241

	
187

	
44

	
472




	
Y = 2

	
139

	
130

	
30

	
299




	
Y = 3

	
364

	
302

	
70

	
736




	






	

	
744

	
619

	
144

	
1,507









	
(b) Model M2 (for X = 1)




	






	

	
Z = 1

	
Z = 2

	
Z = 3

	






	
Y = 1

	
228

	
179

	
39

	
446




	
Y = 2

	
25

	
33

	
211

	
269




	
Y = 3

	
482

	
75

	
208

	
765




	






	

	
735

	
287

	
458

	
1,048









	
(c) Model M1 (for X = 2)




	






	

	
Z = 1

	
Z = 2

	
Z = 3

	






	
Y = 1

	
42

	
41

	
323

	
406




	
Y = 2

	
39

	
41

	
341

	
421




	
Y = 3

	
15

	
21

	
171

	
207




	






	

	
96

	
103

	
835

	
1,034









	
(d) Model M2 (for X = 2)




	






	

	
Z = 1

	
Z = 2

	
Z = 3

	






	
Y = 1

	
77

	
85

	
248

	
410




	
Y = 2

	
165

	
135

	
120

	
420




	
Y = 3

	
188

	
21

	
24

	
233




	






	

	
430

	
241

	
392

	
1,036









	
(e) Model M1 (for X = 3)




	






	

	
Z = 1

	
Z = 2

	
Z = 3

	






	
Y = 1

	
282

	
35

	
151

	
468




	
Y = 2

	
131

	
37

	
79

	
247




	
Y = 3

	
1,055

	
143

	
546

	
1,744




	






	

	
1,468

	
215

	
776

	
2,459









	
(f) Model M2 (for X = 3)




	






	

	
Z = 1

	
Z = 2

	
Z = 3

	






	
Y = 1

	
40

	
87

	
354

	
481




	
Y = 2

	
119

	
104

	
27

	
250




	
Y = 3

	
305

	
1,049

	
372

	
1,726




	






	

	
464

	
1,240

	
753

	
2,457











[image: there is no content]



(32)




The posterior distribution, found using Equations (24) and (25), is then given as follows:



[image: there is no content]



(33)




For example, for the given contingency table for Model M1, when X = 2 (Table 2c), the posterior distribution is the following:



[image: there is no content]



(34)




The point of highest density, in this example, following the hypothesis of independence (Equations (26) and (28)), was found to be the following:



[image: there is no content]



(35)




The truth function and the evidence supporting the hypothesis of independence given X = 2 (hypothesis H2) for Model M1, as given in Equations (29) and (30), are as follows:



[image: there is no content]



(36)




We used the methods of numerical integration to find the e-value of the elementary components of hypothesis H (H1,H2 and H3), and the results for each model are given below.

E-values found using horizontal discretization:



[image: there is no content]








E-values found using vertical discretization:



[image: there is no content]








Figure 5 shows the histogram of the truth functions, W1, W2 and W3, for the model, M1 (Y and Z are conditionally independent, given X). In Figure 5a,c,e, 100 bins are uniformly distributed over the x-axis (using the empirical values of min fn(θx) and max fn(θx)). In Figure 5b,d,f, 100 bins are uniformly distributed over the y-axis (each bin represents an increase in 1% in density from the previous bin). The function, Wx, evaluated at the maximum posterior density over the respective hypothesis, [image: there is no content], in red, corresponds to the e-values found (e.g., [image: there is no content], for the horizontal discretization in Figure 5e).

Figure 5. Histogram with 100 bins for the truth functions of the model, M1 (Figure 4a for each value of X. (a) W1 for Model M1, [image: there is no content] in red; (b) W1 for Model M1, [image: there is no content] in red; (c) W2, for Model M1, [image: there is no content] in red; (d) W2, for Model M1, [image: there is no content] in red; (e) W3, for Model M1, [image: there is no content] in red; (f) W3, for Model M1, [image: there is no content] in red. In red is the maximum posterior density under the respective elementary component (H1, H2 and H3) of the hypothesis of conditional independence H for both horizontal and vertical discretization procedures.



[image: Entropy 16 01376f5 1024]





The evidence supporting the hypothesis of the conditional independence H, as in Equation (31), for each model is as follows:



[image: there is no content]



(37)




The convolution follows the commutative property, and the order of the convolutions is therefore irrelevant.



[image: there is no content]



(38)




Using the algorithm for numerical convolution described in Algorithm 1, we found the convolution of the truth functions, W1 and W2, resulting in a cumulative function (W12) with 10, 000 bins (1002 bins). We then performed the condensation procedures described in Algorithms 2 and 3 and reduced the cumulative distribution to 100 bins, with lower and upper bounds ( [image: there is no content] and [image: there is no content]) for the horizontal condensation. The results are shown in Figure 6a,b for Model M1 (horizontal and vertical condensations, respectively) and in Figure 7a,b for Model M2.

Figure 6. Histogram with 100 bins resulting from the convolutions for Model M1: (a) W1 ⊗ W2 with horizontal discretization; (b) W1 ⊗ W2 with vertical discretization; (c) W1 ⊗W2⊗W3 with horizontal discretization; (d) W1⊗W2⊗W3 with vertical discretization. In red in (c) and (d) is the bin representing the product of the maximum posterior density under the elementary components (H1, H2 and H3) of the hypothesis of the conditional independence H for model M1.
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Figure 7. Histogram with 100 bins resulting from the convolutions for model M2: (a) W1 ⊗ W2 with horizontal discretization; (b) W1⊗W2 with vertical discretization; (c) W1⊗W2⊗W3 with horizontal discretization; (d) W1 ⊗ W2 ⊗ W3 with vertical discretization. In red in (c) and (d) is the bin representing the product of the maximum posterior density under the elementary components (H1, H2 and H3) of the hypothesis of conditional independence, H, for model M2.
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The convolution of W12 and W3 was followed by their condensation. The results are shown in Figure 6c,d (Model M1) and Figure 7c,d (Model M2).

The e-values supporting the hypothesis of conditional independence for both models are given below.

The intervals for the e-values were found using horizontal discretization and condensation, as follows:



[image: there is no content]








The e-values found using vertical discretization and condensation were as follows:



[image: there is no content]








These results show strong evidence supporting the hypothesis of conditional independence between Y and Z, given X, for Model M1 (using both discretization/condensation procedures). No evidence supporting the same hypothesis for the second model was found. This result is very relevant and promising as a motivation for further studies on the use of FBST as a CI test for the structural learning of graphical models.




5. Conclusions and Future Work

This paper provides a framework for performing tests of conditional independence for discrete datasets using the Full Bayesian Significance Test. A simple application of this test includes examining the structure of a directed acyclic graph given two different models. The result found in this paper suggests that FBST should be considered a good alternative to performing CI tests to uncover the structures of probabilistic graphical models from data.

Future research should include the use of FBST in algorithms to learn the structures of graphs with larger numbers of variables; to increase the capacity for performing these mathematical methods to calculate e-values (because learning DAG structures from data requires an exponential number of CI tests to be performed, each CI test needs to be performed faster); and to empirically evaluate the threshold for e-values to define conditional independence versus dependence. The last of these areas of future exploration should be achieved by minimizing the linear combination of type I and II errors (incorrect rejection of a true hypothesis of conditional independence and failure to reject a false hypothesis of conditional independence).
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