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Abstract: In this paper we derive an integral (with respect to time) representation of the
relative entropy (or Kullback–Leibler Divergence) R(µ||P ), where µ and P are measures
on C([0, T ];Rd). The underlying measure P is a weak solution to a martingale problem
with continuous coefficients. Our representation is in the form of an integral with respect to
its infinitesimal generator. This representation is of use in statistical inference (particularly
involving medical imaging). Since R(µ||P ) governs the exponential rate of convergence
of the empirical measure (according to Sanov’s theorem), this representation is also of use
in the numerical and analytical investigation of finite-size effects in systems of interacting
diffusions.
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1. Introduction

In this paper we derive an integral representation of the relative entropyR(µ||P ), where µ is a measure
on C([0, T ];Rd) and P governs the solution to a stochastic differential equation (SDE). The relative
entropy is used to quantify the distance between two measures. It has considerable applications in
statistics, imaging, information theory and communications. It has been used in the long-time analysis of
Fokker–Planck equations [1,2], the analysis of dynamical systems [3] and the analysis of spectral density
functions [4]. It has been used in financial mathematics to quantify the difference between martingale
measures [5,6]. It has also been shown in [7] that the existence problem of the minimal relative
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entropy martingale measure problem of birth and death processes can be reduced to the problem of
solving the Hamilton–Jacobi–Bellman equation; furthermore the minimal entropy martingale measures
(MEMMs) for geometric Levy processes are investigated in [8]. The finiteness of R(µ||P ) has been
shown to be equivalent to the invertibility of certain shifts on Wiener space, when P is the Wiener
measure [9,10]. However, one of the most frequent uses of the relative entropy is in statistical inference
(particularly in medical imaging) [11,12]. For example, in data fitting, it is a standard technique to
select the parameters that minimise the relative entropy of two conditional probability distributions [13].
Modelling in medical imaging increasingly involves diffusion process with state space C([0, T ];Rd), for
which the expression R(µ||P ) = Eµ[log dµ

dP
] or the variational definition in Definition 1 may not always

be tractable. Furthermore, it is not always clear that one may simply approximate the relative entropy
by successively calculating it for the marginals over increasingly fine time-discretisations, since these
expressions may asymptotically approach infinity (see (4) below).

Another very important application of the relative entropy is in the field of Large Deviations. Sanov’s
theorem dictates that the empirical measure induced by independent samples governed by the same
probability law P converge towards their limit exponentially fast; and the constant governing the rate
of convergence is the relative entropy [14]. Large Deviations have been applied for example to spin
glasses [15], neural networks [16–18] and mean-field models of interacting particles [19,20]. In the
mean-field theory of neuroscience in particular, there has been a recent interest in the modelling of
“finite size effects” [18,21], that is, the deviations from the limiting behaviour for a population of a
particular size. Large Deviations provides a mathematically rigorous tool to do this. In this system, the
limiting system is typically the law P of a stochastic process, and therefore the likelihood of the empirical
measure of the system being “near” some measure µ is the relative entropy R(µ||P ). However the
numerical calculation of R(µ||P ) is not straightforward: the results of this paper provide an alternative
characterization of R(µ||P ), which assists in this calculation.

For example, the rate function for the Large Deviation Principle of the interacting particle model
of [20] is directly in terms of the relative entropy between two measures on the space of continuous
functions (see in particular Theorem 5.2 of this paper). Similarly, the rate function in [18] (Theorem 10)
may be expressed as a function of the relative entropy. In more detail, the rate function J̆ in
[18] (Theorem 10) is of the form J̆(µ) = limn→∞

1
|Vn|R(µVn||ΞVn). Here Ξ is the law of the process in

[18] (Equation (31)), i.e., the law of a Zd-indexed stochastic process, and µVn and ΞVn are the marginals
over the finite hypercube Vn of side length (2n+ 1). The results of this paper give a means of evaluating
R(µVn||ΞVn) and therefore J̆(µ).

In this paper we derive a specific integral (with respect to time) representation of the relative entropy
R(µ||P ) when P is the law of a diffusion process. The representation is in terms of the infinitesimal
generator of P . This P is the same as in [22] (Section 4). The representation makes use of regular
conditional probabilities. We expect that in some circumstances, it ought to be more tractable than the
standard definition in Definition 1, and thus it might be of practical use in the applications listed above.
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2. Outline of Main Result

Let T be the Banach Space C([0, T ];Rd) equipped with the norm

‖X‖ = sup
s∈[0,T ]

{|Xs|}, (1)

where |·| is the standard Euclidean norm overRd. We let (Ft) be the canonical filtration over (T ,B(T )).
For some topological space X , we let B(X ) be the Borelian σ-algebra and M(X ) the space of all
probability measures on (X ,B(X )). Unless otherwise indicated, we endowM(X ) with the topology of
weak convergence. Let σ = {t1, t2, . . . , tm} be a finite set of elements such that t1 ≥ 0, tm ≤ T and
tj < tj+1. We term σ a partition, and denote the set of all such partitions by J. The set of all partitions of
the above form such that t1 = 0 and tm = T is denoted J∗. We define |σ| = sup1≤j≤m−1{tj+1− tj}. For
some t ∈ [0, T ] and σ ∈ J∗, we define σ(t) = sup{s ∈ σ|s ≤ t}. The following definition of relative
entropy is standard.

Definition 1. Let (Ω,H) be a measurable space, and µ, ν probability measures.

RH(µ||ν) = sup
f∈E
{Eµ[f ]− logEν [exp(f)]} ∈ R ∪∞,

where E is the set of all bounded functions. If the σ-algebra is clear from the context, we omit theH and
write R(µ||ν). If Ω is Polish andH = B(Ω), then we only need to take the supremum over the set of all
continuous bounded functions.

Let P ∈ M(T ) be the following law governing a Markov–Feller diffusion process on T . Stipulate
P to be a weak solution (with respect to the canonical filtration) of the local martingale problem with
infinitesimal generator

Lt(f) =
1

2

∑
1≤j,k≤d

ajk(t, x)
∂2f

∂xjxk
+
∑

1≤j≤d

bj(t, x)
∂f

∂xj
,

for f(x) in C2(Rd), i.e., the space of twice continuously differentiable functions. The initial condition
(governing P0) is µI ∈M(Rd). The coefficients ajk, bj : [0, T ]×Rd → R are assumed to be continuous
(over [0, T ]×Rd), and the matrix a(t, x) is strictly positive definite for all t and x. Here P is assumed to
be the unique weak solution. We note that the above infinitesimal generator is the same as in [22] (p. 269)
(note particularly its Remark 4.4). We note that P is the law of the solution Y = (Y j) to the following
stochastic differential equation: for j ∈ [1, d],

dY j
t = bj(t, Y )dt+

d∑
k=1

ajk(t, Y )dW k.

Here (W k) are independent Wiener processes.
Our major result is the following. Let µ ∈M(T ) govern a random variableX ∈ T . For some x ∈ T ,

we note µ|[0,s],x, the regular conditional probability (rcp) given Xr = xr for all r ∈ [0, s]. The marginal
of µ|[0,s],x at some time t ≥ s is noted µt|[0,s],x.
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Theorem 1. Let (σ(m))m∈Z+ be any series of partitions such that σ(m) ⊆ σ(m+1) and |σ(m)| → 0 as
m→∞. For µ ∈M(T ),

R (µ||P ) = RF0(µ||P ) + sup
σ∈J∗

Γ(σ)

= RF0(µ||P ) + lim
m→∞

Γ
(
σ(m)

)
(2)

where

Γ(σ) = Eµ(x)

[∫ T

0

sup
f∈D

{
∂

∂t
Eµt|[0,σ(t)],x [f ]

−Eµt|[0,σ(t)],x(y)

[
Ltf(y) +

1

2

d∑
j,k=1

ajk(t, y)
∂f

∂yj
∂f

∂yk

]}
dt

]
. (3)

Here D is the Schwartz space of compactly supported functions Rd → R, possessing continuous
derivatives of all orders. If ∂

∂t
Eµt|[0,σ(t)],x [f ] does not exist, then we consider it to be∞.

Our paper has the following format. In Section 3 we make some preliminary definitions, defining
the process P against which the relative entropy is taken in this paper. In Section 4 we employ the
projective limits approach of [22] to obtain the chief result of this paper: Theorem 1. This gives an
explicit integral representation of the relative entropy. In Section 5 we apply the result in Theorem 1
to various corollaries, including the particular case when µ is the solution of a martingale problem. We
finish by comparing our results to those of [19] and [20].

3. Preliminaries

We outline some necessary definitions. For σ ∈ J of the form σ = {t1, t2, . . . , tm}, let σ;j =

{t1, . . . , tj}. We denote the number of elements in a partition σ by m(σ). We let Js be the set of all
partitions lying in [0, s]. For 0 < s < t ≤ T , we let Js;t be the set of all partitions of the form σ ∪ t,
where σ ∈ Js.

Let πσ : T → Tσ := R
d×m(σ) be the natural projection, i.e., such that πσ(x) = (xt1 , . . . , xtm(σ)

). We
similarly define the natural projection παγ : Tγ → Tα (for α ⊆ γ ∈ J), and we define π[s,t] : T →
C([s, t];Rd) to be the natural restriction of x ∈ T to [s, t]. The expectation of some measurable function
f with respect to a measure µ is written as Eµ(x)[f(x)], or simply Eµ[f ] when the context is clear.

For s < t, we write Fs,t = π−1[s,t]B(C([s, t];Rd)) and Fσ = π−1σ B(Tσ). We define Fs;t to be the
σ-algebra generated by Fs and Fγ (where γ = [t]). For µ ∈ M(T ), we denote its image laws by
µσ := µ ◦ π−1σ ∈ M(Tσ) and µ[s,t] := µ ◦ π−1[s,t] ∈ M(C([s, t];Rd)). Let µ ∈ M(T ) govern a random
variable X = (Xs) ∈ T . For z ∈ Rd, we write the rcp given Xs = z by µ|s,z. For x ∈ C([0, s];Rd) or
T , the rcp given that Xu = xu for all 0 ≤ u ≤ s is written as µ|[0,s],x. The rcp given that Xu = xu for
all u ≤ s, and Xt = z, is written as µ|s,x;t,z. For σ ∈ Js and z ∈ (Rd)m(σ), the rcp given that Xu = zu

for all u ∈ σ is written as µ|σ,z. All of these measures are considered to be inM(C([s, T ];Rd)) (unless
indicated otherwise in particular circumstances). The probability laws governingXt (for t ≥ s), for each
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of these, are respectively µt|s,z, µt|[0,s],x and µt|σ,z. We clearly have µs|s,z = δz, for µs a.e. z, and similarly
for the others.
REMARK. See [23] (Definition 5.3.16) for a definition of a rcp. Technically, if we let µ∗|s,z be the rcp given

Xs = z according to this definition, then µ|s,z = µ∗s,z ◦ π−1[s,T ] and µt|s,z = µ∗s,z ◦ π−1t . By [23] (Theorem 3.18),

µ|s,z is well-defined for µs a.e. z. Similar comments apply to the other rcp’s defined above.

In the definition of the relative entropy, we abbreviate RFσ(µ||P ) by Rσ(R||P ). If σ = {t}, we write
Rt(µ||P ).

4. The Relative Entropy R(·||P ) Using Projective Limits

In this section we derive an integral representation of the relative entropy R(µ||P ), for arbitrary
µ ∈ M(T ). We start with the standard result in Theorem 2, before adapting the projective limits
approach of [22] to obtain the central result (Theorem 1).

We begin with a standard decomposition result for the relative entropy [24].

Lemma 1. Let X be a Polish space with sub σ-algebras G ⊆ F ⊆ B(X). Let µ and ν be probability
measures on (X,F), and their regular conditional probabilities over G be (respectively) µω and νω.
Then

RF(µ||ν) = RG(µ||ν) + Eµ(ω) [RF(µω||νω)] .

The following Theorem is a straightforward consequence of [25] (Theorem 6.6): we provide an
alternative proof using the theory of Large Deviations in Section 6.

Theorem 2. If α, σ ∈ J and α ⊆ σ, then Rα(µ||P ) ≤ Rσ(µ||P ). Furthermore,

RFs,t(µ||P ) = sup
σ∈J∩[s,t]

Rσ(µ||P ), (4)

RFs;t(µ||P ) = sup
σ∈Js;t

Rσ(µ||P ). (5)

It suffices for the supremums in (4) to take σ ⊂ Qs,t, where Qs,t is any countable dense subset of [s, t].
Thus we may assume that there exists a sequence σ(n) ⊂ Qs,t of partitions such that σ(n) ⊆ σ(n+1),
|σ(n)| → 0 as n→∞ and

RFs,t(µ||P ) = lim
n→∞

Rσ(n)(µ||P ). (6)

We now provide a technical lemma.

Lemma 2. Let t > s, α, σ ∈ Js, σ ⊂ α and s ∈ σ. Then for µσ a.e. x, Rt(µ|σ,x||P|s,xs) =

R(µt|σ,x||Pt|s,xs). Secondly,

Eµσ(x)
[
Rt(µ|σ,x||P|s,xs)

]
≤ Eµα(z)

[
Rt(µ|α,z||P|s,zs)

]
.

Proof. The first statement is immediate from Definition 1 and the Markovian nature of P . For the second
statement, it suffices to prove this in the case that α = σ ∪ u, for some u < s. We note that, using a
property of regular conditional probabilities, for µσ a.e x,

µt|σ,x = Eµu|σ,x(ω)
[
µt|α,v(x,ω)

]
, (7)
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where v(x, ω) ∈ Tα, v(x, ω)u = ω, v(x, ω)r = xr for all r ∈ σ.
We consider A to be the set of all finite disjoint partitions a ⊂ B(Rd) of Rd. The expression for the

entropy in [26] (Lemma 1.4.3) yields

Eµσ(x)
[
R
(
µt|σ,x||Pt|s,xs

)]
= Eµσ(x)

[
sup
a∈A

∑
A∈a

µt|σ,x(A) log
µt|σ,x(A)

Pt|s,xs(A)

]
.

Here the summand is considered to be zero if µt|σ,x(A) = 0, and infinite if µt|σ,x(A) > 0 and
Pt|s,xs(A) = 0. Making use of (7), we find that

Eµσ(x)
[
R
(
µt|σ,x||Pt|s,xs

)]
= Eµσ(x)

[
sup
a∈A

∑
A∈a

Eµu|σ,x(w)
[
µt|α,v(x,w)(A)

]
log

µt|σ,x(A)

Pt|s,xs(A)

]

≤ Eµσ(x)Eµu|σ,x(ω)

[
sup
a∈A

∑
A∈a

µt|α,v(x,ω)(A) log
µt|σ,x(A)

Pt|s,xs(A)

]

= Eµα(z)

[
sup
a∈A

∑
A∈a

µt|α,z(A) log
µt|σ,πσαz(A)

Pt|s,zs(A)

]
.

We note that, for µα a.e. z, if µt|σ,πσαz(A) = 0 in this last expression, then µt|α,z(A) = 0 and we consider
the summand to be zero. To complete the proof of the lemma, it is thus sufficient to prove that for µα
a.e. z

sup
a∈A

∑
A∈a

µt|α,z(A) log
µt|α,z(A)

Pt|s,zs(A)
≥ sup

a∈A

∑
A∈a

µt|α,z(A) log
µt|σ,πσαz(A)

Pt|s,zs(A)
.

However, in turn, the above inequality will be true if we can prove that for each partition a such that
Pt|s,zs(A) > 0 and µt|σ,πσαz(A) > 0 for all A ∈ a,

∑
A∈a

µt|α,z(A) log
µt|α,z(A)

Pt|s,zs(A)
−
∑
A∈a

µt|α,z(A) log
µt|σ,πσαz(A)

Pt|s,zs(A)
≥ 0.

The left hand side is equal to
∑

A∈a µt|α,z(A) log
µt|α,z(A)

µt|σ,πσαz(A)
. An application of Jensen’s inequality

demonstrates that this is greater than or equal to zero.

REMARK. If, contrary to the definition, we briefly consider µ|[0,t],x to be a probability measure on T , such that
µ(A) = 1 where A is the set of all points y such that ys = xs for all s ≤ t, then it may be seen from the definition
of R that

RFT
(
µ|[0,t],x||P|[0,t],x

)
= RFt,T

(
µ|[0,t],x||P|[0,t],x

)
= RFt,T

(
µ|[0,t],x||P|t,xt

)
. (8)

We have also made use of the Markov property of P . This is why our convention, to which we now return, is to

consider µ|[0,t],x to be a probability measure on (C([t, T ];Rd),Ft,T ).
This leads us to the following expressions for R(µ||P ).
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Lemma 3. Each σ in the supremums below is of the form {t1 < t2 < . . . < tm(σ)−1 < tm(σ)} for some
integer m(σ).

R (µ||P ) = R0(µ||P ) +

m(σ)−1∑
j=1

E
µ[0,tj ](x)

[
RFtj ,tj+1

(
µ|[0,tj ],x||P|tj ,xtj

)]
, (9)

R (µ||P ) = R0(µ||P ) + sup
σ∈J∗

m(σ)−1∑
j=1

Eµσ;j (x)
[
Rtj+1

(
µtj+1|σ;j ,x||Ptj+1|tj ,xtj

)]
, (10)

Eµ[0,s](x)
[
Rt

(
µt|[0,s],x||Pt|s,xs

)]
= sup

σ∈Js
Eµσ(y)

[
Rt

(
µt|σ,y||Pt|s,ys

)]
, (11)

where in this last expression 0 ≤ s < t ≤ T .

Proof. Consider the sub σ-algebra F0,tm(σ)−1
. We then find, through an application of Lemma 1 and (8),

that

R (µ||P ) = RF0,tm(σ)−1
(µ||P ) +

E
µ[0,tm(σ)−1]

(x)
[
RFtm(σ)−1,tm(σ)

(
µ|[0,tm(σ)−1],x||P|tm(σ)−1,xtm(σ)−1

)]
.

We may continue inductively to obtain the first identity.
We use Theorem 2 to prove the second identity. It suffices to take the supremum over J∗, because

Rσ(µ||P ) ≥ Rγ(µ||P ) if γ ⊂ σ. It thus suffices to prove that

Rσ(µ||P ) = R0(µ||P ) +

m(σ)−1∑
j=1

Eµσ;j (x)
[
Rtj+1

(
µtj+1|σ;j ,x||Ptj+1|tj ,xtj

)]
. (12)

However, this also follows from repeated application of Lemma 1. To prove the third identity, we firstly
note that

RFs;t (µ||P ) = R0(µ||P ) + sup
σ∈Js;t

m(σ)−1∑
j=1

Eµσ;j (x)
[
Rtj+1

(
µtj+1|σ;j ,x||Ptj+1|tj ,xtj

)]
.

= sup
σ∈Js

{
Rσ(µ||P ) + Eµσ(x)

[
Rt

(
µt|σ,x||Pt|s,xs

)]}
.

The proof of this is entirely analogous to that of the second identity, except that it makes use of (5)
instead of (4). However, after another application of Lemma 1, we also have that

RFs;t (µ||P ) = RF0,s(µ||P ) + Eµ[0,s](x)
[
Rt(µt|[0,s],x||Pt|s,xs)

]
.

On equating these two different expressions for RFs;t (µ||P ), we obtain

Eµ[0,s](x)
[
Rt(µt|[0,s],x||Pt|s,xs)

]
= sup

σ∈Js

{(
Rσ(µ||P )−RF0,s(µ||P )

)
+Eµσ(x)

[
Rt

(
µt|σ,x||Pt|s,xs

)]}
.
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Let (σ(k)) ⊂ Js, σ(k−1) ⊆ σ(k) be such that limk→∞Rσ(k)(µ||P ) = RF0,s(µ||P ). Such a sequence
exists by (4). Similarly, let (γ(k)) ⊆ Js be a sequence such that Eµ

γ(k)
(x) [

Rt

(
µt|γ(k),x||Pt|s,xs

)]
is

strictly non-decreasing and, as k → ∞, asymptotically approaches supσ∈Js E
µσ(x)

[
Rt

(
µt|σ,x||Pt|s,xs

)]
.

Lemma 2 dictates that
E
µ
σ(k)∪γ(k) (x)

[
Rt

(
µt|σ(k)∪γ(k),x||Pt|s,xs

)]
asymptotically approaches the same limit as well. Clearly limk→∞Rσ(k)∪γ(k)(µ||P ) = RF0,s(µ||P )

because of the identity at the start of Theorem 2. This yields the third identity.

4.1. Proof of Theorem 1

In this section we work towards the proof of Theorem 1, making use of some results in [22]. However,
we first require some more definitions.

If K ⊂ R
d is compact, let DK be the set of all f ∈ D whose support is contained in K. The

corresponding space of real distributions is D′ , and we denote the action of θ ∈ D′ by 〈θ, f〉. If
θ ∈ M(Rd), then clearly 〈θ, f〉 = Eθ[f ]. We let C2,1

0 (Rd) denote the set of all continuous functions,
possessing continuous spatial derivatives of first and second order, a continuous time derivative of first
order, and of compact support. For f ∈ D and t ∈ [0, T ], we define the random variable∇tf : Rd → R

d

such that (∇tf(y))i =
∑d

j=1 a
ij(t, y) ∂f

∂yj
(for x ∈ T , we may also understand ∇tf(x) := ∇tf(xt)). Let

aij be the components of the matrix inverse of aij . For random variables X, Y : T → R
d, we define the

inner product (X, Y )t,x =
∑d

i,j=1X
i(x)Y j(x)aij(t, xt), with associated norm |X|2t,x = (X(x), X(x))2t,x.

We note that |∇tf |2t,x =
∑d

i,j=1 a
ij(t, xt)

∂f
∂zi

(xt)
∂f
∂zj

(xt).
Let M be the space of all continuous maps [0, T ]→M(Rd), equipped with the topology of uniform

convergence. For s ∈ [0, T ], ϑ ∈M and ν ∈M(Rd) we define n(s, ϑ, ν) ≥ 0 and such that

n(s, ϑ, ν)2 = sup
f∈D

{
〈ϑ, f〉 − 1

2
Eν(y)

[
|∇tf |2t,y

]}
. (13)

This definition is taken from [22] (Equation (4.7))—we note that n is convex in ϑ. For γ ∈ M(T ), we
may naturally write n(s, γ, ν) := n(s, ω, ν), where ω is the projection of γ onto M, i.e., ω(s) = γs.
It is shown in [22] that this projection is continuous. The following two definitions, lemma and two
propositions are all taken (with some small modifications) from [22].

Definition 2. Let I be an interval of the real line. A measure µ ∈M(T ) is called absolutely continuous
if for each compact set K ⊂ Rd there exists a neighbourhood U of 0 in K and an absolutely continuous
function HK : I → R such that

|Eµu [f ]− Eµv [f ]| ≤ |HK(u)−HK(v)| ,

for all u, v ∈ I and f ∈ UK .



Entropy 2014, 16 6713

Lemma 4. [22] (Lemma 4.2) If µ is absolutely continuous over an interval I , then its derivative exists
(in the distributional sense) for Lebesgue a.e. t ∈ I . That is, for Lebesgue a.e. t ∈ I , there exists µ̇t ∈ D

′

such that for all f ∈ D
lim
h→0

1

h
(〈µt+h, f〉 − 〈µt, f〉) = 〈µ̇t, f〉.

Definition 3. For ν ∈ M(C([s, t];Rd)), and 0 ≤ s < t ≤ T , let L2
s,t(ν) be the Hilbert space of all

measurable maps h : [s, t]×Rd → R
d with inner product

[h1, h2] =

∫ t

s

Eνu(x) [(h1(u, x), h2(u, x))u,x] du.

We denote by L2
s,t,∇(ν) the closure in L2

s,t(ν) of the linear subset generated by maps of the form (x, u)→
∇uf , where f ∈ C2,1

0 ([s, t],Rd). We note that functions in L2
s,t,∇(ν) only need to be defined du⊗νu(dx)

almost everywhere.

Recall that n is defined in (13), and note that 〈∗Ltµt, f〉 := 〈µt,Ltf〉.

Proposition 1. Assume that µ ∈ M(C([r, s];Rd)), such that µr = δy for some y ∈ Rd and 0 ≤ r <

s ≤ T . We have that [22] (Equation 4.9 and Lemma 4.8)∫ s

r

n(t, µ̇t − ∗Ltµt, µt)2dt = sup
f∈C2,1

0 (Rd)

{
Eµs(x)[f(s, x)]− f(r, y)

−
∫ s

r

Eµt(x)
[(

∂

∂t
+ Lt

)
f(t, x) +

1

2
|∇tf(t, x)|2t,x

]
dt

}
. (14)

It clearly suffices to take the supremum over a countable dense subset. Assume now that
∫ s
r
n(t, µ̇t −

∗Ltµt, µt)2dt <∞. Then for Lebesgue a.e. t, µ̇t = ∗Ktµt, where [22] (Lemma 4.8(3))

Ktf(·) = Ltf(·) +
∑

1≤j≤d

(hµ(t, ·))j ∂f
∂xj

(·), (15)

for some hµ ∈ L2
r,s,∇(µ) that satisfies [22] (Lemma 4.8(4))∫ s

r

n(t, µ̇t − ∗Ltµt, µt)2dt =
1

2

∫ s

r

Eµt(x)
[
|hµ(t, x)|2t,x

]
dt <∞. (16)

REMARK. We reach (17) from the proof of Lemma 9 in [22] (Eq 4.10). One should note also that in the

equation (4.10) of [22] the relative entropy R as L(1)
ν . To reach (18), we also use the equivalence between (4.7)

and (4.8) in [22].

Proposition 2. Assume that µ ∈ M(T ), such that µr = δy for some y ∈ Rd and 0 ≤ r < s ≤ T . If
RFr,s(µ||P|r,y) <∞, then µ is absolutely continuous on [r, s], and [22] (Lemma 4.9)

RFr,s(µ||P|r,y) ≥
∫ s

r

n(t, µ̇t − ∗Ltµt, µt)2dt. (17)
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Here the derivative µ̇t is defined in Lemma 4. For all f ∈ D, [22] (Eq. (4.35))

Eµs [f ]− logEPs|r,y [exp(f)] ≤
∫ s

r

n(t, µ̇t − ∗Ltµt, µt)2dt. (18)

We are now ready to prove Theorem 1 (the central result).

Proof. Fix a partition σ = {t1, . . . , tm}. We may conclude from (9) and (17) that

R (µ||P ) ≥ R0 (µ||P ) +
m−1∑
j=1

E
µ[0,tj ](x)

∫ tj+1

tj

n(t, µ̇t|[0,tj ],x − ∗Ltµt|[0,tj ],x, µt|[0,tj ],x)2dt. (19)

The integrand on the right hand side is measurable with respect to E
µ[0,tj ](x) due to the equivalent

expression (14). We may infer from (18) that

E
µ[0,tj ](x)

∫ tj+1

tj

n(t, µ̇t|[0,tj ],x − ∗Ltµt|[0,tj ],x, µt|tj ,x)2dt

≥ Eµ[0,tj ](x)
[
sup
f∈D

{
Eµtj+1|[0,tj ],x [f ]− logEPtj+1|tj ,xtj [exp(f)]

}]

= Eµ[0,tj ](x)
[

sup
f∈Cb(Rd)

{
Eµtj+1|[0,tj ],x [f ]− logEPtj+1|tj ,xtj [exp(f)]

}]
. (20)

This last step follows by noting that if ν ∈ M(Rd), and f ∈ Cb(R
d), and the expectation of f with

respect to ν is finite, then there exists a series (Kn) ⊂ Rd of compact sets such that∫
Rd

f(x)dν(x) = lim
n→∞

∫
Kn

f(x)dν(x).

In turn, for each n there exist (f
(m)
n ) ∈ DKn such that we may write∫
Kn

f(x)dν(x) = lim
m→∞

∫
Kn

f (m)
n (x)dν(x).

This allows us to conclude that the two supremums are the same. The last expression in (20) is merely

E
µ[0,tj ](x)

[
Rtj+1

(
µtj+1|[0,tj ],x||Ptj+1|tj ,xtj

)]
.

By (11), this is greater than or equal to

Eµσ;j (y)
[
Rtj+1

(
µtj+1|σ;j ,y||Ptj+1|tj ,ytj

)]
.

We thus obtain the theorem using (10).
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5. Some Corollaries

We state some corollaries of Theorem 1. In the course of this section we make progressively stronger
assumptions on the nature of µ, culminating in the elegant expression for R(µ||P ) when µ is a solution
of a martingale problem. We finish by comparing our work with that of [19,20].

Corollary 1. Suppose that µ ∈ M(T ) and R(µ||P ) < ∞. Then for all s and µ a.e. x, µ|[0,s],x is
absolutely continuous over [s, T ]. For each s ∈ [0, T ] and µ a.e. x ∈ T , for Lebesgue a.e. t ≥ s

µ̇t|[0,s],x = ∗Kµt|s,xµt|[0,s],x (21)

where for some hµs,x ∈ L2
s,T,∇(µ|[0,s],x)

Kµt|s,xf(y) = Ltf(y) +
d∑
j=1

hµ,js,x(t, y)
∂f

∂yj
(y). (22)

Furthermore,

R (µ||P ) = R0(µ||P ) +
1

2
sup
σ∈J∗

∫ T

0

Eµ(w)Eµt|[0,σ(t)],w(z)

[∣∣∣hµσ(t),w(t, z)
∣∣∣2
t,z

]
dt. (23)

For any dense countable subset Q0,T of [0, T ], there exists a series of partitions σ(n) ⊂ σ(n+1) ∈ Q0,T ,
such that as n→∞, |σ(n)| → 0, and

R (µ||P ) = R0(µ||P ) +
1

2
lim
n→∞

∫ T

0

Eµ(w)E
µ
t|[0,σ(n)(t)],w(z)

[∣∣∣hµ
σ(n)(t),w

(t, z)
∣∣∣2
t,z

]
dt. (24)

REMARK. It is not immediately clear that we may simplify (23) further (barring further assumptions). The

reason for this is that we only know that

Eµ|[0,σ(t)],w(z)
[∣∣∣hµσ(t),w(t, z)∣∣∣2t,z

]
is measurable (as a function of w), but it has not been proven that hµσ(t),w(t, z) is

measurable (as a function of w).

Proof. Let σ = {0 = t1, . . . , tm = T} be an arbitrary partition. For all j < m, we find from Lemma 3
that RFtj ,tj+1

(
µ|[0,tj ],x||P|tj ,xtj

)
<∞ for µ[0,tj ] a.e. x ∈ C([0, tj];R

d). We thus find that, for all such x,
µ|[0,tj ],x is absolutely continuous on [tj, tj+1] from Proposition 2. We are then able to obtain (21) and (22)
from Propositions 1 and 2. From (2), (16) and (21) we find that

R (µ||P ) = R0(µ||P ) +
1

2
sup
σ∈J∗

Eµ(x)

∫ T

0

Eµt|[0,σ(t)],x(z)

[∣∣∣hµσ(t),x(t, z)∣∣∣2
t,z

]
dt. (25)

The above integral must be finite (since we are assuming R(µ||P ) is finite). Furthermore

Eµt|[0,σ(t)],x(z)

[∣∣∣hµσ(t),x(t, z)∣∣∣2
t,z

]
is (t, x) measurable as a consequence of the equivalent form (14). This

allows us to apply Fubini’s theorem to obtain (23). The last statement on the sequence of maximising
partitions follows from Theorem 2.
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Corollary 2. Suppose that R(µ||P ) < ∞. Suppose that for all s ∈ Q0,T (any countable, dense subset
of [0, T ]), for µ a.e. x and Lebesgue a.e. t, hµs,x(t, xt) = Eµ|[0,s],x;t,xt (w)hµ(t, w) for some progressively
measurable random variable hµ : [0, T ]× T → R

d. Then

R (µ||P ) = R0(µ||P ) +
1

2

∫ T

0

Eµ(w)
[
|hµ(t, w)|2t,wt

]
dt.

Proof. Let Gs,x;t,y be the sub σ-algebra consisting of all B ∈ B(T ) such that for all w ∈ B,
wr = xr for all r ≤ s and wt = y. Thus hµs,x(t, y) = Eµ|[0,s],x;t,y(w)hµ(t, w) = Eµ [hµ(t, ·)|Gs,x;t,y].
By [27] (Corollary 2.4), since ∩s<tGs,x;t,xt = Gt,x;t,xt (restricting to s ∈ Q0,T ), for µ a.e. x,

lim
s→t−

Eµ|[0,s],x;t,xt (w)hµ(t, w) = hµ(t, x), (26)

where s ∈ Q0,T . By the properties of the regular conditional probability, we find from (24) that

R (µ||P ) = R0(µ||P ) +
1

2
lim
n→∞

∫ T

0

Eµ(w)

[∣∣∣Eµ|[0,σ(n)(t)],w;t,wt
(v)

[hµ(t, v)]
∣∣∣2
t,wt

]
dt. (27)

By assumption, the above limit is finite. Thus by Fatou’s lemma, and using the properties of the regular
conditional probability,

R (µ||P ) ≥ R0(µ||P ) +
1

2

∫ T

0

Eµ(w)

[
lim
n→∞

∣∣∣Eµ|[0,σ(n)(t)],w;t,wt
(v)

[hµ(t, v)]
∣∣∣2
t,wt

]
dt.

Through use of (26),

R (µ||P ) ≥ R0(µ||P ) +
1

2

∫ T

0

Eµ(w)
[
|hµ(t, w)|2t,wt

]
dt.

Conversely, through an application of Jensen’s inequality to (27)

R (µ||P ) ≤ R0(µ||P ) +
1

2
lim
n→∞

∫ T

0

Eµ(w)
[
E
µ|[0,σ(n)(t)],w;t,wt

(v)
[
|hµ(t, v)|2t,wt

]]
dt.

A property of the regular conditional probability yields

R (µ||P ) ≤ R0(µ||P ) +
1

2

∫ T

0

Eµ(w)
[
|hµ(t, w)|2t,wt

]
dt.

REMARK. The condition in the above corollary is satisfied when µ is a solution to a martingale problem—see

Lemma 5.

We may further simplify the expression in Theorem 1 when µ is a solution to the following martingale
problem. Let {cjk, ej} be progressively measurable functions [0, T ] × T → R. We suppose that
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cjk = ckj . For all 1 ≤ j, k ≤ d, cjk(t, x) and ej(t, x) are assumed to be bounded for x ∈ L (where
L is compact) and all t ∈ [0, T ]. For f ∈ C2

0(Rd) and x ∈ T , let

Mu(f)(x) =
∑

1≤j,k≤d

cjk(u, x)
∂2f

∂yj∂yk
(xu) +

∑
1≤j≤d

ej(u, x)
∂f

∂yj
(xu).

We assume that for all such f , the following is a continuous martingale (relative to the canonical
filtration) under µ

f(Xt)− f(X0)−
∫ t

0

Muf(X)du. (28)

The law governing X0 is stipulated to be ν ∈M(Rd).
From now on we switch from our earlier convention and we consider µ|[0,s],x to be a measure on T

such that, for µ a.e. x ∈ T , µ|[0,s],x(As,x) = 1, where As,x is the set of all X ∈ T satisfying Xt = xt

for all 0 ≤ t ≤ s. This is a property of a regular conditional probability (see Theorem 3.18 in [23]).
Similarly, µ|s,x;t,y is considered to be a measure on T such that for µ a.e. x ∈ T , µ|s,x;t,y(Bs,x;t,y) = 1,
where Bs,x;t,y is the set of all X ∈ As,x such that Xt = y. We may apply Fubini’s Theorem (since f is
compactly supported and bounded) to (28) to find that

〈µt|[0,s],x, f〉 − f(xs) =

∫ t

s

Eµ|[0,s],x [Muf ] du.

This ensures that µ|[0,s] is absolutely continuous over [s, T ], and that

〈µ̇t|[0,s],x, f〉 = Eµ|[0,s],x [Mtf ] . (29)

Lemma 5. If R(µ||P ) <∞ then for Lebesgue a.e. t ∈ [0, T ] and µ a.e. x ∈ T ,

a(t, xt) = c(t, x). (30)

If R(µ||P ) <∞ then

R(µ||P ) = R(ν||µI) +
1

2
Eµ(x)

[∫ T

0

|b(s, xs)− e(s, x)|2s,xs ds
]
. (31)

Proof. It follows from R(µ||P ) <∞, (21) and (22) that for all s and µ a.e. x, for Lebesgue a.e. t ≥ s

Eµ|s,x;t,xt [c(t, ·)] = a(t, xt). (32)

Let us take a countable dense subset Q0,T of [0, T ]. There thus exists a null set N ⊆ [0, T ] such that for
every s ∈ Q0,T , µ a.e. x and every t /∈ N the above equation holds. We may therefore conclude (30)
using [27] (Corollary 2.4) and taking s→ t−. From (29), we observe that for all s ∈ [0, T ] and µ a.e. x,
for Lebesgue a.e. t

hµs,x(t, xt) = Eµ|[0,s],x;t,xt [e(t, ·)].

Equation (31) thus follows from Corollary 2.
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5.1. Comparison of our Results to Those of Fischer et al. [19,20]

We have already noted in the introduction that one may infer a variational representation of the
relative entropy from [19,20] by assuming that the coefficients of the underlying stochastic process are
independent of the empirical measure in these papers. The assumptions in [20] on the underlying process
P are both more general and more restrictive than ours. His assumptions are more general insofar as the
coefficients of the SDE may depend on the past history of the process and the diffusion coefficient is
allowed to be degenerate. However, our assumptions are more general insofar as we only require P to
be the unique (in the sense of probability law) weak solution of the SDE, whereas [20] requires P to be
the unique strong solution of the SDE. Of course when both sets of assumptions are satisfied, one may
infer that the expressions for the relative entropy are identical.

6. Proof of Theorem 2

The following is an alternative proof to that of [25] (Theorem 6.6) employing the theory of Large
Deviations. The fact that, if α ⊆ σ, then Rα(µ||P ) ≤ Rσ(µ||P ), follows from Lemma 1. We prove the
first expression (4) in the case s = 0, t = T (the proof of the second identity (5) is analogous).

Definition 4. A series of probability laws ΓN on some topological space Ω equipped with its Borelian
σ-algebra is said to satisfy a strong Large Deviation Principle with rate function I : Ω → R if for all
open sets O,

lim
N→∞

N−1 log ΓN(O) ≥ − inf
x∈O

I(x)

and for all closed sets F
lim
N→∞

N−1 log ΓN(F ) ≤ − inf
x∈F

I(x).

If furthermore the set {x : I(x) ≤ α} is compact for all α ≥ 0, we say that I is a good rate function.

We define the following empirical measures.

Definition 5. For x ∈ T N , y ∈ T Nσ , let

µ̂N(x) =
1

N

∑
1≤j≤N

δxj ∈M(T ), µ̂Nσ (y) =
1

N

∑
1≤j≤N

δyj ∈M(Tσ).

Clearly µ̂Nσ (xσ) = πσ(µ̂N(x)). The image law P⊗N ◦ (µ̂N)−1 is denoted by ΠN
s,t ∈ M(M(T )).

Similarly, for σ ∈ J, the image law of P⊗Nσ ◦ (µ̂Nσ )−1 onM(Tσ) is denoted by ΠN
σ ∈M(M(Tσ)). Since

T and Tσ are Polish spaces, we have by Sanov’s theorem (see Theorem 6.2.10 in [14]) that ΠN satisfies a
strong Large Deviation Principle with good rate function R(·||P ). Similarly, ΠN

σ satisfies a strong Large
Deviation Principle onM(Tσ) with good rate function RFσ(·||P ).

We now define the projective limit M(T ). If α, γ ∈ J, α ⊂ γ, then we may define the projection
πMαγ : M(Tγ) →M(Tα) as πMαγ(ξ) := ξ ◦ π−1αγ . An element ofM(T ) is then a member ⊗σζ(σ) of the
Cartesian product ⊗σ∈JM(Tσ) satisfying the consistency condition πMαγ(ζ(γ)) = ζ(α) for all α ⊂ γ.
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The topology onM(T ) is the minimal topology necessary for the natural projectionM(T )→M(Tα)

to be continuous for all α ∈ J. That is, it is generated by open sets of the form

Aγ,O = {⊗σζ(σ) ∈M(T ) : ζ(γ) ∈ O}, (33)

for some γ ∈ J and open O (with respect to the weak topology ofM(Tγ)).
We may continuously embedM(T ) into the projective limitM(T ) of its marginals, letting ι denote

this embedding. That is, for any σ ∈ J, (ι(µ))(σ) = µσ. We note that ι is continuous because ι−1(Aγ,O)

is open inM(T ), for allAγ,O of the form in (33). We equipM(T ) with the Borelian σ-algebra generated
by this topology. The embedding ι is measurable with respect to this σ-algebra because the topology of
M(T ) has a countable base. The embedding induces the image laws (ΠN ◦ ι−1) onM(M(T )). For
σ ∈ J, it may be seen that ΠN

σ = ΠN ◦ ι−1 ◦ (πMσ )−1 ∈M(M(Tσ)), where πMσ (⊗αµ(α)) = µ(σ).
It follows from [22] (Thm 3.3) that ΠN ◦ ι−1 satisfies a Large Deviation Principle with rate function

supσ∈JRσ(µ||P ). However, we note that ι is 1 − 1, because any two measures µ, ν ∈ M(T ) such
that µσ = νσ for all σ ∈ J must be equal. Furthermore, ι is continuous. Because of Sanov’s theorem,
(ΠN) is exponentially tight (see Defn 1.2.17, Exercise 1.2.19 in [14] for a definition of exponential
tightness and proof of this statement). These facts mean that we may apply the inverse contraction
principle [14] (Thm 4.2.4) to infer that ΠN satisfies a Large Deviation Principle with the rate function
supσ∈JRσ(µ||P ). Since rate functions are unique [14] (Lemma 4.1.4), we obtain the first identity
in conjunction with Sanov’s theorem. The second identity (5) follows similarly. We may repeat the
argument above, while restricting to σ ⊂ Qs,t. We obtain the same conclusion because the σ-algebra
generated by (Fσ)σ⊂Qs,t is the same as Fs,t. The last identity follows from the fact that, if α ⊆ σ, then
Rα(µ||P ) ≤ Rσ(µ||P ).
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