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Instituto Superior Técnico, Unversidade de Lisboa, IN+, Av. Rovisco Pais 1, 1049-001 Lisboa,
Portugal; E-Mail: joao.rodrigues@tecnico.ulisboa.pt; Tel.: +351-21-8417374

Received: 16 January 2014; in revised form: 12 February 2014 / Accepted: 17 February 2014 /
Published: 26 February 2014

Abstract: This paper addresses the problem of balancing statistical economic data,
when data structure is arbitrary and both uncertainty estimates and a ranking of data
quality are available. Using a Bayesian approach, the prior configuration is described
as a multivariate random vector and the balanced posterior is obtained by application of
relative entropy minimization. The paper shows that conventional data balancing methods,
such as generalized least squares, weighted least squares and biproportional methods are
particular cases of the general method described here. As a consequence, it is possible to
determine the underlying assumptions and range of application of each traditional method.
In particular, the popular biproportional method is found to assume that all source data has
the same relative uncertainty. Finally, this paper proposes a simple linear iterative method
that generalizes the biproportional method to the data balancing problem with arbitrary data
structure, uncertainty estimates and multiple data quality levels.
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1. Introduction

In the compilation of statistical economic data, such as a census-based Input-Output (IO) table or a
social-accounting matrix (SAM), it is often the case that the data is not balanced, i.e., row and column
sums do not add up [1]. Furthermore, data balancing is important in practical applications such as
updating or regionalizing IO tables, or decomposing proximate causes of economic change [2–4]. So as
more countries develop IO tables with greater regularity and regional SAMs for computable general
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equilibrium (CGE) modeling are used more, the use of balancing techniques will undoubtedly rise
as well.

As Lahr and de Mesnard [5] note, many alternative formulations do exist that can perform a table
balancing. Empirical work demonstrating the merits and costs of the various approaches are not always
convincing. Indeed, because no theory of optimal IO data processing exists, there is no way to figure out
a priori which particular technique will work best under particular circumstances.

In this paper I intend to develop a theory for balancing elements in input-output tables based on
the theory of Bayesian inference of Jaynes [6]. This approach has appeal because it is based on first
principles and does not rely on ad-hoc reasoning. Using it I am therefore able to prove which numerical
algorithm is best suited for a given set of uncertainty parameters in a set of IO accounts.

The present paper addresses the problem of IO data balancing under the following conditions:

• The constraints are not necessarily biproportional but can take arbitrary structure.

• There is some degree of uncertainty affiliated with the values of IO elements.

• The IO elements may come from different sources with differing degrees of data quality.

In the classical biproportional or RAS problem [5,7] the intermediate inputs in a matrix are adjusted
while row and column sums are fixed. When arbitrary structure is considered, every element in the data
set may be constrained to be the sum of a subset of all other elements in the data set.

Data uncertainty is an estimate of the empirical error associated with each numerical datum. In
contrast to biproportional balancing methods [5] and their variants [8], in this paper it is considered that
every datum is characterized both by a best guess and by an uncertainty estimate. Some optimization
methods [9], such as least-squares methods [10], allow the use of uncertainty information during
balancing but provide no general rule to determine uncertainty when that information is initially absent.

Finally, data balancing problems frequently involve the combination of data from several sources
with potentially different degrees of quality. For example, in the classical table update problem [5], there
is an initial estimate from the previous year for interior points (low quality data) and row and column
sums for the present year (high quality data). In practice the data update problem combines data from
multiple sources and differing degrees of trustworthiness [11–13]. The present paper deals with the
general problem of combining data with differing degrees of quality (e.g., data from national statistical
offices, from international organizations, survey data, etc.).

Currently, there is no data balancing method that addresses all of these issues, even though all of them
arise in the compilation of multi-regional IO models. In this paper, this problem is solved using concepts
and techniques of Bayesian inference [6].

Conventional methods address the balancing problem by imposing constraints on data interpreted
as real numbers. In contrast, in a Bayesian framework, data are interpreted as random variables, and
constraints are imposed on their first and second moments (best guess and uncertainty). Application of
relative entropy minimization leads to an analytical solution.

Unfortunately, the analytical solution is impractical, so a series of numerical approximations is
derived, whose validity depends on the amount of uncertainty information initially available. After this
derivation conventional data balancing methods are reviewed and a one-to-one correspondence between
the conventional methods and the numerical approximations is identified.
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The existence of a one-to-one correspondence between Bayesian and conventional methods means
that it is possible to identify the underlying assumptions of conventional methods. In particular, the
popular RAS method assumes all data to have the same relative uncertainty.

Therefore, the Bayesian linear algorithm (recommended for most practical applications) turns out
to be a generalization of the classical RAS method to the situation of arbitrary structure, uncertainty
information and data quality hierarchy.

The paper proceeds as follows. Section 2 derives the general solution and numerical simplifications
of the Bayesian data balancing method. Section 3 reviews conventional methods and compares them to
the Bayesian methods. Section 4 concludes and the Appendix A reports auxiliary material.

2. Bayesian Methods

2.1. Problem Formulation

This paper addresses the problem of balancing an IO table with arbitrary structure, uncertainty
estimates and multiple data sources. These three properties are modeled as follows.

An arbitrary structure is formalized by considering that the IO data is arranged in a vector t of length
nT and is subject to nK accounting identities of the form:

0 =

nT∑
j=1

Gijtj + ki, (1)

where ki is a numerical constraint and each Gij can take values −1, 0 or 1. The accounting identities
can be arranged in a constraint vector k and a concordance matrix G, such that:

0 = Gt + k, (2)

where 0 is a vector of zeros and t is the balanced posterior. The starting point for the balancing procedure
is the unbalanced prior, θ for which:

0 6= Gθ + k. (3)

In a nutshell, the data balancing problem with arbitrary structure is as follows: initially there is
knlowledge of G, k and θ, satisfying Equation (3) and the goal is to determine the t which satisfies
Equation (2) and satisfies some additional properties.

For the purpose of this paper it is considered that every entry of the data vector is positive.
Appendix A.1 shows how to deal with negatives and zeros in the original IO table.

To illustrate the construction of the concordance matrix and constraint vector, consider the case of a
2× 2 matrix Z, with known row and column sums, Ze = xR and Z′e = xC, where the row and column
sums are xR and xC, and e is a vector of ones. This problem is formulated with nT = 4 numerical data
and nK = 4 accounting identities, as:

G =


1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

 ; t =


Z11

Z12

Z11

Z22

 ; k =


xR1
xR2
xC1
xC2

 . (4)
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The system described by Equation (4) is the conventional RAS problem.
The handling of uncertainty estimates requires the formalization of the stochastic properties of the IO

data. Following Weise and Woger [14], who apply concepts of Bayesian inference [6] to the problem of
measurement errors, in this paper it is considered that each IO datum is subject to empirical measurement
errors and is therefore described by a random variable.

Thus, the prior θ is characterized by a probability distribution π(q), which expresses the degree of
belief that the inaccurately known prior takes realization q. The prior best guess or expectation vector
is µ, the prior uncertainty or standard-deviation vector is σ, and the prior correlation matrix is P. The
posterior t is in turn characterized by a probability distribution p(q), the posterior best guess vector is
m, the posterior uncertainty vector is s and the posterior correlation matrix is R. The prior and posterior
covariance matrices are, respectively, Σ = σ̂Pσ̂ and S = ŝRŝ, whereˆdenotes diagonal matrix.

This paper considers that the probability distribution, best guess, uncertainty and correlations of
the prior are known. The best guess, mi, and uncertainty, si, of a numerical datum are referred
to as observables, to distinguish them from the corresponding parameters of the truncated Gaussian
distribution, m̃i and s̃i, that will appear in Section 2.2.

Finally, the problem of combining different data sources is formalized with the concept of data
quality. That is, this paper considers that besides quantitative uncertainty information the source data is
also characterized by a qualitative ranking, h, which indicates how trustworthy that data point is relative
to others.

The ranking of data quality is used to solve the problem of conflicting constraints. Essentially, the
present paper suggests that data of lower quality should be balanced while keeping data of higher quality
fixed as constraints. But if a balanced solution cannot be found, then the “constraints” become adjustable.

To illustrate this concept, consider the RAS problem described in Equation (4). In this case the
entries of the Z matrix are of lower quality than the row and column sums. Thus, the general problem,
taking into account data quality can be formulated with nT = 8 numerical data and nK = 4 accounting
identities, as:

G =


1 1 0 0 −1 0 0 0

0 0 1 1 0 −1 0 0

1 0 1 0 0 0 −1 0

0 1 0 1 0 0 0 −1

 ; t =



Z11

Z12

Z11

Z22

xR1
xR2
xC1
xC2


; h =



1

1

1

1

2

2

2

2


, (5)

and k = 0. The problem defined by Equation (4) has a single level of data quality (where interior points
are adjusted while row/column sums are fixed), whereas the problem defined by Equation (5) has two
data quality levels, allowing for row and column sums to be adjusted too.

For clarity of exposition the remainder of this section is as follows. The data balancing problem with
just two quality levels (numerical data and numerical constraints) is studied in Section 2.2. Data quality
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and the construction of numerical constraints is addressed in Section 2.3. Finally, Section 2.4 presents
numerical approximations.

2.2. Analytical Solution

Bayesian inference was first developed by Laplace [15] and later expanded by others, such as
Jeffreys [16] and Jaynes [6,17]. According to the Bayesian paradigm, a probability is a degree of belief
about the likelihood of an event, and should reflect all relevant available information about that event.
If more information about the event becomes available, then the prior probability must be updated to a
posterior probability.

In the data balancing problem the goal is to update a probability distribution, under the guiding
principle that the best inference is the one which takes into account all available information and no
other. This principle is operationalized by searching for a posterior distribution that is as close as possible
to the prior (in an information sense) and that satisfies the accounting identities, expressed in terms of
moment constraints.

That is, if a discrete distribution is considered, the goal is to obtain a posterior, p(qj), when
both a prior, π(qj), and moment constraints are known, by minimizing relative entropy [18,19]. The
Lagrangean is:

L =

nL∑
j=1

p(qj) log

(
p(qj)

π(qj)

)
+

nM∑
i=1

λi

(
Mi −

nL∑
j=1

(qj)
ip(qj)

)
. (6)

The first term on the right hand side of Equation (6) is the entropy of p(qj) relative to π(qj), and the
second term is the set of moment constraints. nL is the number of discrete realizations, nM is the number
of moment constraints and Mi is the i-th moment (e.g., the first moment is the best guess, the second
moment is the variance). The solution of relative entropy minimization takes the form:

p(qj) =
π(qj)

Z
exp

(
nL∑
i=1

λi(qj)
i

)
. (7)

Z is a normalization factor to convert relative probabilities into absolute ones. According to
Robinson et al. [20] (p. 52), the solution of relative entropy minimization “is analogous to Bayes’
Theorem, whereby the posterior distribution, p(qi), is equal to the product of the prior distribution,
π(qi), and the likelihood function (probability of drawing the data given parameters being estimated),
exp(

∑nL

i=1 λi(qj)
i), dividing by a normalization factor, Z.”

As reviewed in Section 3.1, there is a class of conventional cross-entropy methods in which an IO
datum is treated as a scalar, ti, and so the constraints take the form of Equation (1). That formalization
is radically different from the Bayesian interpretation followed here, in which a numerical datum is
conceptualized as a random variable. To our knowledge no data balancing method using the Bayesian
interpretation of IO data has ever been proposed, although Golan et al. [21] offer a bridge between the
two interpretations (datum as scalar and datum as random variable) through the concept of generalized
cross entropy (see Section 3.1).
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According to the Bayesian paradigm the best solution to the data balancing problem should take all
available information into account. This information are the constraints of the first and second moments
of the numerical data. Appendix A.2 shows that the constraints take the matrix form:

0 = Gm + m̄; (8)

0 = diag (GS|G|′) + s̄2, (9)

where m̄ and s̄2 are the vectors of best guess and uncertainty constraints. The construction of these
vectors is explained in Section 2.3.

Appendix A.3 shows how the introduction of these constraints in the cross-entropy minimization
problem leads to the solution:

S̃−1 = Σ̃
−1

+ G′β̂|G|; (10)

S̃−1m̃ = Σ̃
−1
µ̃ + G′α, (11)

where α and β are the first and second moment Lagrange parameters. Taken together, Equations (10)
and (11), Equations (8) and (9) define the analytical solution of the Bayesian data balancing method.
Note however that Equations (10) and (11) contain symbols adjoined with˜ (Gaussian parameters) while
Equations (8) and (9) do not.

When relative uncertainty, σj/µj or sj/mj , is low, then the Gaussian parameter and the observable
are identical. When relative uncertainty is high, the best guess Gaussian parameter tends to −∞ and the
uncertainty Gaussian parameter tends to ∞. There is no closed-form expression between observables
and Gaussian parameters in the multivariate case.

2.3. Data Quality

This subsection introduces the concept of data quality, which determines the sequence in which the
data balancing procedure is implemented and how numerical constraints are constructed. As described
in Section 2.1, a key motivation for the present work is the possibility to incorporate information on the
quality of source data directly in the balancing method.

Thus, consider that each numerical datum i is characterized by an integer-valued number hi which
indicates its quality. That is, if datum i is more trustworthy than datum j, then hi > hj . Section 2.1
gives the example of a 2 by 2 RAS problem, in which the row and column sums were assumed to have
higher quality than interior points. (The choice of integer values for the entries of h is for convenience
only, any ordinal ranking such as a, b, c, etc., would work as well.)

Issues of data quality inevitably arise in the compilation of IO tables from multiple data sources.
If a practitioner wishes to construct a table combining official data from a national statistical office
with survey data and data collected by third parties, it is likely that discrepancies between the different
datasets will arise. When removing those discrepancies (the purpose of data balancing), it is natural that
the method should allow the practitioner to use a qualitative measure of how trustworthy the different
datasets are, relative to one another.

Data quality, hi, should not be confused with uncertainty estimate, si. The latter is a quantitative
expression of how trustworthy the best guess, mi, is. The former is a qualitative expression of how
trustworthy (mi, si) are, in relation to other source data (mj, sj) where j 6= i.
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The present paper suggests to incorporate data quality in the balancing problem by considering that
higher quality data is fixed while lower quality data is being balanced, and only if a balanced solution
cannot be found is higher quality data adjusted too.

Consider that among the nT numerical data there are Q data quality levels, and the numerical data
are indexed by increasing level of data quality. That is, all points in the range (nL−1 + 1, nL) have data
quality of level L, where n0 = 0 and nQ = nT . The method searches for a balanced solution of quality
level L, by holding fixed all data points j > nL. The method starts with L = 1 and moves up until
a solution is found. In the worst-case scenario, a solution always exists when L = Q and all data can
be balanced.

That is, in the data balancing problem at level L, the vectors of numerical data and the columns of the
concordance matrix are truncated from nT to nL, and the posterior moment constraints (Equations (8)
and (9)) become:

0 = G(L)t(L) + k(L);

0 = G(L)m(L) + m̄(L); (12)

0 = diag (G(L)S(L)|G(L)|′) + s̄2(L).

The numerical constraints k(L), introduced in Section 2.1, are therefore an aggregation of higher
quality data, for the particular balancing problem of level L. The constraint best guess, m̄(L), and
variance, s̄2(L), vectors, introduced in Section 2.2, are defined as:

k(L) = G(Q)θ(Q)−G(L)θ(L);

m̄(L) = G(Q)µ(Q)−G(L)µ(L); (13)

s̄2(L) = diag (G(Q)Σ(Q)|G(Q)|′)− diag (G(L)Σ(L)|G(L)|′) ,

where G(L), θ(L), µ(L) and Σ(L) are, respectively, the concordance matrix, the prior random vector,
the prior best guess vector and the prior covariance matrix at quality level L. It follows that at the highest
quality level, Q, the numerical constraints are zero, 0 = k(Q) = m̄(Q) = s̄2(Q).

The solution at the current quality level is incorporated in the prior of the next quality level: µj(L +

1) = mj(L), σj(L+ 1) = sj(L) and ρjk(L+ 1) = rjk(L) for j = 1, . . . , nL and k = 1, . . . , nL.
A word of caution is necessary. If the assignment of data quality is incorrect, it is possible that the

problem becomes ill posed. As a general rule, the user should always check if the results are meaningful:
the Bayesian data balancing method can only provide a good solution if good data is provided. This is
not a handicap but an advantage of the method, because it is warning the practitioner that the initial
assignment of data quality is incorrect. This behavior is in agreement with the suggestion of Jaynes [6]
that a Bayesian inference robot should apply rules uncritically, so that if an absurd outcome emerges, it
is easy to identify the error in the problem formulation.

2.4. Numerical Approximations

The analytical solution of Section 2.2 requires the analytical conversion from the multivariate
truncated Gaussian parameters to observables [22,23] and matrix inversions [24], operations which are
far from trivial.
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In this subsection a series of numerical approximations is reported, whose validity depends on how
well source data uncertainty is characterized, which will in turn affect the value of correlations.

In practical applications, it happens frequently that an accounting identity (introduced in Section 2.1)
contains only one entry Gij = −1 and several entries Gij = 1. In this paper the former is referred to as
an aggregate datum and the latter as disaggregate data.

If there is a good characterization of all source data uncertainties, then the generalized least squares
algorithm should be used. If there is a good characterization of disaggregate data but a poor one of
aggregate data, then the weighted least squares algorithm or the linear algorithm should be considered.
Finally, if there is a poor characterization of all uncertainties, the proportional algorithm should
be preferred.

All of these algorithms are iterative and at each step the best guess displacement must be kept small
and relative uncertainty constant.

2.4.1. The GLS Algorithm

The generalized least-squares (GLS) algorithm is obtained under two simplifying assumptions.
The first and strongest assumption is to replace the truncated multivariate Gaussian with the

non-truncated Gaussian, while still imposing that observable uncertainty is bound by observable best
guess, 0 < σ ≤ µ and 0 < s ≤ m (Section 2.1). As shown in Section 3, the algorithms derived from this
simplification turn out to be generalizations of the most used conventional data balancing methods. Thus,
if in the future someone proves that the numerical algorithms proposed here are bad approximations of
the analytical solution, that would imply the data balancing practice of the past 50 years is also wrong.
If the present paper is the catalyst of such a revolutionary discovery, that alone is a valid contribution to
the literature.

The second assumption is to consider that best guesses, µ, are known more accurately than
uncertainties and correlations, σ and P, and so uncertainties and correlations should be adjusted before
best guesses. That way, if the best guesses are initially balanced, they will remain unchanged.

Thus, if second-order data is initially balanced, S = Σ, Equation (11) simplifies to:

m = µ + SG′α. (14)

The combination of Equations (8) and (14) determines the best guess Lagrange multipliers, α, as the
solution of:

(GSG′)α = − (Gµ + m̄) . (15)

Equations (14) and (15) represent a generalized least-squares (GLS) solution, which is valid if a
balanced set of covariances has been found.

This problem may lack a solution if some accounting identities are linearly dependent and the
corresponding numerical constraints are inconsistent. This case can be addressed by finding the
minimum-norm solution, i.e., the α which minimizes ||α||2 and:

|| (GSG′)α− (Gµ + m̄) ||2, (16)
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where ||v||2 =
√

v′v. A minimum-norm solution can be found using the Moore-Penrose inverse [25],
among other possible numerical algorithms [26]. The Moore-Penrose inverse was used in the context of
IO analysis by Pereira et al. [27].

The determination of posterior covariances, which is mathematically more complex, is described in
Appendix A.4.

2.4.2. The WLS Algorithm

The weighted least-squares (WLS) algorithm is valid when aggregate data is maximally
uninformative, in which case all correlations between disaggregate data are approximately unitary,
rjk = 1, as shown in Appendix A.5.

Two additional assumptions are now considered: first, that each disaggregate numerical datum is
affected by few accounting identities; second, that each accounting identity affects many disaggregate
numerical data. That is, the row sums of matrix G are large integers, while column sums are small (but
positive) integers. These auxiliary assumptions are likely to be met in practice.

In Appendix A.7 it is shown that under these conditions the data balancing algorithm is given by:

m = µ + σ̂G′α, (17)

and the Lagrange multipliers are determined by:

(Gσ̂G′)α = − (Gµ + m̄) . (18)

This is a weighted least-squares (WLS) method in which the weights are prior uncertainties.

2.4.3. The Proportional Algorithm

A further simplification is the situation when all (aggregate and disaggregate) prior relative
uncertainties are identical, σj/µj = const. As shown in Appendix A.5, in this case all correlations
are unitary, ρjk = 1. This simplification leads to the proportional algorithm.

If the same considerations about data structure of the WLS case still apply (many numerical data per
accounting identity, few accounting identities per numerical datum), Equation (17) becomes:

m = µ + µ̂G′α. (19)

Each row of the previous expression is:

mj = µj

(
1 +

nK∑
i=1

Gijαi

)
. (20)

Recall that the Taylor first-order approximation of ex where x ' 0 is ex ' 1 + x. If the update rule is
applied recursively in small steps, the previous expression can be rewritten as:

mj = µj

nK∏
i=1

(γi)
Gij , (21)

where γi = eαi . The first-order constraint, Equation (8), can be expressed in scalar form as:
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0 =

nT∑
j=1

Gijmj + m̄i. (22)

Combining the two previous expressions and imposing that the multipliers are adjusted one at a time,
by balancing the respective first-order constraint, leads to:

0 = γi

nT∑
j=1

GP
ijµj −

1

γi

nT∑
j=1

GN
ijµj + m̄i, (23)

where GP
ij = 1 if Gij = 1 and zero otherwise, and where GN

ij = 1 if Gij = −1 and zero otherwise. The
previous expression yields the solution:

γi =

−m̄i ±
√
m̄2
i + 4

(∑nT

j=1G
P
ijµj

)(∑nT

j=1G
N
ijµj

)
2
∑nT

j=1 G
P
ijµj

, (24)

if
∑nT

j=1G
P
ijµj > 0 and otherwise:

γi =

∑nT

j=1G
N
ijµj

m̄i

. (25)

The algorithm consists in the application of Equation (23) to each accounting identity separately to
determine the Lagrange parameters and the update of the best guess estimates by the application of
Equation (21). This is a generalization of the popular RAS method for arbitrary structure.

The derivation of the proportional algorithm started by considering that all priors are maximally
uninformative. However, the critical assumption is that all prior relative uncertainties are identical,
σj/µj = constant, which implies that all correlations are unitary.

2.4.4. The Linear Algorithm

In the two least-squares methods derived above it is necessary to solve linear systems, by calculating
a matrix inverse, a pseudo-inverse or using some implicit method [26]. These are operations of greater
complexity than the simple iterative rule of the proportional method. The linear algorithm derived now
is a variation of the WLS algorithm which does not require solving a linear system but that can take into
account uncertainty information, which the proportional algorithm does not.

Consider that each accounting identity, g(i), is used to determine the corresponding Lagrange
multiplier, αi, in isolation. Thus, Equation (17) becomes: vspce-12pt

m(i) = µ + αiσ̂g(i)′, (26)

and direct substitution in Equation (8) leads to the solution:

αi = −g(i)µ + m̄i

g(i)σ̂g(i)′
. (27)
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The adjustment induced by the previous expression is linear (as opposed to the multiplicative
adjustment of the proportional algorithm) and can be applied simultaneously to all pairs of
accounting identities and Lagrange multipliers. The linear algorithm consists in the application of
Equation (17) and:

α = − (Gµ + m̄)÷ diag (Gσ̂G′) , (28)

where ÷ is Hadamard (or entry-wise) division.

3. Comparison with Conventional Methods

3.1. Proportional and Cross-Entropy Methods

Data balancing occurs in IO analysis under different circumstances, of which the most thoroughly
explored is the problem of table update when row and column sums, m̄R

i and m̄C
j , are known for the

current year, and interior points, µ∗ij , are known from a previous year [13]. In this problem, the goal is to
update each interior point to m∗ij , such that M∗e = m̄R and M∗′e = m̄C. In the previous expressions
e is a vector of ones, ′ is transpose and superscript ∗ was added to distinguish the original data in dense
format from the data in sparse format introduced in the following paragraphs.

The most popular strategy to address this problem is a biproportional method in which the original
matrix is iteratively multiplied by a left and a right perturbation diagonal matrices, m∗ij = µ∗ijγ

R
i γ

C
j

(where the γ’s are multiplicative adjustment factors), until the row and column sums are satisfied. The
first such technique to be used in IO analysis was the RAS method [28,29], which spawned a vast
offspring, whose genealogy is reviewed in Lahr and de Mesnard [5] and whose mathematical properties
are characterized in de Mesnard [30].

Although this method is referred to as being specifically biproportional, it can be recast in a more
general framework in which the numerical data is affected by any number of constraints, and not
necessarily aligned in rows and columns. That is, mj = µj

∏nK

i=1 γ
Gij

i , under the constraint Gm = m̄,
where m and µ are now the prior and posterior vectors, m̄ is a vector of numerical constraints and, in
the case of a 2× 2 matrix:

G =


1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

 ; m̄ =


m̄R

1

m̄R
2

m̄C
1

m̄C
2

 ; µ =


µ∗11

µ∗12

µ∗11

µ∗22

 ; m =


m∗11

m∗12

m∗11

m∗22

 . (29)

(Notice that this is the same problem defined by Equation (4), but now expressed in terms of
observable best guesses.)

Cross-entropy methods, such as Snickars and Weibull [31] (see also Golan and Vogel [32],
Robinson et al. [20] or Fernandez-Vasquez [33]), address the table update problem using a constrained
optimization framework, in which the objective function is cross entropy [18]. That is, a Lagrangean is
defined as some variation of:
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L =

nT∑
j=1

mj log
mj

µj
+

nK∑
i=1

λi

(
nK∑
j=1

Gijmj − m̄i

)
, (30)

where the first term in the right hand side is the relative (or cross) entropy to be minimized, followed by
the set of constraints.

Cross-entropy minimization provides a posterior probability distribution that is closest to the prior in
an information sense and is also consistent with the constraints, as discussed in Section 2.2. Therefore,
the application of this technique in this context implies that IO quantities, either economic transactions
or technical coefficients, are being treated as probabilities, and that the IO table as a whole (either
transaction or technical) is viewed as a probability distribution. This interpretation should be contrasted
with the Bayesian approach of Section 2.2 in which a numerical datum is represented by a random
variable instead of a real number.

Minimization of the Lagrangean with respect to the posteriors yields a solution of the form:

tj =
θj
Z

exp

(
nK∑
i=1

λiGij

)
, (31)

where Z is a normalization constant. Substitution of γi = exp(λi)/Z
1/nK leads to the finding, in

agreement with Bacharach [34], that the solution of such a problem is none other than the simple
RAS method described above. Thus, cross-entropy methods provide a theoretical interpretation of
proportional methods in a transaction-as-probability sense. In fact, to describe a method as being
proportional or cross-entropy is to view the same object under two different angles: “proportionality”
describes the implementation algorithm while “cross entropy” describes the objective function.

An interesting variation of cross entropy is the concept of generalized cross entropy of
Golan et al. [21]. They address the classical problem formulated in the first paragraph of this subsection,
but expressed in terms of technical coefficients instead of transaction values. For consistency with
the remainder of the present exposition, their problem is now reformulated as determining the interior
points of a matrix, m∗ij , subject to fixed row and column constraints, m̄R

i and m̄C
j , given priors µ∗ij .

They introduce a support of M discrete points, 0 ≤ qij1 < . . . < qijM ≤ m̄C
i , and a probability

associated with each point, p(qijk), so that (according to the Equation (24) in [21] ), the datum is actually
an expectation:

m∗ij =
M∑
k=1

qijkp(qijk). (32)

The optimization problem they consider (Equations (20)–(23) in [21]) is:

L =
n∑
i=1

n∑
j=1

M∑
k=1

p(qijk) log

(
p(qijk)

π(qijk)

)
+

n∑
i=1

n∑
j=1

λij

(
1−

M∑
k=1

p(qijk)

)
(33)

+
n∑
i=1

αRi

(
m̄R
i −

n∑
j=1

m∗ij

)
+

n∑
j=1

αCj

(
m̄C
j −

n∑
j=1

m∗ij

)
.

But this is is none other than a multivariate version of Equation (6) where the zero and first order
constraints are known. Thus, in spite of some technical inaccuracies (e.g., Equation (25) in [21] defines
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an object which is the variance of an expectation), the generalized cross entropy of Golan et al. [21] is a
forerunner of the Bayesian theory of IO uncertainty developed here.

3.2. Least-Squares Methods

There are balancing methods that use constrained optimization with other objective functions besides
cross entropy [9], of which the most popular are least-squares methods [35–39]. In these studies the
Lagrangean is some variation of:

L =
1

2
(m− µ)′Σ−1 (m− µ) +

nK∑
i=1

λi

(
nT∑
j=1

Gijmj − m̄i

)
. (34)

Now the numerical datum is no longer characterized only by a best guess (or expected value) µj or
mj , but also by an uncertainty (or standard-deviation), σj or sj . The corresponding covariance matrices
are defined as Σ = σ̂Pσ̂ and S = ŝRŝ, where P and R are the prior and posterior correlation matrices,
andˆdenotes diagonal matrix.

In these studies, prior uncertainty is defined as σj = ajµj , the product of the best guess prior and a
reliability index aj , which expresses the subjective degree of belief that the expert has about the accuracy
of the data. Some of these studies [38] consider zero prior correlations, leading to a solution of the form:

m = µ + σ̂2G′λ. (35)

Other studies obtain covariances from considerations of time autocorrelation [36,39], leading to
a solution:

m = µ + ΣG′λ. (36)

In a variation to this theme, Rampa [10] notes that a second-order Taylor expansion to the
cross-entropy objective function is a weighted least square objective function with the weight being
the prior best guess:

m log
m

µ
' (m− µ) +

1

2

(m− µ)2

µ
+ . . . (37)

With this insight, he proposes a subjective weighted least-squares (SWLS) method where, as before,
σj = ajµj and aj is a reliability index, but now the weights in the objective function are not covariances
but standard-deviations, leading to a solution of the form:

m = µ + σ̂G′λ. (38)

This proposal should be contrasted with the KRAS method [8], which addresses the issue of
conflicting constraints, i.e., the table update problem in which the goal is to find M∗1 = µ̄R and
M∗′1 = µ̄C but now the constraints are themselves inconsistent, 1′µ̄R 6= 1′µ̄C. The method assumes
that for each constraint prior both a best guess, µ̄i, and an uncertainty, σ̄j , are available. The method
consists in alternating a proportional adjustment of interior points (conventional RAS) and an adjustment
of constraints of the form:

m̄R
i = µ̄Ri + σ̄Ri λ; (39)

m̄C
i = µ̄Ci − σ̄Ci λ. (40)
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The previous expressions are a particular case of the SWLS method, with a single accounting identity,
gm = 0, which, in the case of a 2× 2 matrix, becomes:

g =
[

1 1 −1 −1
]

; m =


m̄R

1

m̄R
2

m̄C
1

m̄C
2

 . (41)

So the KRAS method, implementation details aside, is actually a hybrid between a cross-entropy
optimization problem (for interior points) and a weighted least-squares optimization problem
(for constraints).

For clarity, this example considered row and column sums as constraints, but the KRAS method
allows for arbitrary structure ( i.e., a numerical constraint can be linked to any subset of disaggregate
data). However, the KRAS method always requires the classification of data quality into two quality
levels, where data in the first quality level is adjusted using the proportional algorithm and data in the
second data level is adjusted using the linear algorithm (which is identical to the SWLS method in the
case of a single accounting identity).

The hybrid character shares some affinities with the work of Lieu et al. [40] and Lieu and Hicks [41],
who combine entropy maximization and least-squares minimization to address conflicting constraints.

3.3. Discussion

The conventional methods, reviewed in Sections 3.1 and 3.2 are not very useful for the general data
balancing problem outlined in Section 2.1 due to several problems, all of which are solved under the
Bayesian approach.

Objective function: Conventional data balancing methods can be formulated as constrained
optimization problems with different objective functions: cross entropy, generalized least squares, least
squares weighted with variances or least squares weighted with standard-deviations. However, they offer
no obvious rule to determine when each method should be applied under a particular circumstance.

Fortunately, the conventional methods reviewed here are very similar to the algorithms derived in
Section 2.4, which means that it is possible to identify when each conventional method is valid. The
GLS method should be used when uncertainty estimates for some disaggregate data and all aggregate
data are available. The WLS method should be used when uncertainty estimates for some disaggregate
data only are available. The proportional method should be used when no uncertainty data is available.
The Bayesian algorithms are all iterative while conventional least-squares methods take place in a single
step, which means that the latter are only valid if the initial inconsistency is small.

Uncertainty estimates: All data balancing methods can use information on best guesses, but they differ
in the ability to incorporate information on uncertainty. In cross-entropy/biproportional methods there
is no obvious way to introduce such information (but it can be done, e.g., [42]), while in least-square
methods it is mandatory to specify both the standard-deviation and the correlations of the prior using
subjective reliability indices which require expert knowledge of the data.

These problems do not occur in the methods proposed here, which adhere strictly to the rule that
only available information should be used, meaning that if some uncertainty or correlation is missing
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the worst-case scenario must be assumed: the uncertainty equals the best guess and the correlation is
unitary. This strategy provides objective rules that can be used even in the absence of expert knowledge.

Data quality: Another important characteristic of conventional methods is that either some part of the
numerical data is adjusted while the other is held fixed (cross-entropy and proportional methods), or all
the data is adjusted at the same time (least-squares methods).

In a Bayesian context, it is possible to introduce a ranking of data quality in the sequence in which the
balancing procedure is implemented, as described in Section 2.3. In practice, a qualitative ordering
of numerical data by level of trustworthiness is often more accessible than quantitative uncertainty
estimates. Unlike conventional methods, the Bayesian approach to data balancing allows the user to
make direct use of this knowledge.

There are two additional problems that some, but not all conventional methods exhibit, and which are
absent from the algorithms derived here.

Arbitrary structure: Proportional methods assume that the data is organized in a matrix format [43]
while cross-entropy and least-squares methods allow for an arbitrary structure.

Sign preservation: Cross-entropy and proportional methods always ensure sign preservation, while
least-squares methods do not (i.e., an initially positive datum may become negative). In practice, all
transactions in a table should be positive, and balancing items such as fixed capital formation, variations
in stocks or net taxes can take both signs. Appendix A.1 shows how to allow balancing items to shift
sign while ensuring the sign preservation of transactions.

In summary, this work has achieved a major theoretical unification in the problem of data balancing
by being able to state the conditions in which conventional methods are valid and by providing simple
rules to determine missing second-order data. The range of source information that can be used in the
data balancing problem was expanded (data quality) while interesting features that some conventional
methods possess have been kept (arbitrary structure and sign preservation).

3.4. Empirical Considerations

Section 2.4 proposed a series of data balancing algorithms, whose choice depends on the available
information on source uncertainties and correlations. This subsection presents a brief survey of the
empirical literature and discuss its implication for the choice of algorithm.

The Bayesian algorithm that requires more detailed source data is the GLS method, so the review
starts by the least-squares literature, in which relative uncertainties are referred to as reliability indices.
Weale [38] considers three reliability indices: 1.5%, 6.5% and 15%; Byron et al. [44] consider four: 3%,
13%, 30% and 50%; Chen [45] considers three: 10%, 20% and 30%. Using a two-step procedure
that involves determining first a qualitative reliability indicator and later a coefficient of variation,
Rassier et al. [46] consider relative uncertainties that range from 0% to 100%. Rampa [10] considers
five: 1, 1.5, 2, 3 and 4 times the smallest value (in least-squares methods the absolute value of the
reliability index is not important, only the relative value). Some studies [38,39] go as far as estimating
prior covariances from time auto-correlations, but they are routinely assumed to be zero.

From this very brief survey it is apparent that in least-squares methods the reliability indices do not
express factual quantitative knowledge but only a broad sense of qualitative ordering of different types of
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data (row/column sums, domestic transactions, added value, imports, etc.). In the Bayesian framework
this qualitative ordering should be used directly in the form of data quality. The assignment of subjective
reliability indices in the absence of numerical empirical support is not only unnecessary but also contrary
to the Bayesian philosophy, according to which only available information should be used in the data
balancing problem.

Uncertainty estimates are not routinely provided by statistical offices, but such studies are
occasionally produced, and their results are broadly consistent, indicating that relative uncertainty,
σj/µj , of IO transactions decreases monotonically with the best guess, µj , in the broad range of 40%
to 10% and row/column sums are known with proportionately better accuracy than interior points [47],
decreasing down to 3%. These broad trends have been confirmed by studies in different countries, such
as Bullard and Sebald [48] for the USA, Lenzen [49] for Australia, Nhambiú [50] for Portugal, and
Lenzen et al. [51] for the UK. Yamakawa and Peters [52] use time-series inconsistencies to calculate
source data uncertainty and Dı́az and Morillas [53] use fuzzy logic [54,55] and firm-level data to estimate
the uncertainty of technical coefficients.

The detailed studies of source uncertainty mentioned in the preceding paragraph are very labour
intensive, so in a study that involves gathering empirical data of this type it probably makes sense to use
the GLS data balancing method of Section 2.4. However, if uncertainty estimates are obtained from a
literature survey, it may be better to use the WLS algorithm (or its linear variant) and to assign a higher
quality level to aggregate data. The computational effort of using the full GLS method is several orders
of magnitude higher and, in the absence of a high degree of confidence in the quality of source data, that
additional effort is unjustified.

In conclusion, this paper suggests the following: if no quantitative uncertainty estimates are available,
use only knowledge of the ranking of data quality. Unless there is substantial confidence in the
uncertainty estimates of aggregate data, use a simplification instead of the full GLS method. The linear
algorithm is the most flexible and easiest to implement and its theoretical shortcomings are probably of
no consequence for most empirical applications.

4. Conclusions

This paper studies the problem of IO data balancing from the standpoint of Bayesian inference.
The basic idea that motivates the present work is very simple, although its implications are far from

trivial. A numerical datum known with some degree of uncertainty is treated as a random variable, tj ,
whose probability density function, pj(q), quantifies the degree of belief that the datum takes realization
qj . The numerical datum is characterized empirically by a best guess, mj , and an uncertainty, sj , which
are interpreted as the expectation and standard deviation of random variable tj .

The set of posteriors, t, must satisfy a set of accounting identities, summarized as Gt = 0, and a set of
priors, θ is initially available, such that Gθ 6= 0. Application of the cross-entropy minimization, subject
to first and second moment constraints leads to the analytical solution of the data balancing problem.

Several numerical algorithms are derived, whose scope of application depends on the availability of
uncertainty estimates. If no uncertainty information is available, the algorithm is a natural generalization
of the familiar RAS method. If some uncertainty estimates are available but there is no guarantee
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that the uncertainty of aggregate data was obtained independently from that of disaggregate data, then
the algorithm is an uncertainty-weighted least-squares method. If the uncertainty of both aggregate
and disaggregate data was obtained independently, then the algorithm is an alternate generalized
least-squares method for first and second moment parameters. All algorithms are iterative and valid
for arbitrary structure.

This paper presents a review of conventional data balancing algorithms and establishes a one-to-one
correspondence with the Bayesian algorithms derived earlier, thus underpinning the assumptions of each
conventional method. In particular, this paper finds that the conventional RAS method is a particular
case of the proportional algorithm and thus implicitly assumes that the relative uncertainty of all data
points is identical.

This paper’s suggestion for practical implementation (in the absence of high-quality uncertainty data)
is the use of the linear algorithm described in Section 2.4, combined with the assignment of both
uncertainty estimates (when available) and of data quality to the numerical priors.
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A. Appendix

A.1. Treatment of Zero and Negative Entries

Sometimes IO tables report negative entries and they usually report many zeros, while in the Bayesian
data balancing method it is assumed that all IO data is positive. These situations are handled as follows.

Negative entries can appear in an IO table by convention: subsidies are a negative primary factor;
net exports can be negative (if imports exceed exports); etc. In symmetric product-by-product IO tables
derived using the product technology negative entries can appear too [56].

The present paper is not concerned with the question of whether negative entries are meaningful or
not, but with the question of how to handle them, if the practitioner believes that they are.

Thus, for the purpose at hand, the important question is whether the entry should be allowed to shift
sign during the balancing procedure (e.g., if it is a change in stocks) or not (e.g., a trade margin in
a SAM).
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A negative entry that is not allowed to shift sign can be handled by altering the structure of the
problem. Consider the problem defined by Equation (5) where entry Z12 is negative. The acccounting
identities of the original system are:

Z11 + Z12 = xR1 ; (42)

Z21 + Z22 = xR2 ; (43)

Z11 + Z21 = xC1 ; (44)

Z21 + Z22 = xC2 . (45)

This problem can be recast as:

Z11 = xR∗1 ; (46)

Z21 + Z22 = xR2 ; (47)

Z11 + Z21 = xC1 ; (48)

Z22 = xC∗2 ; (49)

xR∗1 = (−Z12) + xR1 ; (50)

xC∗2 = (−Z12) + xC2 , (51)

where all quantities (including −Z12) are now positive numbers.
To allow an IO datum to shift sign, is is necessary to consider two different positive-valued entries

in an IO table: the superavit component, an entry in the corresponding row, and the deficit component,
in the corresponding column. If, for example, the datum is positive, then it is assigned to the superavit
component, and an infinitesimal is assigned to the deficit component.

To allow a balancing item to shift sign using the linear algorithm (which in this paper is recommended
for practical uses), it is sufficient not to enforce the displacement bound. That is, if tj is a transaction, it
is necessary to ensure that at every step |1−mj/µj| < ε. If tj is a balancing item that check should not
be performed.

A zero value in an IO table can mean two different things: either the transaction is logically impossible
or it was simply too small to have been recorded. In the first case, it should be excluded from the set of
numerical data.

However, if a transaction tj is below the resolution of the IO table, ε, but it is nonetheless logically
possible, it should be assigned a maximally uninformative prior, σj = µj , with an infinitesimal best
guess, µj � ε.

Because the initial inconsistency of IO tables is usually small, this step is unnecessary, i.e., mj � ε

so there is no problem in removing transaction tj from the set of numerical data altogether.
This paper suggests the explicit consideration of infinitesimals only when there is the suspicion that

some non-infinitesimal best guess is misreported, a situation studied by Keogh and Quill [4].
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A.2. Stochastic First and Second Moment Constraints

The first moment constraint of Equation (1) reads:

0 = E

[
nT∑
j=1

Gijtj + ki

]
=

nT∑
j=1

Gij E[tj] + E[ki], (52)

and if m̄i = E[ki], the previous expression becomes:

0 =

nT∑
j=1

Gijmj + m̄i. (53)

In matrix form, this equation leads to Equation (8).
The second moment constraint of Equation (1) is a bit more problematic, because of correlations.

Consider that ki < 0 and that Gij = 1 if 1 ≤ j ≤ nP while Gij = −1 if nP + 1 ≤ j ≤ nT . Consider
that Equation (1) is rearranged as:

−ki −
nT∑

j=nP +1

Gijtj =

nP∑
j=1

Gijtj. (54)

The previous expression contains a sum of positively valued random variables on the left hand side
and another such sum on the right hand side. Application of second moments leads to:

Var

[
−ki −

nT∑
j=nP +1

Gijtj

]
= Var

[
nP∑
j=1

Gijtj

]
. (55)

From basic probability theory:

Var

[
n∑
i=1

ti

]
=

n∑
i=1

Var [ti] + 2
n∑
i=1

i−1∑
j=1

Cov[ti, tj], (56)

where Cov[ti, tj] = rijsisj . If the numerical constraint is uncorrelated with the numerical data, the
application of this rule to Equation (55) leads to:

Var[ki]+

nT∑
j=nP +1

G2
ij Var[tj] + 2

nT∑
j=nP +1

j−1∑
k=nP +1

GijGik Cov[tj, tk] =

nP∑
j=1

G2
ij Var[tj] + 2

nP∑
j=1

j−1∑
k=1

GijGik Cov[tj, tk]. (57)

With the substitution s̄2
i = Var[ki], the previous expression becomes:

s̄2
i+

nT∑
j=nP +1

G2
ijs

2
j + 2

nT∑
j=nP +1

j−1∑
k=nP +1

GijGikrjksjsk =

nP∑
j=1

G2
ijs

2
j + 2

nP∑
j=1

j−1∑
k=1

GijGikrjksjsk. (58)
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Notice that rjk when Gij = 1 and Gij = −1 are absent from Equation (58).
The matrix form of Equation (58) is given by Equation (9). Notice that in Equation (9) the

concordance matrix appears two times, and one of those times it is in absolute terms, | · | (although
it does not matter which one). This is necessary so that correlations between rjk when Gij = 1 and
Gij = −1 cancel out.

A.3. Analytical Solution

The information about the first two moments is introduced in the Lagrangean of the system in scalar
form as:

L =

∫
Ω

dq p(q) ln

(
p(q)

π(q)

)
+ λ

(∫
Ω

dq p(q)− 1

)
+

nK∑
i=1

α∗i

(
nT∑
j=1

Gij

∫
Ω

dq p(q)qj + m̄i

)

+

nK∑
i=1

β∗i

(
nT∑
j=1

Gij

((∫
Ω

dq p(q)q2
j

)
−m2

j

)

+ 2

nT∑
j=1

j−1∑
k=1

G∗ijk

((∫
Ω

dq p(q)qjqk

)
−mjmk

)
+ s̄2

i

)
. (59)

In Equation (59) the expression
∫

Ω
dq is a shorthand for the product

∏nT

j=1

∫∞
0
dqj . Each qj is the

realization of the random variables tj and θj . The first term on the right hand side of Equation (59)
contains the entropy of the posterior, relative to the prior. The second term is the normalization constraint.
The third term is the set of best guess constraints. The fourth term is the set of uncertainty constraints.
The term mj is the marginal expectation of tj , defined as:

mj =

∫
Ω

dq p(q)qj. (60)

The term G∗ijk is G∗ijk = 1 if Gij = Gik for some i, j and k 6= j, or G∗ijk = 0 otherwise. The λ,
α∗’s and β∗’s are, respectively, the Lagrange multipliers of the normalization, best guess and uncertainty
constraints. Minimization of Equation (59) with respect to p(q) yields:

0 =− (ln p(q) + 1)
1

lnπ(q)
+ λ+

nT∑
j=1

(
nK∑
i=1

Gijα
∗
i

)
qj

+

nT∑
j=1

((
nK∑
i=1

Gijβ
∗
i

)(
q2
j − 2qjmj

))

+

nT∑
j=1

j−1∑
k=1

(
2

(
nK∑
i=1

G∗ijkβ
∗
i

)
(qjqk − qjmk)

)
+ C. (61)
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The C’s in the previous and subsequent expressions denote appropriately chosen constants. The
previous expression can be rewritten in the form:

p(q) = π(q)C exp

(
nT∑
j=1

(
nK∑
i=1

Gijβ
∗
i

)
q2
j +

nT∑
j=1

j−1∑
k=1

2

(
nK∑
i=1

G∗ijkβ
∗
i

)
qjqk+ (62)

+

nT∑
j=1

(
nK∑
i=1

Gijα
∗
i − 2

(
mj

nK∑
i=1

Gijβ
∗
i +

nT∑
k=1

mk

(
nK∑
i=1

G∗ijkβ
∗
i

)))
qj

)
. (63)

This expression can be simplified to:

p(q) = π(q)C exp

(
−

nT∑
j=1

(
nK∑
i=1

Gij
βi
2

)
q2
j −

nT∑
j=1

j−1∑
k=1

2

(
nK∑
i=1

G∗ijk
βi
2

)
qjqk+

+

nT∑
j=1

(
nK∑
i=1

Gijαi

)
qj

)
, (64)

where βi = −β∗i /2 and αi = α∗i − 2β∗im
∗
i , and the latter term is obtained as:

mj

nK∑
i=1

Gijβ
∗
i +

nT∑
k=1

mk

(
nK∑
i=1

G∗ijkβ
∗
i

)
=

nK∑
i=1

β∗i

(
Gijmj +

nT∑
k=1

G∗ijkmk

)
=

nK∑
i=1

β∗im
∗
i . (65)

Thus, although m∗i is still unknown, it is only a function of the accounting identity iterator i and
independent of the iterators of numerical data j or k. Since the Lagrange multipliers are still free, the
substitution above is valid.

Notice that the exponent in Equation (64) is a polynomial whose coefficients are linear combinations
of Lagrange multipliers. If the prior is a multivariate truncated Gaussian and the constraints are of second
order, the posterior is also a truncated multivariate Gaussian whose probability density is:

p(q) = C exp

(
−1

2
(q− m̃)′S̃−1(q− m̃)

)
. (66)

The exponent of the prior and posterior probability densities can be expanded in a polynomial form.
In particular, Equation (66) becomes:

p(q) = C1 exp

(
−

nT∑
j=1

s̃−1
jj

2
q2
j − 2

nT∑
j=1

j−1∑
k=1

s̃−1
jk

2
qjqk

+2

nT∑
j=1

(
nT∑
k=1

s̃−1
jk

2
m̃k

)
qj + C2

)
, (67)

and the polynomial expansion of the prior distribution displays a similar pattern. In the previous
expression s̃−1

jk is the (j, k) entry of matrix S̃−1. An explicit expression for the parameters of the posterior



Entropy 2014, 16 1264

can be obtained by solving expressions of the form Cpost = Cprior + Cconstraint, where each constant
is the coefficient of the corresponding polynomial expansion for the posterior and prior distributions
and the expressions containing the Lagrange multipliers that result from differentiating the Lagrangean,
Equation (59). This leads to Equations (10) and (11).

A.4. GLS Algorithm: Covariances

To determine posterior uncertainties and correlations it is more convenient to express the covariance
matrices as S = ŝRŝ and Σ = σ̂Pσ̂, so that Equation (10) can be recast as:

ŝ−1R−1ŝ−1 = σ̂−1P−1σ̂−1 + G′β̂|G|, (68)

where the truncated Gaussian parameters were replaced by observable parameters. Under the substitution
σ̂R∗σ̂ = ŝRŝ and B = G′β̂|G|, the previous expression simplifies to:

R∗ =
(
P−1 + σ̂Bσ̂

)−1
. (69)

Using the Woodbury identity [57], the previous expression is equivalent to:

R∗ = P−Pσ̂
(
B−1 + σ̂Pσ̂

)−1
σ̂P. (70)

Another application of the Woodbury identity leads to:

R∗ = P−Pσ̂
(
B−Bσ̂

(
P−1 + σ̂Pσ̂

)−1
σ̂B
)
σ̂P. (71)

The previous expression can be rewritten as:

R∗ = P−Pσ̂Bσ̂P + Pσ̂Bσ̂
(
P−1 + σ̂Pσ̂

)−1
σ̂Bσ̂P. (72)

If the displacement from prior to posterior is small, each Lagrange parameter, βi, is also small. The
third term in the right hand side of the previous expression contains products βiβj ' 0 which can be
discarded, and so the first-order approximation is obtained:

R∗ = P− F#
(
Pσ̂G′β̂|G|σ̂P

)
. (73)

The filter matrix, F, possesses entry Fjk = 1 if there is some accounting identity i for which Gij =

Gik and Fjk = 0 otherwise. Matrix F is introduced to avoid the appearance of mathematical artifacts.
After all, Equation (73) is an approximation and, if unchecked, it may lead to the appearance of spurious
correlations for an entry (j, k) for which Fjk = 0. The magnitude of these spurious correlation would be
small, but incorrect nonetheless, and with the use of the filter matrix this matter is swiftly addressed.

The Lagrange multipliers are determined by substitution of Equation (73) in Equation (9), leading to:

0 = diag
(
GΣ|G|′ −GΣG′β̂|G|Σ|G|′

)
+ s̄2. (74)

(Matrix F was ignored for computational purposes.) The previous expression can be further simplified
by noting that diag(A + B) = diag(A) + diag(B) and that d = diag(Ab̂C) = (A#C′)b, where # is
the Hadamard (or entry-wise) product, since di =

∑
j AijbjCji =

∑
j(AijC

′
ij)bj . This implies that the

solution is:



Entropy 2014, 16 1265

((GΣG′) # (|G|Σ|G|′))β = diag (GΣ|G|′) + s̄2. (75)

After Equations (73) and (75) have been solved, the posterior uncertainties and correlations are
obtained as:

sj = σj
√
r∗jj and rjk =

r∗jk√
r∗jjr

∗
kk

. (76)

Equations (14), (15), (73) and (75) define a numerical approximation of the analytical solution. The
following algorithm is suggested.

First, best guess data are held fixed, while uncertainties and correlations are adjusted, in small steps.
That is, Equations (73)–(75) are applied recursively in such a way that the displacement is always small,
|sj − σj|/σj < ε and that the solutions are always meaningful, 0 < sj ≤ µj and −1 ≤ rjk ≤ 1. The
choice of the convergence parameter ε should result from a compromise between computational time
and accuracy.

When consistent uncertainties and correlations have been obtained, they are in turn held fixed and
best guesses adjusted using Equations (14) and (15). Again, these expressions should be applied in such
a way that the displacement is small, |mj − µj|/µj < ε and the solution is meaningful, mj > 0. After
every adjustment of the best guess, relative uncertainty is kept fixed, i.e., sj is replaced by sjmj/µj and
the second-order data are balanced again.

Consider that uncertainty estimates are initially available but correlations are not (and so are assumed
to be unitary). In this case, it is natural to consider that uncertainties remain fixed while correlations
are adjusted. This idea can be formalized using the filter matrix, F. If the main diagonal is set to
zero, Fjj = 0, then sj = σj while rjk 6= ρjk. However, it may occur that no solution exists for fixed
uncertainties, in which case all second order data must be adjusted, by setting Fjj = 1, thus allowing
sj 6= σj .

A.5. Maximally Uninformative Aggregate Data

For clarity, consider the case of a single accounting identity, indexed with 0, and n disaggregate data,
i = 1, . . . , n, and consider that both first and second moment constraints are balanced:

m0 =
n∑
i=1

mi; (77)

s2
0 =

n∑
i=1

s2
i + 2

n∑
i=2

i−1∑
j=1

rijsisj, (78)

where mi and si are the best guess and absolute uncertainty, and rij is the correlation. The second
expression can be rearranged as:

s0 =

√√√√ n∑
i=1

s2
i + 2

n∑
i=2

i−1∑
j=1

rijsisj. (79)

Hence, ∂u0/∂rij > 0, the aggregate uncertainty is a monotonic function of the correlation between
disaggregate data. It follows that for aggregate uncertainty to be maximal, then all disaggregate
correlations must be maximal too, rij = 1.
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If all relative uncertainties are identical, s0/m0 = sj/mj = const, the second-order
constraint becomes:

m2
0 =

n∑
i=1

m2
i + 2

n∑
i=2

i−1∑
j=1

rijmimj, (80)

which combined with the first-order constraint leads to:
n∑
i=1

m2
i + 2

n∑
i=2

i−1∑
j=1

mimj =
n∑
i=1

m2
i + 2

n∑
i=2

i−1∑
j=1

rijmimj, (81)

which in turn implies:

n∑
i=2

i−1∑
j=1

mimj =
n∑
i=2

i−1∑
j=1

rijmimj, (82)

so that rij = 1, all correlations are unitary.
A reviewer of a previous version of this paper stated that unitary correlations are problematic,

because the theoretical solution involves matrix inversion and the inverse of a fully correlated covariance
matrix is non-invertible. Appendix A.6 shows that the theory has no problem in handling a unitary
correlation matrix.

A.6. A Single Accounting Identity

The analytical solution of the covariance update rule, Equation (10), in the case of a single accounting
identity with unitary prior correlations, is now studied. It is considered that there are n disaggregate data
(labeled from 1 to n) and an aggregate datum (labeled 0).

The first case considered is that in which the aggregate datum and the disaggregate data have the same
quality level, so they are adjusted simultaneously. For clarity consider the case n = 2. The non-truncated
version of Equation (10) is:

ŝ−1


1

1−r2
−r

1−r2 0
−r

1−r2
1

1−r2 0

0 0 1

 ŝ−1 = σ̂−1


1

1−ρ2
−ρ

1−ρ2 0
−ρ

1−ρ2
1

1−ρ2 0

0 0 1

 σ̂−1 +

 β β 0

β β 0

0 0 −β

 . (83)

If the prior correlation is unitary, ρ = 1, there seems to be a problem, because the matrix inverse is
ill-defined. Does this mean that the Bayesian data balancing method is inconsistent? No. It means that,
as Jaynes [6] points out, direct reasoning in terms of infinite quantities (or in this case infinitesimals)
should be avoided, since it may lead to paradoxes.

Instead, this paper follows his strict finite-sets policy: “Apply the ordinary processes of arithmetic and
analysis only to expressions with a finite number n of terms. Then after the calculation is done, observe
how the resulting finite expressions behave as the parameter n increases indefinitely” [6] (p. 452). In the
present case, the previous expression can be rewritten as:

ŝ−1

 1 −r 0

−r 1 0

0 0 1

 ŝ−1 = σ̂−1

 1 −ρ 0

−ρ 1 0

0 0 1

 σ̂−1 +

 β∗ β∗ 0

β∗ β∗ 0

0 0 −β

 . (84)
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The substitution β∗ = (1 − ρ2)β was performed and it is assumed that r ' ρ. It is now clear that,
as ρ → 1, the Lagrange multiplier affecting disaggregate data vanishes, β∗ � β. This means that
the adjustment effort falls entirely on the aggregate uncertainty, so s0 =

∑n
j=1 σj , while sj = σj and

rjk = ρjk = 1.
The case n = 2 was analyzed, but the same result holds in general. Entry (jk) of the inverse of a

n× n matrix P is:

ρ−1
jk =

gjk(P)

det(P)
, (85)

where gjk is potentially a function of every element of P and det is the determinant. As in the 2×2 case:

gjk(R)

sjsk
=
gjk(P)

σjσk
+ β∗; (86)

1

s2
0

=
1

σ2
0

− β, (87)

where β∗ = det(P)β. Since β∗ → 0 when ρ → 1, all the adjustment effort falls on the aggregate
uncertainty, just like in the bivariate case.

The empirically relevant case in which uncertainties estimates are known with better accuracy than
correlations is now addressed. In this case s = σ and only correlations are adjusted. If n = 2, the
non-truncated version of Equation (10) is:

ŝ−1


1

1−r2
−r

1−r2 0
−r

1−r2
1

1−r2 0

0 0 1

 ŝ−1 = ŝ−1


1

1−ρ2
−ρ

1−ρ2 0
−ρ

1−ρ2
1

1−ρ2 0

0 0 1

 ŝ−1 +

 0 β 0

β 0 0

0 0 0

 . (88)

Proceeding as before leads to: 1 −r 0

−r 1 0

0 0 1

 =

 1 −ρ 0

−ρ 1 0

0 0 1

+ ŝ

 0 β∗ 0

β∗ 0 0

0 0 0

 ŝ, (89)

where β∗ = (1 − ρ2)β. There is no indeterminacy in the expression linking prior and
posterior correlations:

−r = −ρ+ s1s2β
∗. (90)

For arbitrary n the equivalent implicit expression is valid:

gjk(R) = gjk(P) + sjskβ
∗, (91)

where β∗ = det(P)β.
So even in the limit case of a single accounting identity the Bayesian data balancing method generates

meaningful results.
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A.7. Derivation of the WLS Algorithm

Consider the particular example of a dense IO matrix, where every interior point (ij) is affected by
two accounting identities, corresponding to the row and column sums. The expansion of the term G′α

in Equation (14) becomes a vector where each entry is the sum of two Lagrange multipliers, αRi + αCj ,
corresponding to the i-th row and j-th column sums. For notational convenience (ij) denotes a single
numerical datum. The expansion of an entry of Equation (14) becomes:

mij = µij + σij

(
αRi
∑
k

σik + αCj
∑
k

σkj +
∑
k 6=j

σikα
R
k +

∑
k 6=i

σkjα
C
k

)
. (92)

Under the substitution αR∗i = αRi
∑

k σik and αC∗j = αCj
∑

k σkj , the previous expression becomes:

mij = µij + σij

(
αR∗i + αC∗j +

∑
k 6=j

αR∗k
σik∑
l σil

+
∑
k 6=i

αC∗k
σkj∑
l σlj

)
. (93)

If there are many numerical data per accounting identity, it is reasonable to consider that σik �
∑

l σil

and that σkj �
∑

l σlj . Introducing these considerations in the previous expression leads to:

mij = µij + σij
(
αR∗i + αC∗i

)
. (94)

The expression above is valid for interior points. The corresponding expressions for row and column
sums (labeled respectively with superscripts R and C) are easy to obtain since these data exhibit zero
correlations with every other datum. Under the assumption of unitary correlations and a balanced prior,
σRi =

∑
k σik and σCj =

∑
k σkj , the adjustment of row and column sums are:

mR
i = µRi −

(
σRi
)2
αRi = µRi − σRi αR∗i ; (95)

mC
j = µCj −

(
σCj
)2
αCj = µCj − σCj αC∗j . (96)

The generalization of the previous expressions to matrix format is given by Equation (17).
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