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Abstract: Based on the principle of maximum entropy method (MEM) for quantitative 

texture analysis, the differential evolution (DE) algorithm was effectively introduced. Using 

a DE-optimized algorithm with a faster but more stable convergence rate of iteration, more 

reliable complete orientation distribution functions (C-ODF) have been obtained for  

deep-drawn IF steel sheets and the recrystallized aluminum foils after cold-rolling, which 

are both designated as the macroscopic cubic-orthogonal symmetry. With special reference 

to the data processing, no more other assumptions are required for DE-optimized MEM 

except that the system entropy approaches the maximum. 

Keywords: orientation distribution function (ODF); differential evolution (DE); maximum 

entropy method (MEM); initial solution; pole figure 
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1. Introduction 

With regard to the quantitative analysis of textured materials, when the representation method for 

orientation distribution function (ODF) appeared primarily in an approximation, it was defined as the 

series of a reduced ODF (R-ODF) for crystalline grain clusters [1–5]; furthermore, the complete 

orientation distribution (C-ODF) also evolved with the development of quantitative texture analysis 

through several specific mathematical treatment procedures [6–9]. Among the different methods 

currently utilized, the maximum entropy method (MEM) established in keeping with the principle of 

maximum entropy has become the most accessible technique for the resolving of C-ODF based on a 

nonlinear parametric system, which was proposed independently by Wang et al. and Schaeben in the 

late 1980s [8–11]. However, during the calculation process, a massive system of nonlinear equations 

must be solved to reach the genuine solution. Moreover, for all the conventional algorithms for solving 

the nonlinear equations based on the system of analytical mathematics, a set of specific initial solutions 

should be selected or defined. If the designation on initial solution is not appropriate, it usually results 

in the iterative failure of the whole calculation process. That’s exactly what makes MEM a difficult 

approach to the genuine solution by means of conventional iterative algorithms [12–16]. 

In recent years, the maximum entropy principle has been used in a wider range of applications for 

dealing with complex systems consisting of nonlinear variables [17–21]. It is crucial for such an 

analytical method to solve the fuctional relevancy among multivariate nonlinear variables by means of  

the most accessible variables that are linearly independent of each other [22–29]. In order to improve 

the efficiency for solving this problem, a DE algorithm was introduced for the solution procedure. The 

DE algorithm is a newly developed meta-heuristic approach that mainly has three advantages: detecting 

the true global minimum regardless of the initial parameter values, fast convergence, and the use of few 

control parameters. The DE algorithm is a population-based algorithm like genetic algorithms using 

similar operators: crossover, mutation and selection [30–35]. It works to prevent the solving procedure 

from obscure selection of the initial solution. 

2. General Principle Description 

2.1. ODF Representation Derived by MEM 

As with the implementation of MEM, sub-orientation space without symmetry is presented in 

response to the crystalline structure and texture symmetry of different materials, and then, divided into 

equivalent orientation units whose total number is J. Vj is defined as the volume percentage of crystalline 

orientation that falls coincidently in orientation unit j of the detected sample; ω (θj, ψj, φj) denotes the 

relative orientation density of unit j identified (θj, ψj, φj are the central Euler angles of j): 

( , , )sin , 1,2, ,j j j j jV j Jω θ ψ ϕ θ θ ψ ϕ= Δ Δ Δ = ⋅⋅ ⋅ ⋅ ⋅ ⋅  (1)

1

1
J

j
j

V
=

=  (2)

In the R-ODF series, the coefficient of the lmn th item, Wlmn, is substituted by Wr in subscript label, 

then, r = 1, 2, …, R; the value of R is determined by lmn where the expanded series is truncated. 

According to series expansion method [2,3], there should exist: 



Entropy 2014, 16 6479 

 

 

1

, 1,2, ,
J

r j rj
j

W V R r R
=

= = ⋅ ⋅ ⋅ ⋅ ⋅⋅  (3)

In the Equation (3), the coefficient of ODF series rW  can be calculated from experimental data. The 

coefficient Arj is an identified value in the case of complete macroscopic symmetry. The deduction 

process is elucidated in the Equation (4) as follows: 

1
{[Z (cos )cos(m n ) ( 1) Z (cos )cos(m n )]

3
m

rj mn j j j j j jmn
A θ ψ ϕ θ ψ ϕ+= + + − −

   

2 2 2 2 2 2[Z (cos )cos(m n ) ( 1) Z (cos )cos(m n )]m
mn mn

θ ψ ϕ θ ψ ϕ++ + + − −
   

3 3 3 3 3 3[Z (cos )cos(m n ) ( 1) Z (cos )cos(m n )]}m
mn mn

θ ψ ϕ θ ψ ϕ++ + + − −
   

(4)

In Equation (4), Zlmn(θ) denotes the augmented Jacobi polynomials; and two sets of Euler angles with 
the subscripts of 2 or 3 are derived from { , ,j j jθ ψ φ } due to the tri-fold symmetry in crystalline structure, 

whose values can be determined according to the reference [13,16].  

In accordance with the principle of entropy maximum, there should be: 

0
1

( 1 )
R

r rj
r

x x A

jV e =

− − −
= ; r = 1, 2, …, R; j = 1, 2, …, J (5)

In Equation (5), x (x0, x1, x2, …, xR) are the undetermined Lagrange multipliers. When Equation (5) is 

substituted into both Equations (2) and (3), a set of nonlinear equations on solving different x whose 

total number is (R + 1) are obtained:  

0
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 (6)

Based on the theorem that the number of unknown variables equals the amount of equations,  

Equation (6) is. However, it holds a set of nonlinear equations with the unknown variables sitting  

on their perch among the exponential terms, so it is practically infeasible to solve such a system of 

equations by the regular mathematical method.  For this purpose, the objective function S is established 

for the DE algorithm. 

The objective function of S, which is composed by the nonlinear equation set, can be expressed as: 

Min S= (
0

1

( 1 )
R

r rj
r

J x x A
2

j 1

1 e )=

− − −

=


−  + 

0
1

( 1 )
R

r rj
r

R J x x A
2

r r rj
r 1 j 1

f (W A e )=

− − −

= =


−   (7)

where ]1,0(∈rf  is a positive parameter for controlling the effect of Wr on S, whose value should be assumed 

as less than 1. When Equations (6) and (7) are both substituted into DE, the values of x0, x1, x2, …, xR  

can be solved. Then, after being substituted back to Equations (5) and (1), the complete ODF (C-ODF) can 

be obtained.  
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2.2. Differential Evolution Algorithm 

Differential evolution (DE) is an algorithm based upon swarm evolution, which is characterized by 

memorizing the individual optima and sharing information in the swarm. It performs according to the 

mechanism of cooperation and competition among the individuals to achieve the solution of an 

optimization problem.  

As a classic formulation, DE begins with a randomly initiated swarm population of NP in the whole 
accessible solution space, which is designated as 0 0 0 0

1 2{x , x , , x }, N
pN pX = ⋅⋅⋅⋅⋅⋅  denotes the swarm 

population; furthermore, an individual with D-dimensional parameter vectors represents the initial 
solution of the specified problem, which is designated as 0 0 0 0

1 2x [ , , , ]i i i iDx x x= ⋅⋅⋅⋅⋅⋅ , i = 1, 2, …, PN . D is 

the dimensionality of the optimization problem.  

In this paper, S(X) is defined as the objective function to be optimized for solving the MEM nonlinear 

equation set, and X (x0, x1, x2, …, xR) is the decision vector consisting of R + 1 variables and designated 

as components for the equation set to be solved, i.e., X is the solution vector and in addition termed as 

an individual that consists of an R + 1 dimensional parameter vector. DE algorithm executes to evolve 
a population including NP individuals in number, i.e., ikX  = ( )0 1 2, , , ( ), 1,2, ,i i i iR Px x x x S X i N⋅⋅⋅ ∈ = ⋅⋅⋅ . 

So, the amount of candidate solutions is NP. ,
G
i kx  signifies the kth parameter of the ith solution vector. G 

denotes the Gth generation of evolution. NP doesn’t change during the evolution process once determined. 

The essential feature for DE is an iterative algorithm for generating trial vectors. Mutation and 

crossover operators are used to generate trial vectors, and the selection operator then determines which 

of the vectors will survive into the next generation [31–36]. In this paper, we adopt the fundamental 

scheme whose notation is described as “DE/rand/1/bin” strategy for solving ODF utilizing a set of 

experimental information [2–6].  

2.2.1. Initialization 

DE operates in a straight parallel search method. An initial population begins randomly with a 

uniform distribution in the whole accessible search space to activate the iterative scheme of DE. When 

G = 0, it starts as a population of NP parameter vectors in the R + 1 dimensionality, i.e.,

{ }0 0 0
1 2(0) x , x ,..., x

PNX = , and 0 0 0 0
,0 ,1 ,x [ , ,..., ]i i i i Rx x x= . 

2.2.2. Mutation 

DE mutates and recombines the population to produce a population of NP mutant vectors, 

,0 ,1 ,2 ,( , , ,..., )G G G G G
i i i i i RV ν ν ν ν= . For each target vector ,

G
i kx , a mutant vector ,

G
i kν  is generated according to  

the following: 

( )G
kr

G
kr

G
kr

G
ki xxFx ,,,, 321

−⋅+=ν , 0,  1,  2,  ...,  k R=  (8)

In Equation (8), F is commonly known as a scale factor and is a positive real number. It controls the 

amplification of the different vector ( )
2 3, ,
G G
r k r kx x− . According to [10], the range of F varies within [0,2]; Three 

individuals, 
1 ,
G
r kx , 

2 ,
G
r kx  and 

3 ,
G
r kx , are selected randomly from the current population, where the indices 
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r1, r2 and r3 represent the random and mutually different integers generated within the range of [1,NP] so 
that { }1 2 3, , 1, 2,..., pr r r N∈ , and furthermore different from index i such that 1 2 3r r r i≠ ≠ ≠ . It should be 

noted that these indices must be different from each other and out of the proceeding index labeled with i 

so that Np should be ≥ 4. If one component of the mutant vector overflows the search space, then a new 

substitute value is generated by activating initialization. 

2.2.3. Crossover 

The target vector is mixed with the mutated vector, utilizing that the parent vector is discretely 
recombined with the mutated vector to yield a trial vector, ,0 ,1 ,2 ,( , , ,..., )G G G G G

i i i i i RU u u u u=  so as to balance the 

differential mutation search strategy: 







≠>

=≤
=

randr
G

ki

randr
G

kiG
ki

kkorCkirandx

kkorCkirandv
u

),(,

,),(,

,

,

,  (9)

In Equation (9), ( , ) [0,1]rand i k ∈  is a uniformly generated random number ranging within [0,1]. 

1,2,..., Pi N=  and 0,1,2,...,k R=  refers to the kth parameter of the ith vector, which performs to establish 

a ,
G
i ku  through discrete recombination. { }0,1,2,...,randk R∈  denotes a randomly triggered integer index, 

which ensures that ,
G
i ku  acquires at least one mutant vector different from ,

G
i kv ; otherwise, no new parent 

individual would be generated and the population should still remain unchanged. [0,1]rC ∈  is the 

crossover probability constant, which is empirically calibrated by the user.  

2.2.4. Selection 

A greedy criterion is adopted for DE to decide whether or not the trial vector ,
G
i ku  should become a 

member generation of G + 1 after it is compared to the target vector ,
G
i kx . Only when the ,

G
i ku  yields a 

better fitness function value than the ,
G
i kx  does can it be set to 1G

ix + . Otherwise, the previous target vector 

,
G
i kx  becomes retained. The selection scheme is described as follows for an issue on minimization: 







≥

<
=+

).()(,

),()(,

,,,

,,,1
, G

ki
G

ki
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G
ki

G
kiG

ki
xSuSx

xSuSu
x  (10)

A typical pseudo-code of DE algorithm according to the “DE/rand/1/bin” mutation scheme [11–13] 

is described in Algorithm 1 as follows: 
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Algorithm 1: Pseudo-code flowchart of a typical DE algorithm with “DE/rand/1/bin” mutation scheme 

1: Generate the initial population; 

2: Evaluate the fitness for each individual; 

3: While the halting for each individual; 

4:   for i=1 to NP do 

5:     Select uniform randomly irrr ≠≠≠ 321 ; 

6:     =randk randint(1, R+1); 

7:       for k=0 to R do 

8:         if randrealk (0,1)<Cr or randkk ⇐ then 

9:         ( )krkrkrki xxFxu ,,,, 321
−⋅+= ; 

10:         else 

11:         kiki xu ,, = ; 

12:         end if 

13:       end for 

14:   end for 

15:   for i=1 to NP do 

16:   Evaluate the offspring ui; 

17:     if S(ui) is better than or equal to S(Xi) then 

18:     Replace Xi with ui; 

19:     end if 

20:   end for 

21: end while 

The number of control parameters in DE is very small. The classic DE has three parameters that need 

to be adjusted: (a) the population size NP; (b) the mutation scale factor F∈[0,2]; (c) the crossover rate  

Cr ∈ [0,1]. How these parameters affect the performance of DE algorithm is well discussed in the 

references [30–34]. As for the termination conditions, either a maximum iteration number corresponding 

to the objective function for evaluation or a fixed tolerance on precision error of the desired solution can 

be proposed in advance. It can be shown that this algorithm is favorable due to its simplicity in 

formulation, easiness to be operated and suitability for calculation by computers.  

In DE algorithm, the population size is set as NP = 300, which is determined according to the principle: 

3R ≤ NP ≤ 9R, suggested by Storn and Price et al. [33–36] due to the large value of R = 58, when l equals 
to 16; cross rate, Cr = 0.2, which is confirmed by the 59 linearly independent vectors of ikX  and also 

referred to the suggestion by Storn and Price et al. [32,33]; the scaling factor is referred to as 
(0.2,05)jF randreal= ; the tolerance on precision error in equality is set as 45 10δ −= ×  according to the 

references proposed in [31–33]. The algorithm is quite robust with respect to the algorithmic parameters 

F and Cr. Setting F = 0.35 and Cr = 0.2 will give generally good convergence on a wide range of problems 

according to references [34–40].  

The calculated results should be adjusted in terms of normalization for comparison with each other. For 

this purpose, in the whole programming procedure of solving genuine C-ODF, the parameter settings are 

fixed as the followings unless a change is mentioned: In MEM, for simplicity, all of fr (r = 1, 2, 3, …, R) 



Entropy 2014, 16 6483 

 

 

in the proposed objective function S(X) are suggested to perform as a constant of 1/16 experientially 

since that the truncation point was set to l = 16. Since that the DE optimized MEM is designated for the 

quantitative texture analysis on the cubic materials with macro symmetric texture, therefore, the total 

amount of orientation units corresponding to sub-space is set to 1296 (72 × 18), i.e., J = 1296. 

3. Experimental Results and Discussion 

The test samples were the recrystallized aluminum foils after cold-rolling (fcc), and the deep-drawn 

IF steel sheets (bcc), respectively. More than two samples for each group in comparison were examined 

systematically in this work. The measurements were carried out using an X'Pert diffractometer from 

PANalytical (Almelo, The Netherlands) equipped with a Cobalt target (λkα = 0.179 nm). Three 

experimental pole figures of (111), (200), and (220) corresponding to the fcc structure, and (110), (200), 

and (211) to the bcc structure have been measured (α = 0°~70°, β = 0°~360°, △α = △β = 5°), respectively.  

3.1. ODF Representation on Aluminum Foils 

The results of ODF representation derived by different algorithms are shown in comparison as Figure 1. 

It can be obviously observed that the ODF representation of the fcc aluminum foil sample consists of 

exclusively intensive {100} <001> cubic texture. By adopting the traditional Two-step Method [6], its 

maximum orientation density is ωmax = 167.51, and there still exist “ghost peaks” together with negative 

zones in divergence shown as Figure 1a, whose negative value reaches as low as −60.16. The C-ODF 

derived by a damped Newtown method based on MEM is shown in Figure 1b, ωmax = 260.05. There 

exist no “ghost peaks” or negative areas any more. Moreover, the C-ODF derived by DE optimized 

MEM is shown as Figure 1c, ωmax = 265.97. It is verified that the positions of the texture components, 
i.e., the { , , }ψ θ ϕ  presented in the ODF configuration are completely identical to each other except that 

their intensities differ more or less. 

Although the value of the primary {100} <001> cubic texture component in Figure 1b appears almost 

identical to that in Figure 1c, it has been achieved through 4000 iterations on condition that an initial 

solution selection must be selected appropriately. By comparison, its magnitude is ten times larger than 

that derived by DE. The results calculated for the Aluminum foils corresponding to the iteration number,

maxG , are list in details in Table 1. 

Table 1. The effect of iteration number on the calculation results of Al foils using DE 

optimized MEM. 

maxG  Maximum iteration number 

50 100 200 600 1000 4000 

Objective values, minS  5.19 × 10−2 2.09 × 10−2 1.76 × 10−3 4.91 × 10−4 1.05 × 10−4 7.62 × 10−5 

CPU time, t (s) 3.205 6.795 12.895 29.940 63.245 234.125 

maxω  283.07 281.95 263.50 265.97 264.96 265.95 

It is indicated from Table 1 that, when k exceeds 600, Smin converges to a convinced value. Hence, 
600
,( )i kS u  is designated as the genuine solution when maxG  equals to 600, and the C-ODF can be  

resolved consequently.  
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Figure 1. Constant-ϕ section of ODF representation for a Aluminum foil in comparison 

derived by different algorithms. (a) R-ODF derived by Two-step Method; (b) C-ODF 

derived by MEM using the damped Newton algorithm, G = 4000 iterations; (c) C-ODF 

derived by MEM using DE algorithm, G = 600. 

 
(a) 

 
(b) 
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Figure 1. Cont. 

 
(c) 

3.2. ODF Representation on IF-steel Sheets 

The samples are 0.8 mm deep-drawn plates of standard IF steel provided by a commercial steel plant. 

More than two groups of samples were compared in practice. The results of ODF representation derived 

by different algorithms are compared with each other and shown in Figure 2. In R-ODF, its maximum 

orientation density is ωmax = 7.07, and the “ghost peaks” and dispersive negative value zones still appear, 

as shown in Figure 2a, whose negative value grade approaches as low as −0.69. Correspondingly, the 

magnitude of C-ODF derived by DE optimized MEM, shown in Figure 2c, reaches ωmax = 9.75. No 

“ghost peaks” or negative areas appear. The result derived by a damped Newtown method is also shown 

in Figure 2b. It is observed that the positions of the primary γ-fiber (<111>//ND) texture component 

derived by different methods are completely identical to each other in Figure 2. Therefore, it can be 
verified that the positions of the texture components, i.e., the { , , }ψ θ ϕ  presented in the ODF 

configuration are completely identical to each other except that their intensities differ more or less. 

Although the value of the strongest texture component is nearly identical to that in Figure 2c, ωmax = 9.53, 

it has been achieved through 5000 iterations with a set of initial solution being designated appropriately. 

The iteration number also stands ten times greater than that derived by DE. A typical calculation result 
of the IF steel sheets corresponding to the iteration number, maxG , is list in details in Table 2. 
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Figure 2. Constant-ϕ section of ODF representation for IF steel sheet in comparison derived 

by different algorithms. (a) R-ODF derived by Two-step Method; (b) C-ODF derived by 

MEM using the damped Newton algorithm, maxG  = 5000 iterations; (c) C-ODF derived by 

MEM using DE algorithm, maxG  = 500. 

 

(a) 

(b) 
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Figure 2. Cont. 

(c) 

Table 2. The effect of iteration number on the calculation results of IF steel using DE 

optimized MEM. 

Gmax 
Maximum iteration number 

50 100 200 500 1000 5000 

ϕ  = 45° section 

in details 
      

Objective 

values, Smin 
5.19 × 10−2 2.09 × 10−2 3.76 × 10−3 4.97 × 10−4 1.35 × 10−4 3.94 × 10−5 

CPU time(s) 3.205 6.795 12.895 29.940 83.765 312.350 

ωmax 11.36 11.04 10.42 9.75 9.81 10.03 

It is indicated from Table 2 that, when maxG  exceeds 500, Smin converges to a fixed value. Hence, 
500
,( )i kS u  is designated as the genuine solution when maxG  equals to 500, and the C-ODF can be resolved 

consequently. Theϕ  = 45º section diagrams in Table 2 are the concise representation on bcc materials, 

which indicates the {111} γ-fiber texture component parallel to the rolling surface of IF steel. The 

diagrams illustrate the variation tendency of the primary texture component in IF steel corresponding to 
different iterations obviously. When maxG  stands at 500, the configuration of ϕ -section is nearly 

identical to that with 5000 iterations.  
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It should be noted that DE is a population-based search strategy and performs through the stochastic 

optimization algorithm, which differs prominently in the sense that distance and direction information 

from the current population are utilized to guide the search process compared with other evolutionary 

algorithms (EA). Consequently, the optimum solution for each different calculation under the same 

initial conditions doesn’t remain constant but rather varies within a very limited range. The variation is 

rational due to the robustness of global optimum corresponding to the prerequisite that the solution’s 

behavior changes continuously with the initial conditions. Since that there is no need for an initial preset 

solution for executing the MEM, it is a well-posed problem. 

In conclusion, it is proved that DE is a more efficient algorithm for global optimization and also an 

evolutionary method for ODF representation of textured materials so as to make the results much more 

reliable with much less computation time. 

4. Conclusions 

In this article the differential evolution algorithm has been effectively applied for an improved ODF 

representation on cubic textured materials by MEM without designating a set of initial solutions.  

(1) The complete ODF derived by differential evolution is entirely feasible due to its simple 

parameterization scheme, whose primary texture component is endowed with the 

configuration pattern in more details with much less iteration rounds. 

(2) The differential evolution algorithm is suitable for solving the nonlinear equations of 

quantitative texture analysis, which is proposed in this article for the ODF representation on 

the cubic textured materials.  

(3) Differential evolution is characterized by global optima to provide better computation results 

via much less iterations in comparison with those deduced by conventional damped Newton 

iteration, which shows a universal optimization mechanism for quantitative texture analysis 

that follows the maximum entropy principle. 

Acknowledgments 

The authors gratefully acknowledge the National Foundation of Natural Science (No. 51171120) for 

the financial support. The authors also gratefully acknowledge the Fundamental Research Funds for the 

Central Universities (N110404024) for the financial support. 

Author Contributions 

Dapeng Wang conceived, designed, and performed the study. Dapeng Wang and Dazhi Wang 

computed and analysed the experimental data in the paper. Dapeng Wang, Baolin Wu, Fu Wang and  

Zhide Liang wrote and revised the paper together. All of the authors shared the idea, data analysis, 

numerical results and presentation of the paper. All of the five authors have discussed, read and approved 

the final manuscript. 
  



Entropy 2014, 16 6489 

 

 

Appendix  

A. Analysis of the Reduced ODF(R-ODF) via Two-step Method 

In order to specify an orientation, it is necessary to set up a reference system known as a coordinate 

system. Two sets are required: one is related to the whole specimen, and the other is related to the 

crystalline coordinate. Both coordinates are Cartesian and preferably right-handed. The 0-ABC is set on 

the specified specimen, which signifies the same representation as a pole figure. The rolling direction 

(RD), transverse direction (TD) and normal direction to the rolling plane (ND) are the three ones typically 

defined as a geometric framework; furthermore, another Cartesian coordinate system of 0-XYZ is also 
set corresponding to an individual grain specified in combination with 0-ABC. As a result, the { , , }ψ θ ϕ  

of three Euler angles that are derived from the crystalline coordinate in relation to the specimen 
coordinate, is termed as the crystalline orientation shown as Figure 3. ( , , )ω θ ψ ϕ  is further defined as 

the orientation density that represents the volume fraction of grains in a orientation unit, and is described as: 

( , , ) sin
V

K
Vωω θ ψ ϕ θ θ ψ ϕΔ= Δ Δ Δ  (11)

In the Equation (11), sinθ θ ψ ϕΔ Δ Δ  is defined as the orientation unit incorporating the crystalline 

orientation of { , , }ψ θ ϕ ; /V VΔ  represents the volume fraction of grains that falls coincidently in the 

orientation unit, designating the occurrence probability of the above crystalline orientation to the 
specified orientation unit; Kω  is defined as a scale factor, and if the value of ( , , )ω θ ψ ϕ  is fitted to 1 

corresponding to a non-textured condition, then 28Kω π= . In this case, ( , , )ω θ ψ ϕ  is termed as the 

relative orientation density.  

Figure 3. The rectangular coordinate system of a specimen in combination with a crystalline one. 

 

The orientation distribution function (ODF) of ( , , )ω θ ψ ϕ  can be obtained by means of various 

orientation measurement techniques, but the widespread applications still remain focused on calculating 

ODF from {hkl} pole figures measured by X-ray diffraction technology, i.e., the series expansion method 
(SEM). According to the principle of spherical harmonic analysis, both the pole figure of ( , )jq α β  and 

the ODF of ( , , )ω θ ψ ϕ  can be expanded into series, then: 
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0

( , ) (cos )j m im
j m

m

q Q P e βα β α
∞

−

= =−

=


 
 

 (12)

In Equation (12), j
mQ  designates the coefficient of the m th item corresponding to the jth pole figure, 

which can be determined by reference to Equation (13), and then calculated from each value of ( , )jq α β  

measured experimentally: 
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(cos )mP α  represents the associated Legendre polynomials performing both in Equations (12) and (13); 

α  together with β  designate the polar angle and argument, respectively. 

Likewise, the ODF of ( , , )ω θ ψ ϕ  is expended into series as: 
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In Equation (14), mnW  designates the coefficient of the mn th item corresponding to the ODF; 

(cos )mnZ θ  represents the augmented Jacobi polynomials. Based upon the relationship between the two 

coefficients, the coefficient of ODF, i.e., mnW  could be calculated by reference to the Equation (15) after 

the designated pole figures being measured: 

1/22
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2 1
jinj n

m mn j
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=−

= Θ
+ 



  


 (15)

For Equation (15), jΘ  and jΦ  are defined as the polar and argument angles, respectively. 

Meanwhile, both angles are derived from the normal direction of a {khl} plane that lies in the crystalline 

coordinate system for the jth pole figure. Subsequently, the ODF can be worked out under Equation (14) 

again. For cubic textured materials, if the crystal symmetry and geometrical symmetry of the designated 

specimen are both taken into consideration, the calculation on   can reach to 16 or 22 with only two 

complete pole figures. However, it is difficult to implement the measurement on the complete pole figure 

in practice; furthermore, it is more difficult to investigate the superficial orientation distribution in 

textured materials. It is attributed to Bunge who presented such mathematical procedures [2,3] for 

realizing the purpose discussed above by adopting the reflection method proposed by Schulz [41]. The 

Two-step Method has been widely recognized and adopted after that it was first proposed by Liang and 

Xu et al. in 1981 [6]. 
The principle goes that for the first step, the normalized factors of jN  and 0nW  for the pole figures 

should be determined primarily by computing the integral along the argument β , which is described by 

Equation (16): 
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For the second step, the rest of mnW  should be determined by grouping the m  clusters according to 

Equation (17): 
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The ( , , )ω θ ψ ϕ  deduced from such two steps is designated as a reduced ODF(R-ODF). 

B. Analysis of the Complete ODF(C-ODF) via the Maximum Entropy Method 

It is generally known that the R-ODF contains some negative value areas in Euler space, which 

renders some “ghost peaks” that do not correspond to the authentic texture components; and even some 

distorted peaks in shape that really correspond to the genuine texture components. The fundamental 

causes are rooted in the lack of   on the odd items in the expanded orientation density series complying 

with the  Friedel law of X-ray diffraction, and furthermore in combination with the effect of truncation 

error, which were indicated by Matthies in 1979 [8–10]. The measurement and calculation on the C-ODF 

without containing the negative value areas after an appropriate completion for the odd items still 

remains as challenging as ever for researchers. 

It is necessary to apply a new mathematical theory or technique to reveal the whole configuration of 

C-ODF, through which the most accessible results can be acquired on the premise of insufficient 

information. Therefore, two prerequisites must be satisfied synchronously: (a) being consistent with all 

known information; (b) being irrelevant to the unknown information with a maximum limit. The 

maximum entropy method (MEM) in conformity with the principle of maximum information entropy 

can meet such two prerequisites. 
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The MEM was first proposed by Wang and Liang [13] for investigating the crystalline orientation 

distribution of textured materials using an innovative information entropy theory in 1987. The 

independent Euler subspace without symmetry is principally divided into N = 72 equivalent orientation 

units [16], shown as Figure 4. 

Figure 4. The division of 72 equivalent orientation units. 

 

When ψ  is divided by 5º from 0º to 90º, it would separate into 18 layer areas, and then the total number 

of orientation units divided from the whole Euler sunspace sums up to J = N × 18 = 72 × 18 = 1296 [13,16]. 
The Euler angle, { , , }j j j jg ψ θ ϕ=  at each central point of all the orientation units is set as the azimuth 

angle of the corresponding orientation unit; and the average density of orientation in the jth orientation 
unit is defined as jV . The volume fraction of each orientation unit is set as 1/1296 corresponding to a 

non-textured specimen. According to the theory of R-ODF, jV  should be described by Equation (18), 

( , , ) sinj j j j jV ω θ ψ ϕ θ ψ θ ϕ= Δ Δ Δ  (18)

Moreover: 

1

1
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j
j

V
=

=  (19)

The description on system entropy is shown as Equation (20) by reference to the definition given by 

Jaynes in 1957 [41]:  
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H k V
=
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Equation (20) designates the magnitude of systematic uncertainty, and k  denotes the scale factor 

whose value is usually set to 1. When the total amount of mn  is indicated by R, then there should exist 

the relation in Equation (21): 

{ (cos ) cos( )rj mn j j jA Z m nθ ψ ϕ= + ( 1) (cos )cos( )}mn j j jZ m nθ ψ ϕ+ − −
  (21)

Moreover: 

1
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j

W A V r R
=

= = ⋅⋅⋅  (22)

In Equation (22), rW  denotes the coefficient of the ODF series. Moreover, Equation (23) should be 

achieved according to the maximum entropy principle as follows: 
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A partial differential is performed upon the variable jV  in Equation (23), and its result is further set 

to 0, i.e., 
j
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 = 0, then, there exists: 
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Only on the condition that each item in the formula above equals to zero can the sum over all the 

partial derivatives reach to naught, if any. Then:  
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As a result, jV  is further concluded as Equation (26): 
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A group of nonlinear equation sets, shown as the Equation (27), can be formulated by substituting the 

Equation (26) into the Equations (19) and (22), respectively:  
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According to the principle of solving the equation sets, only when the number of unknown variables 

equals the amount of equations can they be solvable. However, Equation (27) consists of a system of 

nonlinear equations with the unknown variables sitting in the position of the exponential terms; therefore, 

it is nearly infeasible to be solved by the regular mathematical methods. Up to now, researchers still 

make unceasing progress in exploring the possible paths for resolving the problem of MEM [42–44]. 
Conservatively, a set of 0λ , 1λ , 2λ , …, Rλ  can be solved by the damped Newton method or the 

steepest descent method, and furthermore substituted back into Equation (26), then all of jV  can be 

determined. After jV  is substituted back into Equation (18) and further transformed to Equation (28), 

the C-ODF of ( , , )j j jω θ ψ ϕ  can be resolved from the Equation (28), in the same expression as the 

Equation (1). 

( , , ) V / sinj j j j j j j jω θ ψ ϕ θ θ ψ ϕ= Δ Δ Δ  (28)
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