
Entropy 2014, 16, 825-853; doi:10.3390/e16020825 
 

entropy 
ISSN 1099-4300 

www.mdpi.com/journal/entropy 

Article 

Generalized Maximum Entropy Analysis of the Linear 
Simultaneous Equations Model 

Thomas L. Marsh 1,*, Ron Mittelhammer 2 and Nicholas Scott Cardell 3 

1 School of Economic Sciences and IMPACT, Washington State University, Pullman, WA  

99164, USA 
2 School of Economic Sciences and Statistics, Washington State University, Pullman,  

WA 99164, USA; E-Mail: mittelha@wsu.edu  
3 Salford Systems, San Diego, CA 92126, USA; E-Mail: scardell@gocougs.wsu.edu 

* Author to whom correspondence should be addressed; E-Mail: tl_marsh@wsu;  

Tel.: +1-509-335-8597; Fax: +1-509-335-1173. 

Received: 20 November 2013; in revised form: 17 January 2014 / Accepted: 28 January 2014 / 

Published: 12 February 2014 

 

Abstract: A generalized maximum entropy estimator is developed for the linear simultaneous 

equations model. Monte Carlo sampling experiments are used to evaluate the estimator’s 

performance in small and medium sized samples, suggesting contexts in which the current 

generalized maximum entropy estimator is superior in mean square error to two and three 

stage least squares. Analytical results are provided relating to asymptotic properties of the 

estimator and associated hypothesis testing statistics. Monte Carlo experiments are also 

used to provide evidence on the power and size of test statistics. An empirical application is 

included to demonstrate the practical implementation of the estimator. 
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1. Introduction 

The simultaneous equations model (SEM) is applied extensively in econometric-statistical  

studies. Examples of traditional estimators for the SEM include two stage least squares [1], three stage  
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least squares [2], limited information maximum likelihood [3], and full information maximum 

likelihood [4,5]. These estimators yield consistent estimates of structural parameters by correcting for 

simultaneity between the endogenous variables and the disturbance terms of the statistical model. 

However, in the presence of small samples or ill-posed problems, traditional approaches may provide 

parameter estimates with high variance and/or bias, or provide no solution at all. As an alternative to 

traditional estimators, we present a generalized maximum entropy estimator for the linear SEM and 

rigorously analyze its sampling properties in small and large sample situations including the case of 

contaminated error models. 

Finite sampling properties of the SEM have been discussed in [6–10], where alternative estimation 

techniques that have potentially superior sampling properties are suggested. Specifically, they 

discussed limitations of asymptotically justified estimators in finite sample situations and the lack of 

research on estimators that have small sample justification. In a special issue of The Journal of 

Business and Economic Statistics, the authors of [11,12] examined small sample properties of generalized 

methods of moments estimators for model parameters and covariance matrices. References [13–15] 

pointed out that even small deviations from model assumptions in parametric econometric-statistical 

models that are only asymptotically justified can lead to undesirable outcomes. Moreover, Reference [16] 

singled out the extreme sensitivity of least squares estimators to modest departures from strictly Gaussian 

conditions as a justification for examining robust methods of estimation. These studies motivate the 

importance of investigating alternatives to parameter estimation methods for the SEM that are robust 

in finite samples and lead to improved prediction, forecasting, and policy analysis. 

The principle of maximum entropy has been applied in a variety of modeling contexts. Reference [10] 

proposed estimation of the SEM based on generalized maximum entropy (GME) to deal with small 

samples or ill-posed problems, and defined a criteria that balances the entropy in both the parameter 

and residual spaces. The estimator was justified on information theoretic grounds, but the repeated 

sampling properties of the estimator and its asymptotic properties were not analyzed extensively.  

Reference [17] suggested an information theoretic estimator based on minimization of the Kullback-Leibler 

Information Criterion as an alternative to optimally-weighted generalized method of moments estimation 

that can accommodate weakly dependent data generating mechanisms. Subsequently, [18] investigated 

an information theoretic estimator based on minimization of the Cressie-Read discrepancy statistic as 

an alternative approach to inference in models whose data information was cast in terms of moment 

conditions. Reference [18] identified both exponential empirical likelihood (negative entropy) andempirical 

likelihood as special cases of the Cressie-Read power divergence statistic. More recently, [19,20] applied 

the Kullback-Leibler Information Criterion to define empirical moment equations leading to estimators 

with improved predictive accuracy and mean square error in some small sample estimation contexts. 

Reference [21] provided an overview of information theoretic estimators for the SEM Reference [22] 

demonstrated that maximum entropy estimation of the SEM has relevant application to spatial 

autoregressive models wherein autocorrelation parameters are inherently bounded and in circumstances 

when traditional spatial estimators become unstable. Reference [23] examined the effect of 

management factors on enterprise performance using a GME SEM estimator. Finally, [24] estimated 

spatial structural equation models also extended to a panel data framework. 

In this paper we investigate a GME estimator for the linear SEM that is fundamentally different 

from traditional approaches and identify classes of problems (e.g., contaminated error models) in 
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which the proposed estimator outperforms traditional estimators. The estimator: (1) is completely 

consistent with data and other model information constraints on parameters, even in finite samples;  

(2) has large sample justification in that, under regularity conditions, it retains properties of consistency 

and asymptotic normality to provide practitioners with means to apply standard hypothesis testing 

procedures; and (3) has the potential for improved finite sample properties relative to alternative 

traditional methods of estimation. The proposed estimator is a one-step instrumental variable-type 

estimator based on a nonlinear-in-parameters SEM model discussed in [1,7,25]. The method does not 

deal with data information by projecting it in the form of moment constraints but rather, in GME 

parlance, is based on data constraints that deal with the data in individual sample observation form. 

Additional information utilized in the GME estimator includes finite support spaces that are imposed 

on model parameters and disturbances, which allows users to incorporate a priori interval restrictions 

on the parameters of the model. 

Monte Carlo (MC) sampling experiments are used to investigate the finite sample performance  

of the proposed GME estimator. In the small sample situations analyzed, the GME estimator is 

superior to two and three stage least squares based on mean square error considerations. Further, we 

demonstrate the improved robustness of GME relative to 3SLS in the case of contaminated error 

models. For larger sample sizes, the consistency of the GME estimator results in sampling behavior 

that emulates that of 2SLS and 3SLS estimators. Observations on power and size of asymptotic test 

statistics suggest that the GME does not dominate, nor is it dominated by, traditional testing methods. 

An empirical application is provided to demonstrate practical implementation of the GME estimator 

and to delineate inherent differences between GME and traditional estimators in finite samples.  

The empirical analysis also highlights the sensitivity of GME coefficient estimates and predictive fit to 

specification of error truncation points, underscoring the need for care in specifying the empirical  

error support. 

2. The GME-Parameterized Simultaneous Equations Model 

Consider the SEM with G equations, which can be written in matrix form as: 

+  +  = Y Γ X Β Ε 0  (1)

where Y = (y1 ... yG) is a  N G  matrix of jointly determined endogenous variables, 1( ... )GΓ Γ Γ  is 

an invertible  G G  matrix of structural coefficients of the endogenous variables, X = (x1...xK) is  

a  N K  matrix of exogenous variables that has full column rank, 1( ... )GΒ Β Β is a  K G  matrix 

of coefficients of exogenous variables, and 1( ... )GΕ ε ε  is a  N G  matrix of unobserved random 

disturbances. The standard stochastic assumptions of the disturbance vectors are that [ ]iE ε 0  for  

i = 1,...,G and [ ]i j ij NE   ε ε I  for i,j = 1,...,G. Letting 1vec( ... )Gε ε ε denote the vertical concatenation 

of the vectors 1,..., Gε ε , the covariance matrix is given by [ ] NE   εε Σ I  where the  G G  matrix 

Σ  contains the unknown 'ij s  for i,j = 1,...,G. 

The reduced form model is obtained by post-multiplying Equation (1) by 1Γ  and solving for Y as: 

   1 1+  = + =   Y X ΒΓ ΕΓ X Π V  (2)
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where 1( ... )GΠ π π  is a  K G  matrix of reduced form coefficients and V = (v1...vG) is a  N G  

matrix of reduced form disturbances. The reduced form for the ith endogenous variable is: 

= + i ii Xπ vy  (3)

The ith equation in Equation (1) can be rewritten in terms of a nonlinear structural parameter 

representation of the reduced form model as [1]:  

(- ) =  +  +  = +i i i i ii i iXΠ γ X Zδ μy β μ  (4)

where (- ) (- )i iE  =    XΠY ,  ( ) ( )i i i i iE      μ ε Y Y γ ,  ( )i i iZ XΠ X , and  = vec( , )i i iγ βδ .  

In general the notation (-i) in the subscript of a variable represents the explicit exclusion of the ith 

column vector, such as yi being excluded from Y to form Y(−i), in addition to the exclusion of any other 
column vectors implied by the structural restrictions. Then Y(−i) represents a  iN G  matrix of  

Gi jointly dependent explanatory variables having nonzero coefficients in the ith equation, iγ is the 

corresponding  1iG   subvector of the structural parameter vector iΓ  , Xi is a  iN K  matrix that 

represents the Ki exogenous variables with nonzero coefficients in the ith equation, and iβ  is the 

corresponding  1iK   subvector of the parameter vector iΒ . It is assumed that the linear exclusion 

restrictions on the structural parameters are sufficient to identify each equation. The  iK G  matrix of 

reduced form coefficients ( )iΠ  coincides with the endogenous variables in Y(−i). 

Historically, Equation (4) has provided motivation for two stage least squares (2SLS) and three 

stage least squares (3SLS) estimators. The presence of right hand side endogenous variables yields 

biased and inconsistent estimates for Y(−i) [1]. In 2SLS and 3SLS, the first stage is to approximate 

E[Y(−i)] by applying ordinary least squares (OLS) to the unrestricted reduced form model in Equation 

(2) and thereby obtain predicted values of Y(−i). Then, using the predicted values to replace E[Y(−i)], the 

second stage is to estimate the model in Equation (4) with OLS. In the event that the error terms are 

normally distributed, homoskedastic, and serially independent, the 3SLS estimator is asymptotically 

equivalent to the asymptotically efficient full-information maximum likelihood (FIML) estimator [21]. 

Under the same conditions, it is equivalent to apply FIML to either Equation (1) or to Equation (4) 

under the restriction -1 =-Π BΓ . 

2.1. GME Estimation of the SEM 

Following the maximum entropy principle, the entropy of a distribution of probabilities 

1( ,..., )Nq q q ,
1

1
N

nn
q


  , is defined by: 

1

( ) ln
N

n n
n

H q q


 q
  

in [26]. The value of H(q) reaches a maximum when qn = N −1 for n = 1,...,N, which characterizes the 

uniform distribution. Generalizations of the entropy function that have been examined elsewhere in the 

econometrics and statistics literature include the Cressie-Read power divergence statistic [18], 

Kullback-Leibler Information Criterion [27], and the α-entropy measure [28]. We restrict our analysis 
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to the entropy objective function due to its efficiency and robustness properties [18], and its current 

universal use within the context of GME applications [9]. 

GME estimators previously proposed for the SEM include (a) the data constrained estimator for the 

general linear model, hereafter GME-D, which amounts to applying the GME principle to a vectorized 

version of the structural model in Equation (1); and (b) a two stage estimator analogous to 2SLS 

whereby GME-D is applied to the reduced form model in the first stage and to the structural model in 

the second stage, hereafter GME-2S. Alternatively, [10] applied the GME principle to the reduced 

form model in Equation (3) with the restriction -1=-Π BΓ  imposed, hereafter GME-GJM.  

Our approach follows 2SLS and 3SLS in the sense that the restriction -1 =-Π BΓ  is not explicitly 
enforced and that E[Y(−i)] is algebraically replaced by ( )iXΠ . However, unlike 2SLS and 3SLS, our 

approach is formulated under the GME principle completely consistent with Equation (4) retained as a 

nonlinear constraint and concurrently solved with the unrestricted reduced form model in Equation (3) 

to identify structural and reduced form coefficient estimates. Reference [7] refers to Equations (3) and (4) 

as a nonlinear-in-parameters (NLP) form of the SEM model. 

To formulate a GME estimator for the NLP model of the SEM, henceforth referred to as  

GME-NLP, parameters and disturbance terms of Equations (3) and (4) are reparameterized as convex 

combinations of reference support points and unknown convexity weights. Support matrices S i for 
, , , ,i z w     that identify finite bounded feasible spaces for individual parameters and weight vectors 

, , , ,  p p p z w  that consist of unknown parameters to be estimated are explicitly defined below.  
The parameters are redefined as 1vec( , ..., )G

  β β β S p , 1vec( , ..., )G
  γ γ γ S p , and 

1vec( , ..., )G
  π π π S p , while the disturbance vectors are defined as 1vec( , ..., ) z

G v v v S z , and 

1vec( , ..., ) w
G μ μ μ S w . Using these identities and letting vec( , , , , )  p p p p z w  the estimates of 

, ,π γ β  are obtained by solving the constrained GME problem:  

max  {- ln }
p

p p  (5)

subject to: 

     ( )
w

G
      
   y I X S p S p X S p S w  (6)

   z
G

   y I X S p S z  (7)

 2 2Q NG M Q NG  I 1 p 1  (8)

The S i support matrices (for , , , ,i z w    ) present in Equations (6) and (7) consist of user supplied 

reference support points defining feasible spaces for parameters and disturbances. For example, wS is 

given by:  

11 1

2 22

( ) ( 1)
( )

0   ...  00 0

0   ...  00 0
    =

.. .   .  .
0 0 0 0    .  
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where the nth disturbance term of the gth equation with M support points is defined, in summation 

notation, as
1

.
M w

ng ngm ngmm
s w


   Similarly, the kth β  parameter of the gth equation is defined by 

1

M

kg kgm kgmm
s p 


  . For notational convenience the number of support points have been defined as 

2M   for both errors and parameters. 
In Equation (6), the matrix ( )


S defines the reference supports for the block diagonal matrix 

 ( 1) ( )diag ,..., G Π Π , while  1=diag ,..., G
X X X  is a  GN K  block diagonal matrix and 

1vec( ,..., )Gy y y  is a  1GN   vector of endogenous variables. In Equations (6) and (7) the  1NGM   

vectors 11vec( ,..., )NGw w w  and 11vec( ,..., )NGz z z represent vertical concatenations of sets of 

 1M   subvectors for n = 1,...,N and g = 1,...,G, where each subvector 1( , ..., )ng ng ngMw w w and 

1( , ..., )ng ng ngMz z z  contains a set of M convex weights. Also 11vec( , ..., )KG
  p p p  is a  1KGM   

vector that consists of convex weights 1( ,..., )kg kg kgMp p   p  for k = 1,...,K and g = 1,...,G. The 

 1MG  vector 11vec( , ..., )GG
  p p p  and the  1KM   vector 11vec( , ..., )KG

  p p p  are similarly 

defined. Equation (8) contains the required adding up conditions for each of the sets of convexity 

weights used in forming the GME-NLP estimator. Nonnegativity of the weights is an inherent 

characteristic of the maximum entropy objective and does not need to be explicitly enforced with 
inequality constraints. Regarding notation in (8), IG represents a  G G  identity matrix and 1N is a 

 1N   unit vector. Letting 
1

G

ii
K K


  denote the number of unknown 'kg s  and 

1

G

ii
G G


  

denote the number of unknown 'ig s , then together with the KG reduced form parameters, the 'kg s , 

the total number of unknown parameters in the structural and reduced form equations is 
Q K G KG   . 

Optimizing the objective function defined in Equation (5) optimizes the entropy in the parameter 

and disturbance spaces for both the structural model in Equation (6) and the reduced form model in 

Equation (7). The optimized objective function can mitigate the detrimental effects of ill-conditioned 

explanatory and/or instrumental variables and extreme outliers due to heavy tailed sampling 

distributions. In these circumstances traditional estimators are unstable and often represent an 

unsatisfactory basis for estimation and inference [20,25,29]. 

We emphasize that the proposed GME-NLP is a data-constrained estimator. Equations (5)–(8) 

constitute a data-constrained model in which the regression models themselves, as opposed to moment 

conditions based on them, represent constraining functions to the entropy objective function. [16] 

pointed out that outside the Gaussian error model, estimation based on sample moments can be 

inefficient relative to other procedures. Reference [9] provided MC evidence that data-constrained 

GME models, making use of the full set of observations, outperformed moment-constrained GME 

models in mean square error. In the GME-NLP model, constraints Equations (6) and (7) remain 

completely consistent with sample data information in Equations (3) and (4). 

We also emphasize that the proposed GME-NLP estimator is a one-step approach, simultaneously 

solving for reduced form and structural parameters. As a result, the nonlinear specification of Equation (6) 

leads to first order optimization conditions (Equation (16) derived in the Appendix) that are different 

from other multiple-step or asymptotically justified estimators. The most obvious difference is that the 
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first order conditions do not require orthogonality between right hand side variables and error terms, 

i.e., GME-NLP relaxes the orthogonality condition between instruments and the structural error term. 

Perhaps more importantly, multiple-step estimators (e.g., 2SLS or GME-2S) only approximate the 

NLP model and ignore nonlinear interactions between reduced and structural form coefficients. Thus, 

constraints Equations (6) and (7) are not completely satisfied by multiple-step procedures, yielding an 

estimator that is not fully consistent with the entire information set underlying the specification of the 

model. Although this is not a critical issue in large sample estimation, as demonstrated below, 

estimation inefficiency can be substantial in small samples if multiple-step estimators do not adequately 

approximate the NLP model. 

The proposed GME-NLP estimator has some econometric limitations similar to, and other 

limitations which set it apart from, 2SLS that are evident when inspecting Equations (5)–(8). Firstly, 

like 2SLS, the residuals in Equations (4) and (6) are not identical to those of the original structural 

model, nor are they the same as the reduced form error term, except when evaluated at the true 

parameter values. Secondly, the GME-NLP estimator does not attempt to correct for contemporaneous 

correlation among the errors of the structural equations. Although a relevant efficiency issue, 

contemporaneous correlation is left for future research. Thirdly, and perhaps most importantly, the use 

of bounded disturbance support spaces in GME estimation introduces a specification issue in empirical 

analysis that typically does not arise with traditional estimators. These issues are discussed in more 

detail ahead. 

2.2. Parameter Restrictions 

In practice, parameter restrictions for coefficients of the SEM have been imposed using constrained 

maximum likelihood or Bayesian regression [7,30]. Neither approach is necessarily simple enough to 

specify analytically nor estimate empirically, and each has its empirical advantages and disadvantages.  

For example, Bayesian estimation is well-suited for representing uncertainty with respect to model 

parameters, but can also require extensive MC sampling when numerical estimation techniques are 

required, as is often the case in non-normal, non-conjugate prior model contexts. In comparison to 

constrained maximum likelihood or Bayesian analysis, the GME-NLP estimator also enforces 

restrictions on parameter values, is arguably no more difficult to specify or estimate, and does not 

require the use of MC sampling in the estimation phase of the analysis. Moreover, and in contrast to 

constrained maximum likelihood or the typical parametric Bayesian analysis, GME-NLP does not 

require explicit specification of the distributions of the disturbance terms or of the parameter values. 

However, both the coefficient and the disturbance support spaces are compact in the GME-NLP 

estimation method, which may not apply in some idealized empirical modeling contexts. 

Imposing bounded support spaces on coefficients and error terms has several implications for GME 

estimation. Consider support spaces for coefficients. Selecting bounds and intermediate reference 

support points provides an effective way to restrict parameters of the model to intervals. If prior 

knowledge about coefficients is limited, wider truncation points can be used to increase the confidence 

that the support space contains the true . If knowledge exists about, say, the sign of a specific 

coefficient from economic theory, this can be straightforwardly imposed together with a reasonable 

bound on the coefficient. 
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Importantly, there is a bias-efficiency tradeoff that arises when parameter support spaces are specified in 

terms of bounded intervals. A disadvantage of bounded intervals is that they will generally introduce 

bias into the GME estimator unless the intervals happen to be centered on the true values of the 

parameters. An advantage of restricting parameters to finite intervals is that they can lead to increases 

in efficiency by lowering parameter estimation variability. In the MC analysis ahead, it is demonstrated 

that the bias introduced by bounded parameter intervals in the GME-NLP estimator can be much  

more-than compensated for by substantial decreases in variability, leading to notable increases in 

overall estimation efficiency. 

In practice, support spaces for disturbances can always be chosen in a manner that provides a 

reasonable approximation to the true disturbance distribution because upper and lower truncation 

points can always be selected sufficiently wide to contain the true disturbances of regression models [31]. 

The number, M, of support points for each disturbance can be chosen to account for additional information 

relating to higher moments (e.g., skewness and kurtosis) of each disturbance term. MC experiments  

by [9] demonstrated that support points ranging from 2 to 10 are acceptable for empirical applications. 

For the GME-NLP estimator, identifying bounds for the disturbance support spaces is complicated 

by the interaction among truncation points of the parameters and disturbance support points of both the 

reduced and structural form models. Yet, several informative generalizations can be drawn. First, [32] 

demonstrated that ordinary least squares-like behavior can be obtained by appropriately selecting 

truncation points of the GME-D estimator of the general linear model. This has direct implications to 

SEM estimation in that appropriately selected truncation points of the GME-2S estimator leads to 

2SLS-like behavior. However, as demonstrated ahead, given the nonlinear interactions between the 

structural and reduced form models, adjusting truncation points of the GME-NLP does not necessarily 

lead to two stage like behavior in finite samples. Second, the reduced form model in Equation (3) and 

the nonlinear structural parameter representation of the reduced form model in Equation (4) have 

identical error structure at the true parameter values. Hence, in the empirical applications below, we 

specify identical support matrices for error terms of both the structural and reduced form models. 

Third, in the limiting case where the disturbance boundary points of the GME-NLP structural model 

expand in absolute value to infinity, the parameter estimates converge to the mean of their support points. 

Given ignorance regarding the disturbance distribution, [9,10] suggest using a sample scale parameter 

and the multiple-sigma truncation rule to determine error bounds. For example, the three sigma rule for 

random variables states that the probability of a unimodal continuous random variable assuming 

outcomes distant from its mean by more than three standard deviations is at most 5% [33]. Intuitively, 

this multiple-sigma truncation rule provides a means of encompassing an arbitrarily large proportion of 

the disturbance support space. From the empirical evidence presented below, it appears that combining 

the three sigma rule with a sample scale parameter to estimate the GME-NLP model is a useful approach. 

3. GME-NLP Asymptotic Properties and Inference 

To derive consistency and asymptotic normality results for the GME-NLP estimator, we assume the 

following regularity conditions. 

R1. The N rows of the  N G  disturbance matrix Ε  are independent random drawings from an 

G-dimensional population with zero mean vector and unknown finite covariance matrix Σ . 
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R2. The  N K  matrix X of exogenous variables has rank K and consists of nonstochastic 

elements, with  1lim NN
 X X Ω  where Ω  is a positive definite matrix. 

R3. The elements ng  of the vector g gv μ (n = 1,...,N, g = 1,...,G) are independent and bounded 

such that 1g g ng gM gc c       for some 0g   and large enough positive cgM = �cg1.  

The probability density function of μ  is assumed to be symmetric about the origin with a finite 

covariance matrix. 

R4.  ,kg kgL kgH    , for finite kgL  and kgH ,   k = 1,...,K and g = 1,...,G. 

 ,jg jgL jgH    , for finite jgL  and jgH ,   ( j g ) j,g = 1,...,G; and 1gg   . 

 ,kg kgL kgH    , for finite kgL  and kgH ,   k = 1,...,K and g = 1,...,G. 

R5. For the true Β  and nonsingular Γ , there exists positive definite matrices gΨ  (g = 1,...,G) 

such that  1lim g g gNN
 Z Z Ψ  where -1=-Π BΓ . 

Condition R1 asserts that the disturbances are contemporaneously correlated. It also requires 
independence of the N rows of the  N G  disturbance matrix Ε , which is stronger than the 

uncorrelated error assumptions introduced immediately following Equation (1). Conditions R1, R2, 

and R5 are typical assumptions made when deriving asymptotic properties for the 2SLS and 3SLS 
estimators of the SEM [1]. The condition R3 states that the supports of ng  and ngv  are symmetric 

about the origin and can be contained in the interior of closed and bounded intervals [c1,cM]. Extending 
the lower and upper bounds of the interval by (possibly arbitrarily small) 0g   is a technical and 

computational convenience ensuring feasibility of the entropic solutions [32]. Condition R4 implies 
that the true value of the parameters , ,kg jg kg    can be enclosed within a bounded interval.  

3.1. Estimator Properties 

The regularity conditions (R1)-(R5) provide a basic set of assumptions sufficient to establish 

asymptotic properties for the GME-NLP estimator of the SEM. For notational convenience let 

 vec ,θ π δ , where we follow the standard convention that  1vec ,..., Gδ δ δ . The theorems for 

consistency and asymptotic normality are stated below with proofs in the Appendix. 

Theorem 1. Under the regularity conditions R1-R5, the GME-NLP estimator,  ˆ ˆˆvec ,θ π δ , is a 

consistent estimator of the true coefficient values  vec ,θ π δ . 

The intuition behind the proof is that without the reduced form component in Equation (7) the 

parameters of the structural component in Equation (6) are not identified. As shown in the Appendix, 

the reduced form component yields estimates that are consistent and contribute to identifying the 

structural parameters, and the structural component in Equation (7) ties the structural coefficients  

to the data and draws the GME-NLP estimates toward the true parameter values as the sample  

size increases. 
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Theorem 2. Under the conditions of Theorem 1, the GME-NLP estimator,  1
ˆ ˆ ˆvec ,..., Gδ δ δ , is 

asymptotically normally distributed as  1 11ˆ ,
a

NN  
  δ δ Ω Ω Ω . 

The asymptotic covariance matrix consists of  1 1 Gdiag ,..., G   Ω Ψ Ψ , which follows from R5 

and w
g ngE       with       

1
2 2( )

1

w
ng

ng

M
uw w w

ng ngm ngm ng ngu
m

s w u u







    
 
  . The elements of Ω are 

defined by  1
N     Z I ZΣ Ω , where  1=diag ,..., GZ Z Z  and Σ  is a  G G  covariance matrix 

for the 'w
ng s . 

Estimators of the SEM are generally categorized as “full information” (e.g., 3SLS or FIML) or 

“limited information” (e.g., 2SLS or LIML) estimators. GME-NLP is not a full information estimator 

because the estimator neither enforces the restriction -1=-Π BΓ  nor explicitly characterizes the 

contemporaneous correlation of the disturbance terms. An advantage of GME-NLP is that it is 

completely consistent with data constraints in both small and large samples, because we concurrently 

estimate the parameters of the reduced form and structural models. As a limited information estimator, 

GME-NLP has several additional attractive characteristics. First, similar to other limited information 

estimators, it is likely to be more robust to misspecification than a full information alternative because 

in the latter case misspecification of any one equation can lead to inconsistent estimation of all the 

equations in the system [34]. Second, GME-NLP is easily applied in the case of a single equation,  

G = 1, and it retains the asymptotic properties identified above. Finally, the single equation case is a 

natural generalization of the data-constrained GME estimator for the general linear model. 

3.2. Hypothesis Tests 

Because the GME-NLP estimator δ̂  is consistent and asymptotically normally distributed, 

asymptotically valid normal and chi-square test statistics can be used to test hypothesis about δ .  
To implement such tests a consistent estimate of the asymptotic covariance of δ̂ , or 1 1 

  Ω Ω Ω , is 

required. The matrix Ω can be estimated using  ˆw
ng δ  above or alternatively by: 

          
1

22
1

1 1

ˆ ˆ ˆ ˆ
N M

w w
g ngm ngm ng ngN

n m

s w u u


 

     
 

 δ δ δ  

In the former case based on  ˆw
ng δ , which are the elements of w

gΞ  as defined in the Appendix, then 

    1 1
1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ=diag  ,...,  w w
G G GN N

 Ω Z Ξ Z Z Ξ Z  . In the latter case based on ˆ
g  and  1ˆ ˆ ˆ

g g gN
Ψ Z Z , 

then  1 1
ˆ ˆ ˆ ˆ ˆ=diag ,..., G G  Ω Ψ Ψ . A straightforward estimate of Ω can be constructed as 

 1ˆ ˆ ˆ ˆ
N  Ω Z Σ I Z . The  G G  matrix Σ  can be estimated by      1 ˆ ˆˆ w w

ij i jN u u 
   δ δ   

for i,j = 1,...,G. Combining these elements, the estimated asymptotic covariance matrix of δ̂  is defined 
as 1 11ˆ ˆ ˆ ˆV̂ar( ) N

 
  δ Ω Ω Ω . 
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3.2.1. Asymptotically Normal Tests 

Since 
0ˆ

ˆV̂ar( )

ijij

ii

-
Z  = 


is asymptotically N(0,1) under the null hypothesis Ho: 

0
ij ij   , the statistic Z can 

be used to test hypothesis about the values of the 'ij s . 

3.2.2. Wald Tests 

To define Wald tests on the elements of δ , let Ho: ( ) = 0R δ  be the null hypothesis to be tested.  
Here R( δ ) is a continuously differentiable L-dimensional vector function with rank )(


R δ
δ

 = L K.  

In the special case of a linear null hypothesis Ho: Rδ r , then   = 

Rδ

δ R . It follows from Theorem 5.37 

in [35] that: 

     ( ) ( )1 1ˆ ,
d

N N  
  

 
    
 

R δ R δ
δ δR δ r 0 Ω Ω Ω  

The Wald test statistic has a 2 limiting distribution with L degrees of freedom given as 

     
1

ˆ ˆ( ) ( ) 2ˆ ˆ ˆV̂ar( )
d

LW 


 
 

      
 

R δ R δ
δ δR δ r δ R δ r  

under the null hypothesis. 

4. Monte Carlo Experiments 

For the sampling experiments we set up an overdetermined simultaneous system with contemporaneously 

correlated errors that is similar, but not identical, to empirical models discussed in [10,36,37].  

Reference [10] provide empirical evidence of the performance of the GME-GJM estimator for both  

ill-posed (multicollinearity) and well-posed problems using a sample size of 20 observations. In this 

study we attempt to focus on both smaller and larger sample size performance of the GME-NLP 

estimator, the size and power of single and joint hypothesis tests, and the relative performance of 

GME-NLP to 2SLS and 3SLS. In addition, the performance of GME-NLP is compared to Golan, 

Judge, and Miller’s GME-GJM estimator. The estimation performance measure is the mean square 

error (MSE) between the empirical coefficient estimates and the true coefficient values. 

4.1. Parameters and Support Spaces 

The parameters Γ  and Β  and the covariance structure Σ  of the structural system in Equation (1) 

are specified as: 

6.2 4.4 4.0

0 .74 0

-1 .267 .087 1 -1 -.125.7 0 .53

= .222 -1 0       =       = -1 4 .06250 0 .11

0 .046 -1 -.125 .0625 8.96 .13 0

0 0 .56

.06 0 0

 
 
 
    
    
    

        
 
 
 

Γ Β Σ
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The exogenous variables are drawn from an iid N(0,1) distribution, while the errors for the 

structural equations are drawn from a multivariate normal distribution with mean zero and covariance

Σ I that is truncated at ±3 standard deviations. 

To specify the GME models, additional information beyond that traditionally used in 2SLS and 

3SLS is required. Upper and lower bounds, as well as intermediate support points for the individual 

coefficients and disturbance terms, are supplied for the GME-NLP and GME-GJM models along with 

starting values for the parameter coefficients. The difference in specification of GME-GJM relative  

to GME-NLP is that in the former, -1 =-Π BΓ replaces the structural model in Equation (6) and the  

GME-GJM objective function excludes any parameters associated with the structural form disturbance 

term. The upper and lower bounds of the support spaces specified for the structural and reduced form 

models are identical to [10] except that we use three rather than five support points. The supports are 

defined as  5, 0,5ik iks s     for k = 2,...,7,  1 1 20, 0, 20i is s     , and  2, 0, 2ijs    for i,j = 1,2,3. 

The error supports for the reduced form and structural model were specified as 

 3 , 0, 3z w
in in i i i is s         , where i  is the standard deviation of the errors from the ith 

equation and from R3 we let i  = 2.5 to ensure feasibilty. See appendix material for a more complete 

discussion of computational issues. 

4.2. Estimation Performance 

Table 1 contains the mean values of the estimated Γ  parameters based on 1,000 MC repetitions  

for sample sizes of 5, 25, 100, 400, and 1,600 observations per equation. From this information,  

we can infer several implications about the performance of the GME estimators. For a sample size of  

five observations per equation, 2SLS and 3SLS estimators provide no solution due to insufficient 

degrees of freedom. For five and 25 observations the GME-NLP and GME-GJM estimators have mean 

values that are similar, although GME-NLP exhibits more bias. When the sample size is 100, the 

GME-NLP estimator generally exhibits less bias. Like 2SLS and 3SLS, the GME-NLP estimator is 

converging to the true coefficient values as N increases to 1,600 observations per equation (3SLS 

estimates are not reported for 1,600 observations). 

In Table 2 the standard error (SE) and MSE are reported for 3SLS and GME-NLP. The GME-NLP 

estimator has uniformly lower standard error and MSE than does 3SLS. For small samples of  

25 observations the MSE performance of the GME-NLP estimator is vastly improved relative to the 

3SLS estimator, which is consistent with MC results from other studies relating to other GME-type 

estimators [9,32]. As the sample size increases from 25 to 400 observations, both the standard error 

and mean squared error of the 3SLS and GME-NLP converge towards each other. Interestingly, even 

at a sample size of 100 observations the GME-NLP mean squared error remains notably superior  

to 3SLS. 
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Table 1. Mean value of parameter estimates from 1000 Monte Carlo simulations using 

2SLS, 3SLS, GME-GJM, and GME-NLP. 

Obs 2SLS 3SLS GME-GJM GME-NLP 

21  = 0.222     
5 - - 0.331 0.353 

25 0.165 0.186 0.304 0.311 
100 0.207 0.220 0.357 0.259 
400 0.219 0.222 0.373 0.234 

1,600 0.223 - 0.393 0.227 

12  = 0.267     
5 - - 0.267 0.301 

25 0.274 0.241 0.292 0.304 
100 0.264 0.278 0.278 0.283 
400 0.272 0.276 0.293 0.274 

1,600 0.268 - 0.319 0.269 

32  = 0.046     
5 - - 0.144 0.158 

25 0.067 0.103 0.107 0.144 
100 0.044 0.048 0.101 0.083 
400 0.039 0.040 0.095 0.053 

1600 0.046 - 0.075 0.048 

13  = 0.087     
5 - - 0.197 0.223 

25 0.115 0.114 0.182 0.208 
100 0.084 0.085 0.165 0.139 
400 0.083 0.083 0.155 0.100 

1,600 0.088 - 0.153 0.093 

4.3. Inference Performance 

To investigate the size of the asymptotically normal test, the single hypothesis H0: ij k   was tested 

with k set equal to the true values of the structural parameters. Critical values of the tests were based 

on a normal distribution with a 0.05 level of significance. An observation on the power of the 

respective tests was obtained by performing a test of significance whereby k = 0 in the preceding 

hypothesis. To complement this analysis, we investigated the size and power of a joint hypothesis H0:

21 1 32 2,k k    using the Wald test. The scenarios were analyzed using 1000 MC repetitions for 

sample sizes of 25, 100, and 400 per equation.  

Table 3 contains the rejection probabilities for the true and false hypotheses of both the GME-NLP 
and 3SLS estimators. The single hypothesis test for the parameter 21  0.222 based on the 

asymptotically normal test responded well for GME-NLP (3SLS), yielding an estimated test size of 

0.066 (0.043) and power of 0.980 (0.964) at 400 observations per equation. In contrast, for the 

remaining parameters, the size and power of the hypotheses tests were considerably less satisfactory. 

This is due in part to the second and third equations having substantially larger disturbance variability. 

For the joint hypothesis test based on the Wald test the size and power perform well for GME-NLP 
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(3SLS) with an estimated test size of 0.047 (0.047) and power of 0.961 (0.934) at 400 observations. 

Overall, the results indicate that based on asymptotic test statistics GME-NLP does not dominate, nor 

is it dominated by, 3SLS. 

Table 2. Standard error (SE) and mean square error (MSE) of parameter estimates from 

1000 Monte Carlo simulations using 3SLS and GME-NLP. 

Obs SE MSE 

 3SLS GME-NLP 3SLS GME-NLP 

21  = 0.222     
5 - 0.101 - 0.027 
25 0.442 0.155 0.197 0.032 

100 0.143 0.116 0.021 0.015 
400 0.065 0.064 0.004 0.004 

12  = 0.267     
5 - 0.103 - 0.012 
25 1.281 0.166 1.641 0.029 

100 0.459 0.183 0.211 0.034 
400 0.198 0.149 0.039 0.022 

32  = 0.046     
5 - 0.168 - 0.041 
25 0.842 0.256 0.711 0.075 

100 0.449 0.226 0.201 0.052 
400 0.183 0.158 0.033 0.025 

13  = 0.087     
5 - 0.120 - 0.033 
25 0.669 0.202 0.448 0.055 

100 0.269 0.188 0.073 0.038 

400 0.133 0.121 0.018 0.015 

4.4. Further Results: 3-Sigma Rule and Contaminated Errors 

Further MC results are presented to demonstrate the sensitivity of the GME-NLP to the sigma truncation 

rule (Table 4) and to illustrate robustness of the GME-NLP relative to 3SLS in the presence of contaminated 

error models (Table 5). Each of these issues play a critical role in empirical analysis of the SEM, while 

the latter can compound estimation problems especially in small sample estimation. 

To obtain the results in Table 4, the error supports for the reduced form and structural model were 

specified as before with  , 0,z w
in in i i i is s j j          where i  is the standard deviation of the 

errors from the ith equation, j = 3,4,5 and from R3 i  = 2.5, again for solution feasibility. The results 

exhibit a tradeoff between bias and MSE specific to the individual coefficient estimates. For 21  the 

bias and the MSE decreases as the truncation points are shrunk from five to three sigma. In contrast, 

for the remaining coefficients in Table 4, the MSE increases as the truncation points are decreased. 
The bias decreases for 32  and 13  as the truncation points are shrunk, while the direction of bias  

is ambiguous for 12 . Predominately, the empirical standard error of the coefficients decreased with 
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wider truncation points. Overall, these results underscore that the mean and standard error of GME-NLP 

coefficient values are sensitive to the choice of truncation points. 

Table 3. Rejection Probabilities for True and False Hypotheses. 

 Single Hypotheses: Asymptotic Normal Test GME-NLP 

Obs 21  = 0.222 21 =0  12  = 0.267 12  = 0  32  = 0.046 32  = 0  13  = 0.087 13 =0  

25 0.021 0.23 0.001 0.008 0.021 0.022 0.002 0.005 

100 0.046 0.600 0.005 0.051 0.013 0.019 0.009 0.025 

400 0.066 0.980 0.012 0.276 0.033 0.042 0.032 0.092 

 3SLS 

Obs 21  = 0.222 21  = 0  12  = 0.267 12  = 0  32  = 0.046 32  = 0  13  = 0.087 13  = 0 

25 0.149 0.197 0.101 0.124 0.100 0.108 0.102 0.104 

100 0.064 0.424 0.036 0.135 0.050 0.052 0.051 0.068 

400 0.043 0.964 0.031 0.338 0.041 0.045 0.045 0.094 

 Joint Hypotheses: Asymptotic Chi-Square Wald Test 

 GME-NLP 3SLS 

  21  = 0.222 

32  = 0.046 
21  = 0 

32  = 0 
  21  = 0.222 

32  = 0.046 
21 =0 

32 =0 
 

25  0.014 0.169   0.189 0.256  

100  0.029 0.433   0.082 0.357  

400  0.047 0.961   0.047 0.934  

Table 4. Mean, standard error (SE), and mean square error (MSE) of parameter estimates 

from 1000 Monte Carlo simulations for GME-NLP with 3, 4, and 5-sigma truncation rules. 

Obs 3-Sigma 4-Sigma 5-Sigma 

 Mean SE MSE Mean SE MSE Mean SE MSE 

21  = 0.222          
25 0.311 0.155 0.030 0.336 0.133 0.031 0.345 0.111 0.033 

100 0.259 0.116 0.015 0.277 0.111 0.015 0.292 0.108 0.017 
400 0.234 0.064 0.004 0.244 0.066 0.005 0.247 0.063 0.005 

12  = 0.267          
25 0.304 0.166 0.029 0.303 0.120 0.016 0.301 0.095 0.010 

100 0.283 0.183 0.034 0.283 0.146 0.021 0.285 0.118 0.014 
400 0.274 0.149 0.022 0.271 0.130 0.017 0.272 0.115 0.013 

32  = 0.046          
25 0.144 0.256 0.075 0.144 0.203 0.051 0.164 0.152 0.037 

100 0.083 0.226 0.052 0.101 0.199 0.042 0.113 0.158 0.029 
400 0.053 0.158 0.025 0.063 0.137 0.019 0.068 0.128 0.017 

13  = 0.087          
25 0.208 0.202 0.055 0.210 0.145 0.036 0.217 0.109 0.029 

100 0.139 0.188 0.038 0.157 0.157 0.030 0.176 0.139 0.027 
400 0.100 0.121 0.015 0.111 0.112 0.013 0.127 0.106 0.013 

Results from Table 5 provide the mean and MSE of the distribution of coefficient estimates for 

3SLS and GME-NLP when the error term is contaminated by outcomes from an asymmetric 
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distribution [14,15]. For a given percentage level  , the errors for the structural equations are  

drawn from  (1 ) , (2,3)N F  [0] Σ I and then truncated at ±3 standard deviations. We define 

(2,3) (2,3) 6F Beta   and examine the robustness of 3SLS and GME-NLP with values of   = 0.1, 

0.5, and 0.9. The error supports for the reduced form and structural model were specified with the three 

sigma rule. As evident in Table 5, when the percent of contamination induced in the error component 

of the SEM increases, performance of both estimators is detrimentally impacted. For 25 observations, 

the 3SLS coefficient estimates are much less robust to the contamination process than are the  

GME-NLP estimates as measured by the MSE values. At 100 observations the performance of 3SLS 

improves, but still remain less robust than GME-NLP. 

Table 5. Mean and mean square error (in parentheses) of parameter estimates from 1000 

Monte Carlo simulations for 3SLS and GME-NLP with contaminated normal distribution. 

Obs 0.90N(0,  ) + 0.10F(2,3) 0.50N(0, ) + 0.50F(2,3) 0.10N(0,  ) + 0.90F(2,3) 

 3SLS GME-NLP 3SLS GME-NLP 3SLS GME-NLP 

21  = 0.222       

25 0.184 0.320 0.278 0.414 0.350 0.451 

 (0.159) (0.032) (0.406) (0.064) (1.404) (0.082) 

100 0.226 0.262 0.243 0.329 0.268 0.368 

 (0.023) (0.016) (0.082) (0.037) (0.204) (0.050) 

12  = 0.267       

25 0.262 0.309 0.427 0.385 0.608 0.422 

 (1.058) (0.029) (1.195) (0.041) (4.578) (0.056) 

100 0.267 0.282 0.356 0.339 0.374 0.364 

 (0.353) (0.036) (0.551) (0.038) (0.726) (0.44) 

32 = .046       

25 0.084 0.111 −0.009 0.105 −0.070 0.097 

 (0.794) (0.067) (0.779) (0.058) (2.489) (0.062) 

100 0.061 0.082 0.010 0.067 −0.003 0.075 

 (0.326) (0.049) (0.395) (0.048) (0.601) (0.057) 

13  = 0.087       

25 0.081 0.198 0.094 0.198 0.083 0.219 

 (0.330) (0.048) (0.401) (0.056) (1.366) (0.067) 

100 0.093 0.142 0.093 0.144 0.077 0.150 

 (0.061) (0.036) (0.059) (0.038) (0.124) (0.055) 

4.5. Discussion 

The performance of the GME-NLP estimator was based on a variety of MC experiments. In small 

and medium sample situations (≤100 observations) the GME-NLP is MSE superior to 3SLS for the 

defined experiments. Increasing the sample size clearly demonstrated consistency of the GME-NLP 

estimator for the SEM. Regarding performance in single or joint hypothesis testing contexts, the 

empirical results indicate that the GME-NLP did not dominate, nor was it dominated by 3SLS. 

The MC evidence provided above indicates that applying the multiple-sigma truncation rule with a 

sample scale parameter to estimate the GME-NLP model is a useful empirical approach. Across the 3, 
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4, and 5-sigma rule sampling experiments, GME-NLP continued to dominate 3SLS in MSE for 25, 

100, and 400 observations per equation. For wider truncation points the empirical SE of the 

coefficients decreased. However, these results also demonstrate that the GME-NLP coefficients are 

sensitive to the choice of truncation points with no consensus in choosing narrower (3-sigma) over 

wider (5-sigma) truncation supports under a Gaussian error structure. We suggest that additional 

research is needed to optimally identify error truncation points.  

Finally, the GME-NLP estimator exhibited more robustness in the presence of contaminated errors 

relative to 3SLS. The MC analysis illustrates that deviations from normality assumptions in asymptotically 

justified econometric-statistical models lead to dramatically less robust outcomes in small samples. 

Reference [9,16] emphasized that under traditional econometric assumptions, when samples are Gaussian 

in nature and sample moments are taken as minimal sufficient statistics, then no information may be 

lost. However, they point out that outside the Gaussian setting, reducing data constraints to moment 

constraints can be wasteful use of sample information and results in estimators that are less than fully 

efficient. The above MC analysis suggests that GME-NLP, which relies on full sample information but 

does not rely on a full parametric specification such as maximum likelihood, can be more robust to 

alternative error distributions. 

5. Empirical Illustration 

In this section, an empirical application is examined to demonstrate implementation of the  

GME-NLP estimator. It is the well known three-equation system that comprises the Klein Model I, 

which further benchmarks the GME-NLP estimator relative to least squares. 

5.1. Klein Model 

Klein’s Model I was selected as an empirical application because it has been extensively applied in 

many studies. Klein’s macroeconomic model is highly aggregated with relatively low parameter 

dimensionality, making it useful for pedagogical purposes. It is a three-equation SEM based on annual 

data for the United States from 1920 to 1941. All variables are in billions of dollars, which are constant 

dollars with base year 1934 (for a complete description of the model and data see [1,38]). 

The model is comprised of three stochastic equations and five identities. The stochastic equations 

include demand for consumption, investment, and labor. Klein’s consumption function is given as: 

  t t -1t 1t 2t t111 11 21 21 =   +   +  +   +   + CN W W P P      

where CNt is consumption, W1t is wages earned by workers in the private sector, W2t is wages earned 
by government workers, Pt is nonwage income (profit), and 1t is a stochastic error term. This equation 

describes aggregate consumption as a function of the total wage bill and current and lagged profit. The 

investment equation is given by: 

t 1t t -1 t -1 t212 12 22 32 =  +   +   +   + I P P K      

where It is net investment, Kt is the stock of capital goods at the end of the year, and 2t  is a stochastic 

error term. This equation implies that net investment reacts to current and lagged profits, as well as 

beginning of the year capital stocks. The demand for labor is given by: 
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 t t-11t t313 13 23 33 =  +   +   + Year -1931  + W E E      

where Et is a measure of private product and 3t  is a stochastic error term. It implies that the wage  

bill paid by private industry varies with the current and lagged total private product and a time trend.  

A time trend is included to capture institutional changes over the period, primarily the bargaining 

strength of labor. The identities that complete the structural model include:  

Total Product t t tt t 2t+  =  +  +  + CN G WY TX I  

Income t t t=  + WY P  

Capital t t t -1=  + K I K  

Wage Bill t 1t 2t=  + W W W  

Private Product t t t 2t=  +  - WE Y TX  

The first identity states that national income, Yt, plus business taxes, TXt, are equal to the sum of 

goods and services demanded by consumers, CNt, plus investors, It, plus net government demands,  

Gt + W2t. The second identity holds total income, Yt, as the sum of profit, Pt, and wages, Wt, while the 

third implies that end-of-year capital stocks, Kt, are equal to investment, It, plus last years end-of-year 

capital stock, Kt−1. In the fourth identity, Wt, is the total wage bill that is the sum of wages earned from 

the private sector, W1t, and wages earned by the government, W2t. The fifth identity states that private 

product, Et, is the equal to income, It, plus business taxes, TXt, less government wages, W2t.  

5.2. Klein Model I Results

Table 6 contains the estimates of the three stochastic equations using ordinary least squares (OLS), 

two stage least squares (2SLS), three stage least squares (3SLS), and GME-NLP. Parameter 

restrictions for GME-NLP were specified using the fairly uninformative reference support points 
(-50,0,50)  for the intercept, (-5,0,5)  for the slope parameters of the reduced form models and 

(-2,0,2)  for the slope parameters of the structural form models. Truncation points for the error 

supports of the structural model are specified using both three- and five-sigma rules.  

For the given truncation points, the GME-NLP estimates of asymptotic standard errors are greater 

than those of the other estimators. It is to be expected that if more informative parameter support 

ranges had been used when representing the feasible space of the parameters, standard errors would 

have been reduced. In most of the cases, the parameter, standard error, and R2 measures were not 

particularly sensitive to the choice of error truncation point, although there were a few notable 

exceptions dispersed throughout the three equation system. 
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Table 6. Structural parameter estimates and standard errors (in parentheses) of Klein’s 

Model I using OLS, 2SLS, 3SLS, and GME-NLP. 

Structural Parameter OLS 2SLS 3SLS 
GME-NLP 

3-sigma 
GME-NLP 

5-sigma 

Consumption      

11  
16.237 
(1.303) 

16.555 
(1.468) 

16.441 
(12.603) 

14.405 
(2.788) 

14.374 
(2.625) 

11  
0.796 

(0.040) 
0.810 

(0.045) 
0.790 

(0.038) 
0.772 

(0.073) 
0.750 

(0.071) 

21  
0.193 

(0.091) 
0.017 

(0.131) 
0.125 

(0.108) 
0.325 

(0.372) 
0.280 

(0.306) 

21  
0.090 

(0.091) 
0.216 

(0.119) 
0.163 

(0.100) 
0.120 

(0.332) 
0.206 

(0.274) 
R2 0.981 0.929 0.928 0.916 0.922 

Investment      

12  
10.126 
(5.466) 

20.278 
(8.383) 

28.178 
(6.79) 

8.394 
(10.012) 

9.511 
(10.940) 

12  
0.480 

(0.097) 
0.150 

(0.193) 
−0.013 
(0.162) 

0.440 
(0.386) 

0.358 
(0.362) 

22  
0.333 

(0.101) 
0.616 

(0.181) 
0.756 

(0.153) 
0.340 

(0.342) 
0.350 

(0.325) 

32  
−0.112 
(0.027) 

−0.158 
(0.040) 

−0.195 
(0.033) 

−0.100 
(0.046) 

−0.100 
(0.051) 

R2 0.931 0.837 0.831 0.819 0.811 

Labor      

13  
1.497 

(1.270) 
1.500 

(1.276) 
1.797 
(1.12) 

2.423 
(3.112) 

1.859 
(3.157) 

13  
0.439 

(0.032) 
0.439 

(0.040) 
0.400 

(0.032) 
0.481 

(0.255) 
0.381 

(0.178) 

23  
0.146 

(0.037) 
0.147 

(0.043) 
0.181 

(0.034) 
0.087 

(0.272) 
0.200 

(0.180) 

33  
0.130 

(0.032) 
0.130 

(0.032) 
0.150 

(0.028) 
0.112 

(0.091) 
0.114 

(0.085) 
R2 0.987 0.942 0.941 0.905 0.907 

The Klein Model I benchmarks the GME-NLP estimator relative to OLS, 2SLS, and 3SLS. 

Comparisons are based on the sum of the squared difference (SSD) measures between GME-NLP and 

the OLS, 2SLS and 3SLS parameter estimates. Turning to the consumption model, the SSD is smallest 

(largest) between GME-NLP and OLS (3SLS) parameter estimates for both the three- and five-sigma 

rules (but only marginally). For example, the SSD between OLS (3SLS) and GME-NLP under the  

3-sigma is 3.35 (4.15). Alternatively, for the labor model, the SSD is smallest (largest) between  

GME-NLP and 3SLS (OLS) parameter estimates for both the three- and five-sigma rules. The most 

dramatic differences arise in the investment model. For example, the SSD between OLS (3SLS) and 

GME-NLP under the 3-sigma is 3.00 (391.79). This comparison underscores divergences that exist 

between GME-NLP and 2SLS and 3SLS estimators. In addition to the information introduced by the 
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parameter support spaces, another reason for this divergence may be due to the fact that GME-NLP is 

a single-step estimator that is completely consistent with data constraints Equations (6) and (7), while 

2SLS and 3SLS are multiple step estimators that only approximate the NLP model and ignore 

nonlinear interactions between reduced and structural form coefficients. The nonlinear specification of 

GME-NLP leads to first order optimization conditions (Equation (16) derived in the Appendix) that are 

different from other multiple-step or asymptotically justified estimators such as 2SLS and 3SLS. 

Overall, the SSD comparisons characterize finite samples differences in the GME-NLP estimator 

relative to more traditional estimators. 

6. Conclusions 

In this paper a one-step, data-constrained generalized maximum entropy estimator is proposed  

for the nonlinear- in- parameters model of the SEM (GME-NLP). Under the assumed regularity 

conditions, it is shown that the estimator is consistent and asymptotically normal in the presence of 

contemporaneously correlated errors. We define an asymptotically normal test (single scalar hypothesis) 

and an asymptotically chisquare-distributed Wald test (joint vector hypothesis) that are capable of 

performing hypothesis tests typically used in empirical work. Moreover, the GME-NLP estimator 

provides a simple method of introducing prior information into the model by means of informative 

supports on the parameters that can decrease the mean square error of the coefficient estimates. The 

reformulated GME-NLP model, which is optimized over the structural and reduced form parameter 

set, provides a computationally efficient approach for large and small sample sizes. 

We evaluated the performance for the GME-NLP estimator based on a variety of Monte Carlo 

experiments and in an illustrative empirical application. In small and medium sample situations  

(≤100 observations) the GME-NLP is mean square error superior to 3SLS for the defined experiments. 

Relative to 3SLS the GME-NLP estimator exhibited dramatically more robustness in the presence of 

contaminated error problems. These result illustrate advantages of a one-step, data-constrained estimator 

over multiple-step, moment-constrained estimators. Increasing the sample size clearly demonstrated 

consistency of the GME-NLP estimator for the SEM. The empirical results indicate that the GME-NLP 

did not dominate, nor was it dominated by, 3SLS in single or joint asymptotic hypothesis testing. 

The three-equation Klein Model I was estimated as an empirical application of the GME-NLP 

method. Results of the Klein Model I benchmarked parameter estimates of GME-NLP relative to OLS, 

2SLS, and 3SLS using the summed squared difference between parameter values of the estimators. 

GME-NLP was most similar to 2SLS and 3SLS for the consumption and labor demand equations, 

while it was most similar to OLS for the investment demand equation. In all, the empirical example 

also demonstrated some disadvantages of GME estimation in that coefficient estimates and predictive 

fit were somewhat sensitive to specification of error truncation points. This suggests additional 

research is needed to optimally identify error truncation points. 

The analytical results in this study contribute toward establishing a rigorous foundation for  

GME estimation of the SEM and analogous properties of test statistics. It also furnishes a starting  

point for empirical economists desiring to apply maximum entropy to linear simultaneous systems  

(e.g., normalized quadratic demand systems used extensively in applied research). While empirical 

results are intriguing, this approach does not definitively solve the problem of estimating the SEM in 
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small samples or ill-posed problems, and underscores the need for continued research on problems of a 

number of problems in small sample estimation based on asymptotically justified estimators. 
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Appendix 

A. Theorems and Proofs 

To facilitate both the derivation of the asymptotic properties and computational efficiency of  

the GME-NLP estimator, we reformulate the maximum entropy model into scalar notation that is 

completely consistent with Equations (5)–(8) (under the prevailing assumptions and the constraints 

Equations A1–A8 defined below). The scalar notation exhibits the flexibility to use different numbers 

of support points for each parameter or error term. However, we simplify the notation by using M 

support points for each parameter and error term. 
Let   represent a bounded, convex, and dense parameter space containing the  1Q  vector of the 

reduced form and structural parameters = vec( , , )  θ θ θ θ . The reformulated constrained maximum 

entropy model is defined as 

, , , , ,
max ln ln ln

                 ln ln

kgm kgm igm igm kgm kgm
p p p z w kgm igm kgm
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1
2

( 1 ) for =1,...,  (where for  odd  0 and  =  , )M

i i i
jgm jg M m jg
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1 1 1 1 1
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Constraints A2-A6 define the reparameterized coefficients and errors with supports. In A5 the term 

 
( )g




Π θ  is a  gK G  matrix of elements kg

  that coincide with the endogenous variables in Y(−g). 

The constraint A7 implies symmetry of the error supports about the origin and A8 defines the 
normalization conditions. The nonnegativity restrictions on kgmp , igmp  , kgmp , wngm, and zngm are 

inherently satisfied by the optimization problem and are not explicitly incorporated into the constraint set.  

Next, we define the conditional entropy function by conditioning on  θ τ ,  θ τ , and  θ τ , 
or simply θ τ where  = vec( , , )  θ θ θ θ  and = vec( , , )  τ τ τ τ . This yields 

, , , , :
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The optimal value of zngm in the conditionally-maximized entropy function is the solution to  

the Lagrangian  
1 1 1
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while the optimal value wngm: 
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follow from the symmetry of the support points around zero. Likewise the optimal values of kgmp    

(for , ,    ) are respectively:  
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which satisfy  
1 1 1
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             . For 

notational convenience we let ( ( )) ( ( )) ( ) ( )z z w w
ng ng ng kg kg kg ig ig igng = v ,  = ,  = ,  = u               ττ  and 

( )kg kg kg =       represent the optimal values of the Lagrangian multipliers. Substituting the solutions 

defined from Equations (A10), (A11), and (A14) into the conditional objective function yields the 

conditional maximum value entropy function: 
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The gradient of F(τ ) in Equation (A16) is a  1Q  vector         , ,vec       τ τ τ τ  defined by: 
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Above,  Γ τ  is a  G G  matrix of elements ig
  and  

( )g




Π τ  is a  gK G matrix of elements kg



The Lagrangian multipliers are vertically concatenated into , , , ,w z  λ λ λ λ λ , where, for example, the 

vector  1 Gvec ,...,w w wλ λ λ  is of dimension  1NG  and is made up of g 1( ,..., )w ww
g Ng   λ  for g = 1,...,G. 

The  Q Q  Hessian matrix of the conditional maximum value F( τ ) in Equation (A15) is given by: 

            *
( ) * *w           

λ τ Z τ
H τ I λ Z τ Ξ τ Z τ

τ τ
  (A16) 

where   denotes the Hadamard product (element wise) between two matrices. The  Q Q  diagonal 

matrix    , ,
     

      λ τ λ λ λ
τ τ τ τ  is defined by:  
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By the Cauchy-Swcharz inequality, symmetry assumption on the supports, and the adding up 
conditions, then ( ) * * - ( )( ( ) ( ))- 


τ

τ τ Ξ τ τZ Z  is a negative definite matrix. Next, we prove consistency and 

asymptotic normality of the GME-NLP estimator. 

Theorem 1. Under the regularity conditions R1-R5, the GME-NLP estimator,  ˆ ˆˆvec ,θ π δ , is a 

consistent estimator of the true coefficient values  vec ,θ π δ .  

Proof. Let   represent a bounded, convex, and dense parameter space such that the true coefficient 

values θ . Consider the just identified case. From Equations (5)–(8): 

 
, , , ,
max ln

  


p p p w
w w

z
 

is not a function of p  or z almost everywhere. Furthermore, it is not a function of the reduced form 

coefficients satisfying the identification conditions that are discussed after Equation (4). In addition the 
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nonstochastic terms ln p p , ln p p , and ln p p  are asymptotically irrelevant terms that 
vanish in the convergence of the scaled Hessian or 1

N H . Accordingly the GME-NLP estimates of the 

reduced form parameters, π̂ , are asymptotically and uniquely determined by:  

   ˆ arg max ln


    
 τ

π z τ z τ  

subject to Equation (7) and a normalization condition in Equation (8). The π̂  are consistent, or ˆ
p

π π , 

which is proved in the Proposition below.  

Next define the conditional estimator 

        
, :

ˆ ˆˆ , arg max F
  

   
τ τ τ
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for τ  in the parameter set that satisfies the identification conditions. By [32]:  
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      ˆˆˆ ˆ ˆ, , , ,
p
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which establishes consistency for the just identified case. Further results pertaining to the 

overidentified case are available from the authors upon request.  

Theorem 2. Under the conditions of Theorem 1, the GME-NLP estimator,  1
ˆ ˆ ˆvec ,..., Gδ δ δ , is 

asymptotically normally distributed as  1 11ˆ ,
a

NN  
  δ δ Ω Ω Ω . 

Proof. Let δ̂  be the GME-NLP estimator of  1vec ,..., Gδ δ δ . Expand the gradient vector in a Taylor 

series around δ  to obtain:  

      *ˆ ˆ    δ δ H δ δ δ  (A17) 

where *δ  is between δ̂  and δ . Since δ̂  is a consistent estimator of δ , then *
p

δ δ . Using this 

information and the fact that  ˆ [ ] δ 0  at the optimum, then: 
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1 1ˆ
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  δ δ H δ δ  

where both the left hand and right hand side terms have equivalent limiting distributions. Note that 

     1 1 10w
pN N N

 H δ Z Ξ Z  where Z is the block diagonal matrix  1=diag ,..., GZ Z Z . From 

regulatory conditions    1
1 1=diag ,...,

p

G GN   H δ Ω Ψ Ψ , where Ω is a positive definite matrix. 

Because    w z
ng ng ng    θ θ are iid for n = 1,...,N, then g ngE      . 
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The scaled gradient term is asymptotically normally distributed as:  

   1 [ ],
d

N
N  δ 0 Ω  

with covariance matrix  1
N      Z Σ I Z Ω , where Σ  a  G G  covariance matrix for the 'w

g s    

(see [40,41]). From the above results and by applying Slutsky’s Theorem: 
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which yields the asymptotic distribution: 

 1 11ˆ ,
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  δ δ Ω Ω Ω  

Proposition 1. Under the assumptions of Theorem 1, the reduced form estimates of (3) are consistent, 

   ˆ arg max ln
p



     
 τ

π z τ z τ π . 

Proof. With the exception that we account for contemporaneous correlation in the errors, this is the 

proof for consistency of the data-constrained GME estimator of the general linear model [32]. 

Consider the conditional maximum function: 

     ln expz z z
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where ng ng n gv y  X π .  

We expand  RF τ  about π  with a Taylor series expansion that yields: 
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where *π  lies between τ  and π . The gradient vector is given by   z
   I X λ  and the Hessian 

matrix is     z
R

   H I X Ξ I X . The scaled gradient term is asymptotically normally 

distributed as    1 [ ],
d

RN
N π 0 Ω  by a multivariate version of Liapounov’s central limit theorem 

(see [40,41]). The covariance matrix is  1
R R RN   Z Σ I Z Ω  where  R  Z I X  and Σ is a 

 G G  covariance matrix of the 'z
g s  . Hence the gradient is bounded in probability. The value of the 

quadratic term in the Taylor expansion can be bounded above by: 
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    denotes the standard vector norm.  
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Combining the elements from above, for all   > 0 the  
:
max ( ) ( ) 0 1P F F
   

 
   

 
τ δ  as N  . 

Thus,    ˆ arg max ln
p



     
 τ

π z τ z τ π . 

B. Model Estimation: Computational Considerations 

To estimate the GME-NLP model, the conditional entropy function (Equation (A15)) was 

maximized. Note that the constrained maximization problem Equations (5)–(8) requires estimation of 

(Q + 2GNM) unknown parameters. Solving Equations (5)–(8) for (Q + 2GNM) unknowns is not 

computationally practical as the sample size, N, grows larger. For example, consider an empirical 

application with Q = 36 coefficients, G = 3 equations, and M = 3 support points. Even for a small 

number of observations, say N = 50, the number of unknown parameters would be 936. In contrast, 

maximizing Equation (A15) requires estimation of only Q unknown coefficients for any real value of N. 

The GME-NLP estimator uses the reduced and structural form models as data constraints with a 

dual objective function as part of its information set. To completely specify the GME-NLP model, 

support (upper and lower truncation and intermediate) points for the individual parameters, support 

points for each error term, and Q starting values for the parameter coefficients are supplied by the user. 

In the Monte Carlo analysis and empirical application, the model was estimated using the unconstrained 

optimizer OPTIMUM in the econometric software GAUSS. We used 3 support points for each 

parameter and error term. To increase the efficiency of the estimation process the analytical gradient 

and Hessian were coded in GAUSS and called in the optimization routine. This also offered an opportunity 

to empirically validate the derivation of the gradient, Hessian, and covariance matrix. Given suitable 

starting values the optimization routine generally converged within seconds for the empirical examples 

discussed above. Moreover, solutions were quite robust to alternative starting values. 
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