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Abstract: Data Envelopment Analysis (DEA) is a non-parametric method for evaluating the 

efficiency of Decision Making Units (DMUs) with multiple inputs and outputs. In the 

traditional DEA models, the DMU is allowed to use its most favorable multiplier weights to 

maximize its efficiency. There is usually more than one efficient DMU which cannot be 

further discriminated. Evaluating DMUs with different multiplier weights would also be 

somewhat irrational in practice. The common weights DEA model is an effective method 

for solving these problems. In this paper, we propose a methodology combining the common 

weights DEA with Shannon’s entropy. In our methodology, we propose a modified weight 

restricted DEA model for calculating non-zero optimal weights. Then these non-zero optimal 

weights would be aggregated to be the common weights using Shannon’s entropy. Compared 

with the traditional models, our proposed method is more powerful in discriminating DMUs, 

especially when the inputs and outputs are numerous. Our proposed method also keeps in 

accordance with the basic DEA method considering the evaluation of the most efficient and 

inefficient DMUs. Numerical examples are provided to examine the validity and 

effectiveness of our proposed methodology. 
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1. Introduction 

Data Envelopment Analysis (DEA) was first introduced by Charnes et al. [1] in 1978. DEA has been 

proved to be an effective methodology for the efficiency evaluation of Decision Making Units (DMUs) 

with multiple inputs and multiple outputs. In the DEA methodology, the efficiency of a DMU is defined 

as a ratio of its weighted sum of outputs to its weighted sum of inputs [2]. A DMU is evaluated as 

efficient if it has an efficiency score of one. In the traditional DEA models, a DMU is allowed to use its 

most favorable multiplier weights to achieve its maximum efficiency score. It would however be 

somewhat irrational that different DMUs are evaluated with different sets of multiplier weights. As a 

result, there are usually more than one DMU being evaluated as efficient and for these efficient DMUs, 

traditional DEA models cannot provide further discrimination. Different methods have been developed 

for this problem, such as the super efficiency model, cross-efficiency model and so on [2]. However, 

these mentioned models are still based on different sets of multiplier weights which could be irrational 

sometimes. 

The common weights DEA model is an effective method for solving the problems mentioned  

above [2,3]. The main idea of the common weights DEA method is evaluating different DMUs based on 

a common set of multiplier weights and this common set of weights is calculated from the DEA models. 

A most representative model was proposed by Kao and Hung [4] which aims to minimize the distance 

between DMUs and the ideal solution. Some extension of the research in [4] can be found in [5,6].  

Liu and Peng [7] also proposed a common weights DEA model based on the idea of minimizing the 

distance. However the distance in their research is named the virtual gap, which is calculated by a linear 

program model. Another method of determining common weights is by introducing the ideal and anti-ideal 

DMU into the DEA model [8–11]. Ramon et al. [12,13] extended their research on the cross-efficiency 

evaluation into the common weights DEA method based on the idea of reducing differences between 

profiles of weights. Some other techniques have also been introduced into the DEA method for 

determining common weights, such as goral programming [14], regression analysis [15], robust 

optimization [16] and so on [17–20]. Applications of the common weights DEA models can be found in 

economy evaluation [21], technology selection [22], resource allocation [23], and so on. 

Shannon’s entropy [24] is a key concept in information theory. Some literatures have combined the 

DEA method with Shannon’s entropy. As far as we can say, the first such research was proposed by 

Soleimani-Damaneh and Zarepisheh [24] in which Shannon’s entropy was used to aggregate efficiency 

scores from different DEA models. Based on this first research, Bian and Yang [25] proposed an 

extension to the resource and environment efficiency analysis of the provinces in China. More recently, 

Xie et al. [26] proposed an extension research of [24] in which different variable subsets were considered. 

Similarly, Wu et al. [27] proposed a method for aggregating cross-efficiency with Shannon’s entropy 

and they also extended their research in [28]. Besides, Yang et al. [29] proposed a statistical approach 

to detect the influential observations in DEA in which the entropy was used to detect the change in the 

distribution after the DMU is removed. There are also some other researches and applications of entropy 

in the DEA method [30–32], but as far as we know, there has been no research that combines Shannon’s 

entropy with the common weights DEA. 

In this paper, we introduce Shannon’s entropy into the common weights DEA method for improving 

the discrimination power of DEA. We propose a 6-step computing procedure for calculating the common 
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weights in which Shannon’s entropy is used to determine the importance degree of different DMUs’ 

optimal weights. Within this computing procedure, we also propose a new model for calculating  

non-zero optimal weights for each DMU. Some theoretical results are provided and by application to 

some numerical examples, our proposed method has been proved to be more powerful in discriminating 

DMUs, especially when the inputs and outputs are numerous. Our proposed model is also accordant with 

the original DEA methodology considering the evaluation of the best and worst DMUs. 

The rest of this paper is organized as follows: in Section 2, some preliminaries are introduced as the 

background; in Section 3, our proposed methodology with Shannon’s entropy is formulated in detail; in 

Section 4, some numerical examples are provided as the illustration and examination of our model; 

finally in Section 5, we give the conclusions. 

2. Preliminary 

2.1. Data Envelopment Analysis 

It is supposed that in a DEA problem, there are ݊ DMUs with ݉ inputs and ݏ outputs. The vectors ݔ௝ = ,ଵ௝ݔ] ,ଶ௝ݔ … , ௝ݕ ௠௝]୘ andݔ = ,ଵ௝ݕ] ,ଶ௝ݕ … , ܯܦ ௦௝]୘ are used to denote the inputs and outputs ofݕ ௝ܷ 
respectively, in which ݆ = 1,2, … , ݊. Then the efficiency of certain ܯܦ ௝ܷబ(݆଴ = 1,2, … , ݊) is defined as 

follows [1]: 
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=   (1)

in which ݒ௝బ = ,ଵ௝బݒ] ,ଶ௝బݒ … , ௝బݑ ௠௝బ]୘ andݒ = ,ଵ௝బݑ] ,ଶ௝బݑ … ,  ௦௝బ]୘ are the multiplier weights of inputsݑ

and outputs respectively and ℎ௝బ is the efficiency of ܯܦ ௝ܷబ. The basic DEA model for the efficiency 

evaluation of ܯܦ ௝ܷబ is named as CCR model as follows: 
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in which the objective ℎ௝బ is the efficiency of ܯܦ ௝ܷబ and the optimal solution of this linear program 

model is the multiplier weights. It should be noted that in model (2), the DMUs are allowed to use the 

most favorable optimal weights to achieve the maximum efficiency. The optimal weights would be 

different for different DMUs. As a result, there are usually more than one DMU being evaluated as 

efficient which would be somewhat irrational in practice. 
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2.2. DEA with Common Weights 

A most representative common weights DEA model was proposed by Kao and Hung [4]. Firstly, the 

efficiency score for every DMU is calculated by the basic DEA model (2) and denoted by {ℎଵ, ℎଶ, … , ℎ௡}. 
For a given ܯܦ ௝ܷబ(݆଴ = 1,2, … , ݊), ℎ௝బ is the largest possible efficiency score with its most favorable 

weights. Then these efficiency scores are used as the ideal benchmark in the following calculation.  

Kao and Hung [4] give their common weights DEA model as follows: 
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in which the optimal solution ݒ = ,ଵݒ] ,ଶݒ … , ௠]୘ݒ  and ݑ = ,ଵݑ] ,ଶݑ … , ௦]୘ݑ  would be the common 

weights for all DMUs. The practical meaning of model (3) is to minimize the total squared distances 

between the ideal efficiency scores and those efficiency scores calculated by the common weights [4]. 

Shakouri et al. [33] proposed another common weights DEA model during their research on the 

efficiency evaluation of power supply technologies. Their proposed model is based on the basic DEA 

model (2) which aims to maximize the sum of all DMUs’ efficiency as follows: 
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in which ߝ is a non-Archimedean positive number used to avoid zero weights. It should be noted that 

model (3) and model (4) are actually linearly constrained non-linear program models. Decision makers 

may prefer to use linear program models in practice. Liu and Peng [7] proposed a linear program model 

for determining the common weights with a different objective, as follows: 
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in which Δ௝ is called the virtual gap to the ideal benchmark for ܯܦ ௝ܷ(݆ = 1,2, … , ݊). Be similar with 

model (3), the main idea of model (5) is also to minimize the distance between DMUs with their ideals. 

However the distance in model (5) is defined as a linear virtual gap. The problem of lacking 

discrimination power still exists in these common weights models. And it is still possible that there 

would be more than one DMU being evaluated as efficient. A comparison between the existent common 

weights DEA models is provided in the following Table 1. 

Table 1. A comparison between the existent models. 

Model Type Discrimination Solvability Practical Meaning 

(3) nonlinear medium medium good 
(4) nonlinear medium medium good 
(5) linear medium good medium 

2.3. DEA with Shannon’s Entropy 

Shannon’s entropy [34] has been widely used in many different scientific fields, such as physics and 

social science, etc. [24]. Soleimani-Damaneh and Zarepisheh [24] first introduced Shannon’s entropy 

into the DEA method and proposed an entropy DEA model. The main idea of this entropy DEA model 

is to aggregate the efficiency scores from different DEA models together based on the concept of 

Shannon’s entropy. The entropy DEA method proposed by Soleimani-Damaneh and Zarepisheh [24] 

can be formulated as the following three steps: 

Step 1: Efficiency evaluation by different DEA models; 

Step 2: Determining the degree of importance of DEA models based on Shannon’s entropy; 

Step 3: Aggregating the efficiency scores from different DEA models. 

Based on Soleimani-Damaneh and Zarepisheh’s research, some other literature [25–32] can be found 

where the DEA method is also combined with Shannon’s entropy. However, as there are a great many 

different DEA models, then the selection of DEA models would have a great effect on the results of the 

entropy DEA model. 

3. Proposed Methodology with Shannon’s Entropy 

In order to improve the discriminating power of the DEA method, we propose a methodology using 

Shannon’s entropy to aggregate different sets of optimal weights into a common set of weights. Then 

DMUs could be evaluated with this common set of weights. In our proposed method, we also propose a 

modified weight restriction model for calculating non-zero weights in DEA. Our proposed methodology 

can be formulated as the following six steps. 

3.1. The Computing Procedure 

Step 1: Data normalization. In this paper, we suppose that there is no outlier data in inputs and outputs. 
For convenience of comparison, the input ݔ௧௝బ(ݐ = 1,2, … ,݉)  and output ݕ௥௝బ(ݎ = 1,2, … , (ݏ  of ܯܦ ௝ܷబ(݆଴ = 1,2, … , ݊) are normalized as follows: 
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Remark 1. It should be noted that the inputs and outputs in the DEA problem naturally have different 

metrics or dimensions. Although different metrics would not affect the value of efficiency [1], they 

would have great effect on the values of the multiplier weights. Actually, in the traditional DEA method, 

the effect of different metrics was eliminated by the multiplier weights. This kind of multiplier weights 

contains the information of different metrics and would be incomparable. Therefore, in order to compare 

different inputs and outputs, the data should be normalized first. And by the normalization of inputs and 

outputs, the following input and output data and the optimal weights would all become dimensionless 

and comparable. 

Step 2: Calculating non-zero optimal weights. In this step, we propose a modified weight restriction 

model for calculating non-zero optimal weighs as follows: 
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in which ε଴ is the allowable maximum weight restriction. 

Theorem 1. Model (7) is feasible and bounded. 

Proof. (a) Proof of the feasibility. Consider the following constraints in the basic DEA model (2) for 

each DMU: 
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There must be a feasible ε௫௝ > 0 for each ܯܦ ௝ܷ(݆ = 1,2, … , ݊) that satisfies constraints (8). And if 

we set ε௫ = min	{ε௫ଵ, ε௫ଶ, … , ε௫௡}, then we have a feasible ε௫ > 0 that satisfies the following constraints: 
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For a given ε௫ > 0, we introduce the following notation 
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And we have ܺ > 0, be similar with the proof (8) ~ (9), there must be a feasible ε௬ > 0 that satisfies 

the following constraints: 
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Then if we set ε଴ = min	{ε௫, ε௬}, by (9) and (11) we have that ε଴ > 0 is a feasible solution which 

satisfies all the constraints in model (7). Consequently, model (7) is feasible.  

(b) By the constraints in (9), we know that model (7) is obviously bounded. Consequently, Theorem 1 

is true. 

Remark 2. Weight restriction is an effective method to avoid zero weights and it is indicated that 

maximizing the weight restriction is able to improve the discrimination power of the DEA model [35,36]. 

Our proposed model is an improvement of Wang et al. [35] and Wu et al. [36] because in their 

methodology, a set of linear program models are needed to determine a feasible weight restriction. 

However by using our proposed model (7), only one model needs to be solved and the feasible weight 

restriction can be got for all DMUs. Then ε଴ will be introduced into DEA model as follows: 
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By model (12), we can get a set of non-zero optimal weights for every DMU. The optimal weights of 

inputs and outputs are denoted by ܸ and ܷ respectively, as follows: 
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Step 3: Weights normalization. The normalization of the non-zero optimal weighs is prepared for the 
calculation of Shannon’s entropy. And the optimal weights ݒ௧బ௝బ(ݐ଴ = 1,2, … ,݉)  and ݑ௥బ௝బ(ݎ଴ =1,2, … , ܯܦ of (ݏ ௝ܷబ(݆଴ = 1,2, … , ݊) are normalized as follows: 
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Remark 3. It is unsuitable to compare an input with an output directly. As mentioned in [37], it is not 

suitable to compare the importance between the input variables and output variables, for these two kinds 

of variables are not substitutional, but complementary in DEA models. Therefore, in this step we 

normalized the non-zero input weights and output weights separately. 

Step 4: Calculating Shannon’s entropy. As mentioned before, the Shannon entropy of inputs and 

outputs should be calculated separately. Then based on the definition, the Shannon entropy of ܯܦ ௝ܷబ(݆଴ = 1,2, … , ݊) for inputs and outputs are calculated as follows: 
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in which ݁଴  and ݁ଵ  are the entropy constants and defined as ݁଴ = (ln݉)ିଵ  and ݁ଵ = (lnݏ)ିଵ . We 

suppose that there are always more than one inputs or more than one outputs which implies that ݉ > 1 

or ݏ > 1. Especially, the entropy of single input or single output is defined as 0. 

Step 5: Determining the importance degree of optimal weights. Although the inputs and outputs would 

have different practical meanings, after translating into Shannon’s entropy, they would have a same 

meaning of chaos. Therefore the Shannon entropy of inputs and outputs can be considered together. The 
importance degree of ܯܦ ௝ܷబ(݆଴ = 1,2, … , ݊) is defined as follows: 
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(17)

Remark 4. The degree of importance is accordant with maximizing the Shannon entropy. In fact, the 

importance degree determined by the Shannon entropy is based on the difference of both inputs weights 

and outputs weights. As the optimal weights has been normalized, the optimal weights with bigger 

Shannon’s entropy means that the weights has been allocated to more inputs and outputs as possible. In 

other words, the optimal weights with bigger Shannon’s entropy means more inputs and outputs have 

been considered. Of course these optimal weights should be assigned with bigger importance degree. 

Step 6: Determining the common weights. The common weights ݒ = ,ଵݒ] ,ଶݒ … , ௠]୘ݒ  and ݑ ,ଵݑ]= ,ଶݑ … ,  ௦]୘ are the aggregation of the optimal weights from every DMU with the importance degreeݑ

by the Shannon entropy. It should be noted that the optimal weights used here are the optimal weights 

before the weights normalization as follows: 
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in which ݐ = 1,2,… ,݉  and ݎ = 1,2, … , ݏ . After these six steps, DMUs can be evaluated with the 

common weights ݒ and ݑ based on the definition of efficiency in formula (1). 

3.2. Some Theoretical Results 

As the common weights have been got, we propose some further theoretical analysis on the proposed 

common weights in the following. First we introduce a related concept of cross-efficiency defined as 

follows [38]: 
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in which ௝݇భ௝బ  is the cross efficiency of ܯܦ ௝ܷబ(݆଴ = 1,2, … , ݊)  using the optimal weights of ܯܦ ௝ܷభ(݆ଵ = 1,2, … , ݊). 
Lemma 1. For the given ܯܦ ௝ܷబ(݆଴ = 1,2, … , ݊) and ܯܦ ௝ܷభ(݆ଵ = 1,2, … , ݊), we have ௝݇భ௝బ ≤ 1. 

Definition 1. The common efficiency of ܯܦ ௝ܷబ(݆଴ = 1,2, … , ݊) using the common weights ݒ and ݑ is 

defined as 
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Theorem 2. For a given ܯܦ ௝ܷబ(݆଴ = 1,2, … , ݊), we have ℎ௝బ∗ ≤ 1. 

Proof. Based on Definition 1 and Formula (18), we have: 
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We introduce the following notations for simplicity and clarity: 
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Based on Lemma 1 which implies that ௝ܻ௝బ ≤ ௝ܺ௝బ, then we have: 
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Consequently Theorem 2 is true. 
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Theorem 2 would be important and necessary for our calculation of the common weights. As the 

inputs weights and output weighs are calculated separately in our proposed method. The practical 

meaning of Theorem 2 is that our proposed common weights are still satisfied with the constraints in the 

basic DEA model (2). In other words, our proposed common weights would be a feasible solution of 

DEA model (2) and therefore would be rational in practice. Then we can give the following definition. 

Definition 2. A given ܯܦ ௝ܷబ(݆଴ = 1,2, … , ݊) is called common efficient if ℎ௝బ∗ = 1. 

Theorem 3. A common efficient DMU is CCR efficient. 

Proof. Suppose ܯܦ ௝ܷబ(݆଴ = 1,2, … , ݊) is common efficient with common weights ݒ and ݑ, based on 

Definition 2, we have: 

0 0 0

*

1 1

1
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= =

= =   (24)

Based on Theorem 2, we have: 

1 1
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which implies that the common weights ݒ and ݑ is an feasible solution of CCR model (2) and we have ℎ௝బ = 1 which means ܯܦ ௝ܷబ is CCR efficient. Consequently, Theorem 3 is true. 

Theorem 3 shows that the efficiency evaluation based on our proposed common weights is accordant 

with the CCR model. However, it should be noted that a CCR efficient DMU is not necessarily common 

efficient. In other words, the CCR efficient DMUs could be discriminated further by our proposed 

method. Our proposed common weights DEA model is more powerful in discriminating DMUs while 

keeping in accordance with the DEA methodology. 

Theorem 4. A given ܯܦ ௝ܷబ(݆଴ = 1,2,… , ݊) is common efficient if and only if ௝݇௝బ = 1, ∀݆ = 1,2, … , ݊. 

Proof. (a) Proof of sufficiency. Suppose for ∀݆ = 1,2, … , ݊, we have ௝݇௝బ = 1, which implies that 

0 0
1 1

, 1, 2,...,
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rj rj tj tj
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= ∀ =   (26)

Based on formula (23), we have 
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which means that ܯܦ ௝ܷబ is common efficient and the sufficiency has been proved. 

(b) Proof of necessity. Suppose ∃݆ଵ ∈ {1,2, … , ݊} so that ௝݇భ௝బ < 1, which implies that: 

1 0 1 0
1 1

s m

rj rj tj tj
r t

u y v x
= =

<   (28)

Then, by similarity with (27), we have: 
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then ܯܦ ௝ܷబ  would not be common efficient. And the necessity has been proved. Consequently,  

Theorem 4 is true. 

Theorem 4 implies that the common efficiency based on our proposed common weights is accordant 

with the cross-efficiency. It should be noted that there would possibly be no common efficient DMU. In 

our opinion, it is not necessary that there must be an efficient DMU, however the ranking of DMUs 

would be more important. Therefore, in the following, we propose numerical examples to examine the 

validity and effectiveness of our proposed methodology in the efficiency evaluation. 

4. Illustration Example 

In this section, some numerical examples are provided as the illustration and examination of our 

proposed methodology. The first one is a classic simple data example used to illustrate the computing 

procedure; the second one is an artificial example with numerous inputs and outputs; the rest two are 

real data examples used to examine the validity and effectiveness of our proposed methodology. 

Example 1. Suppose there are 5 DMUs with two inputs and one output [39]. The input and output data 

is provided in Table 2. The computing procedure of our proposed method is as follows: 

Table 2. Input and output data of Example 1. 

DMU 
Original Data Normalized Data 

Input 1 Input 2 Output Input 1 Input 2 Output 

1 2 12 1 0.2 1 1 
2 2 8 1 0.2 0.6667 1 
3 5 5 1 0.5 0.4167 1 
4 10 4 1 1 0.3333 1 
5 10 6 1 1 0.5000 1 

Step 1: Data normalization. The normalized data is shown in Table 2; 

Step 2: Calculating non-zero optimal weights. By model (7), the allowable maximum weight restriction 

is 0.6250 and the non-zero optimal weights are shown in Table 3; 

Step 3: Weights normalization. The normalized optimal weights are also shown in Table 3; 

Step 4: Calculating Shannon’s entropy. The entropy of single output is defined to be 0 in Table 4; 

Step 5: Determining the importance degree of optimal weights as it is shown in Table 4; 

Step 6: Determining the common weights. By formula (18) we can get the common weights are  ݒଵ = ଶݒ ,1.2239 = 0.9681 and ݑଵ = 0.8248. Then the efficiency evaluation result is provided 

in Table 5. 

As it is shown in Table 5, DMU2 has been evaluated as the most efficient DMU by our proposed 

methodology and DMU5 is the most inefficient. The evaluation result by our proposed methodology is 

accordant with the CCR model and also accordant with models (3)~(5). What is more, our proposed 
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model is more powerful in discriminating DMUs. In the CCR model and models (3)~(5), there are more 

than one efficient DMU and it would be difficult for the decision makers to choose a best one. However 

in our result, a full ranking of all DMUs has been got which would be more persuasive to the  

decision makers. 

Table 3. Optimal weights of Example 1. 

DMU 
Non-Zero Optimal Weights Normalized Optimal Weights 

Input 1 Input 2 Output Input 1 Input 2 Output 

1 1.8749 0.6250 0.7917 0.7500 0.2500 1 
2 2.9165 0.6250 1 0.8235 0.1765 1 
3 0.6250 1.6499 1 0.2747 0.7253 1 
4 0.6250 1.1251 0.7813 0.3571 0.6429 1 
5 0.6250 0.7500 0.6250 0.4546 0.5454 1 

Table 4. Shannon’s entropy and importance degree of Example 1. 

DMU 
Shannon’s Entropy 

Importance Degree 
Inputs Outputs 

1 0.8113 0 0.1902 
2 0.6724 0 0.1576 
3 0.8481 0 0.1988 
4 0.9402 0 0.2204 
5 0.9940 0 0.2330 

Table 5. Efficiency evaluation of Example 1 by different models. 

DMU CCR Model Model (3) Model (4) Model (5) Our Model 

1 1 0.7143 0.7143 0.7143 0.6800 
2 1 1 1 1 0.9265 
3 1 1 1 1 0.8123 
4 1 0.7143 0.7143 0.7143 0.5333 
5 0.75 0.6250 0.6250 0.6250 0.4829 

By similarity with the research method in [33], we also propose a sensitivity analysis according to 

different weight restrictions in model (8). Figure 1(a) shows the different CCR efficiency of DMUs 

under different weight restrictions. The variance of efficient scores is also provided. As it can be seen, 

the DEA model is more powerful in discriminating DMUs when the weight restriction becomes bigger. In 

Figure 1(b), the Euclidean distance between optimal weights and common weights are provided under 

different weight restrictions. The mean distance is also provided. It can be seen that when the weight 

restriction become bigger, the mean distance becomes smaller. That means, with the raising of the value 

of weight restriction, the optimal weights become more consistent with the common weights [35]. As a 

result, in the following examples, only the maximum weight restriction ε଴ would be used. 
  



Entropy 2014, 16 6406 

 

 

Figure 1. (a) CCR efficiency under different weight restrictions; (b) Distances between 

DMUs' optimal weights and the common weights. 

(a) (b) 

In Figure 2, we show the different common weights under different weight restrictions. The common 

weights in Figure 2(a) are the original values and Figure 2(b) is the common weights normalized by 

Equation (11). The changing tendency is clearer by the weights normalization in Figure 2(b). Because 

there was only one output in example 1, the output weight would stay unchanged. With the raising of 

the weight restriction, the model would allocate more weight on input 1 than input 2. That is mainly 

because input 1 is better than input 2 for all DMUs from a global point-of-view. 

Figure 2. (a) Common weights under different weight restrictions; (b) Normalized common 

weights under different weight restrictions. 

(a) (b) 

Example 2. This is an artificial example with numerous inputs and outputs. By this example, we would 

like to show that our proposed methodology would still be effective even when the inputs and outputs 

are numerous. Suppose there are four DMUs with five inputs and one output, the inputs and outputs are 

even more than the DMUs. The input and output data is originally normalized as it is shown in Table 6. 

The computing procedure will be briefly formulated by Tables 7~9. By solving model (7), the 

maximum weight restriction is 0.2539. Then the non-zero optimal weights can be obtained in Table 7. 
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The normalized optimal weights are shown in Table 8. What is more, the Shannon entropy and the 

importance degree of these optimal weights are provided in Table 9. The entropy of single output is also 

defined as 0. The final common weights in this example are ݒଵ = ଶݒ ,0.2539 = ଷݒ ,0.2539 = ସݒ ,0.5816 = ହݒ ,0.3333 = 0.6969 and ݑଵ = 0.8014. Then the efficiency evaluation results by different models 

can be got in Table 10. 

By the comparison in Table 10, all these four DMUs are CCR efficient. That is mainly because the 

inputs and outputs are too numerous, even more than the DMUs. In this situation, the traditional DEA 

models would be unable to discriminate or evaluate DMUs. By using the existent common weights DEA 

models (3)~(5), there are still some DMUs cannot be discriminated, such as DMU1 and DMU2. As a 

comparison, a full ranking of all DMUs can be got by our proposed methodology. And DMU1 has been 

evaluated as the most efficient DMU, while DMU4 is the most inefficient one. Our proposed method is 

still powerful and effective even in the numerous inputs and outputs situation. 

Table 6. Normalized input and output data of Example 2. 

DMU Input 1 Input 2 Input 3 Input 4 Input 5 Output 

1 0.0336 0.6999 0.6385 0.0688 0.3169 1 
2 1 0.4229 0.0942 0.4079 0.6959 1 
3 0.3251 1 0.5313 0.1056 0.6110 1 
4 0.4076 0.5309 1 1 1 1 

Table 7. Non-zero optimal weights of Example 2. 

DMU Input 1 Input 2 Input 3 Input 4 Input 5 Output 

1 0.2539 0.2539 0.2539 0.2539 2.0012 1 
2 0.2539 0.2539 0.9278 0.2539 0.6434 1 
3 0.2539 0.2539 0.8460 0.5580 0.2539 0.8453 
4 0.2539 0.2539 0.2539 0.2539 0.2539 0.4463 

Table 8. Normalized optimal weights of Example 2. 

DMU Input 1 Input 2 Input 3 Input 4 Input 5 Output 

1 0.0842 0.0842 0.0842 0.0842 0.6633 1 
2 0.1088 0.1088 0.3977 0.1088 0.2758 1 
3 0.1172 0.1172 0.3906 0.2577 0.1172 1 
4 0.2000 0.2000 0.2000 0.2000 0.2000 1 

Table 9. Shannon’s entropy and importance degree of Example 2. 

DMU 
Shannon’s Entropy 

Importance Degree 
Inputs Outputs 

1 0.6869 0 0.1963 
2 0.8985 0 0.2568 
3 0.9137 0 0.2611 
4 1 0 0.2858 
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Table 10. Efficiency evaluation of Example 2 by different models. 

DMU CCR Model Model (3) Model (4) Model (5) Our Model 

1 1 1 1 1 1 
2 1 1 1 1 0.7728 
3 1 0.6867 0.6669 0.8111 0.7243 
4 1 0.9166 1 0.5015 0.4331 

Example 3. This real data example is selected from Chang and Chen [40], and there are 10 Asian lead 

frame firms considered as the DMUs with two inputs and two outputs. The inputs are book value of 

tooling in 105 dollars (Input 1) and cost of goods sold in 106 dollars (Input 2). The outputs are sales 

revenue in 106 dollars (Output 1) and average yield rate (Output 2). The input and output data is provided 

in Table 11. 

Table 11. Input and output data of Example 3. 

DMU 
Original Data Normalized Data 

Input 1 Input 2 Output 1 Output 2 Input 1 Input 2 Output 1 Output 2 

1 43.08 17.45 19.39 84.00 0.1489 0.1260 0.1260 0.8571 
2 9.58 19.94 22.85 88.00 0.0331 0.1440 0.1485 0.8980 
3 7.92 48.46 52.69 82.40 0.0274 0.3500 0.3425 0.8408 
4 75.15 58.27 70.54 96.00 0.2598 0.4208 0.4585 0.9796 
5 56.92 62.15 70.77 91.92 0.1968 0.4489 0.4600 0.9380 
6 137.38 31.84 44.52 97.23 0.4750 0.2300 0.2894 0.9921 
7 61.54 49.23 76.31 90.00 0.2128 0.3556 0.4960 0.9184 
8 29.54 76.8 65.97 97.00 0.1021 0.5547 0.4288 0.9898 
9 289.23 138.46 153.85 98.00 1 1 1 1 

10 19.69 54.15 64.00 92.00 0.0681 0.3911 0.4160 0.9388 

Table 12. Optimum weights of Example 3. 

DMU 
Non-Zero Optimal Weights Normalized Optimal Weights 

Input 1 Input 2 Output 1 Output 2 Input 1 Input 2 Output 1 Output 2 

1 0.6791 7.1340 0.1244 1.1484 0.0869 0.9131 0.0977 0.9023 
2 27.6890 0.5798 0.1244 1.0930 0.9795 0.0205 0.1022 0.8978 
3 34.9071 0.1244 0.1244 1.1387 0.9964 0.0036 0.0985 0.9015 
4 0.1244 2.2996 1.4568 0.1324 0.0513 0.9487 0.9167 0.0833 
5 0.1296 2.1709 1.3816 0.1244 0.0563 0.9437 0.9174 0.0826 
6 0.1244 4.0909 2.5413 0.2403 0.0295 0.9705 0.9136 0.0864 
7 0.5283 2.4960 1.7858 0.1244 0.1747 0.8253 0.9349 0.0651 
8 3.5477 1.1498 1.1533 0.1244 0.7552 0.2448 0.9026 0.0974 
9 0.1244 0.8756 0.1244 0.1244 0.1244 0.8756 0.5000 0.5000 

10 3.8188 1.8919 1.9334 0.1244 0.6687 0.3313 0.9395 0.0605 

By the application of our proposed methodology, the maximum weight restriction is 0.1244 and then 

the non-zero optimal weights and the normalized optimal weights can be got in Table 12. Then the 

Shannon entropy of these normalized optimal weights is calculated in Table 13. It can be seen that 

DMU10 has got the biggest Shannon’s entropy in inputs while DMU9 has the biggest outputs Shannon’s 
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entropy. Then the importance degree of the optimal weights from different DMUs can be got, as it is 

shown in Table 13. Based on the importance degree in Table 13, the common weights for Example 3 are ݒଵ = ଶݒ ,4.9779 = ଵݑ ,2.2114 = 1.0654 and ݑଶ = 0.3539. Then the efficiency evaluation result based 

on out proposed methodology is provided in Table 14. Besides the evaluation results by some other 

models are also provided for a comparison. 

Table 13. Shannon’s entropy and importance degree of Example 3. 

DMU 
Shannon’s Entropy 

Importance Degree 
Inputs Outputs 

1 0.4261 0.4618 0.0974 
2 0.1443 0.4759 0.0680 
3 0.0340 0.4642 0.0546 
4 0.2920 0.4138 0.0774 
5 0.3127 0.4113 0.0794 
6 0.1920 0.4244 0.0676 
7 0.6683 0.3475 0.1114 
8 0.8029 0.4606 0.1386 
9 0.5419 1.0000 0.1691 
10 0.9162 0.3293 0.1366 

Table 14. Efficiency evaluation of Example 3 by different models. 

DMU CCR Model Mode (3) Model (4) Model (5) Our Model 

1 1 0.8345 1 0.8603 0.4289 
2 1 0.9537 1 0.9550 0.9848 
3 1 0.7870 0.7422 0.7810 0.7277 
4 0.7992 0.7964 0.7992 0.8041 0.3755 
5 0.8078 0.7649 0.7478 0.7679 0.4168 
6 1 0.8122 0.9969 0.8524 0.2295 
7 1 1 1 1 0.4624 
8 0.7224 0.6074 0.5786 0.6048 0.4652 
9 0.7169 0.6539 0.6627 0.6666 0.1974 

10 1 0.8348 0.7930 0.8310 0.6441 

In Table 14, there are some differences in the efficiency evaluation results. However we would like 

to say that our proposed methodology is more accordant with the CCR model considering the most 

efficient DMU and the most inefficient DMU. Although the most efficient DMUs in models (3)~(5) are 

also CCR efficient, their most inefficient DMUs are not accordant with the CCR model. As a comparison, 

DMU2 is evaluated as the most efficient DMU by our proposed method which is also CCR efficient. 

What is more, DMU9 is evaluated as the most inefficient DMU by our proposed method which is also 

the most inefficient in the CCR model. In other words, our proposed method keeps in accordance with 

the basic concept of the original DEA methodology. Besides, we also calculated the correlation 

coefficient between our proposed model and the existent models. And the correlation coefficients are 

0.4838, 0.4690, 0.1905 and 0.3936 with the CCR model, model (3), model (4) and model (5) respectively. 

And it can be seen that our proposed model has got the biggest correlation coefficient with the original 

CCR model. 
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Example 4. This is another real data example selected from Shakouri et al. [33]. As it is mentioned  

in [33], the original inputs and outputs in this example are too numerous and Shakouri et al. [33] 

proposed some transformation on the inputs and outputs before efficiency evaluation. In this example, 

four energy technologies are considered as the DMUs with five inputs and three outputs. These four 

technologies are: Nuclear energy, light water reactor power plant (LWR); Nuclear energy, light water 

reactor power plant with reprocessing (LWRP); Fossil fuel energy, Integrated Gasification Combined 

Cycle power plant (IGCC); and Fossil fuel energy, IGCC power plant with CCS: 90% of CO2 capturing 

(IGCCS). The inputs include: primary energy source (PES/kg), material (M/kg), labor (L/h), electric 

power capacity (PC/KW), total internal energy (TIE/Gj). While the outputs include: radioactive wastes 

(RW/kg−1), CO2 emissions (CO2/kg−1) and output energy (OE/GWh). The detailed description can be 

found in [33] and the input and output data is provided in Table 15. 

Table 15. Input and output data of Example 4. 

DMU 
Inputs Outputs 

PES M L PC TIE RW CO2 OE 

LWR 21 13525 640 5.9 624 1/2280 1/24.6 1 
LWRP 17 12521 570 9.5 852 1/2040 1/39.6 1 
IGCC 350K 1566 80 2.6 189 1010 1/700K 1 

IGCCS 470K 2802 115 2.9 1174 1010 1/110K 1 

The computing procedure of this example is formulated in Tables 16~19. By our proposed 

methodology the maximum weight restriction is 0.2823. And the common weights for this example are ݒଵ = 0.3983 ଶݒ , = 0.2823 ଷݒ , = 0.2823 ସݒ , = 0.4748 ହݒ , = 1.1022  and ݑଵ = 0.2949 ଶݑ , ଷݑ	,0.6850= = 0.3770. The efficiency evaluation results from different models are provided in Table 20 

as a comparison. 

As it is shown in Table 20, our proposed model is still able to propose a full ranking of all DMUs 

even when the inputs and outputs are numerous. By our proposed model, IGCC is evaluated as the most 

efficient technology while IGCCS is the most inefficient one. This result is accordant with the original 

CCR model and also with the other common weights model (3) and (5). It should be noted that, any 

transformation on the inputs or outputs would affect the evaluation results. That would be the reason 

why we have got a different result with [33]. It also should be noted that the main purpose of introducing 

this example is to examine the discrimination power of our model in the extreme case with numerous 

inputs and outputs. And the comparison in Table 20 would be adequate for this purpose. 

Table 16. Normalized input and output data of Example 4. 

DMU 
Inputs Outputs 

PES M L PC TIE RW CO2 OE 

LWR 4.47E-05 1 1 0.6211 0.5315 4.39E-14 1 1 
LWRP 3.62E-05 0.9258 0.8906 1 0.7257 4.90E-14 0.6212 1 
IGCC 0.7447 0.1158 0.125 0.2737 0.1610 1 3.51E-05 1 

IGCCS 1 0.2072 0.1797 0.3053 1 1 2.24E-04 1 
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Table 17. Optimal weights of Example 4. 

DMU 
Inputs Weights Outputs Weights 

PES M L PC TIE RW CO2 OE 

LWR 0.4574 0.2823 0.2823 0.2823 0.4892 0.2823 0.7177 0.2823 
LWRP 0.5283 0.2823 0.2823 0.2823 0.2823 0.2823 0.5883 0.3018 
IGCC 0.2823 0.2823 0.2823 0.2823 4.0032 0.2823 0.2823 0.7177 

IGCCS 0.2823 0.2823 0.2823 1.0683 0.2823 0.3337 1.0959 0.2823 

Table 18. Normalized optimal weights of Example 4. 

DMU 
Inputs Weights Outputs Weights 

PES M L PC TIE RW CO2 OE 

LWR 0.2550 0.1574 0.1574 0.1574 0.2728 0.2202 0.5597 0.2202 
LWRP 0.3187 0.1703 0.1703 0.1703 0.1703 0.2408 0.5018 0.2574 
IGCC 0.0550 0.0550 0.0550 0.0550 0.7800 0.2202 0.2202 0.5597 

IGCCS 0.1285 0.1285 0.1285 0.4861 0.1285 0.1949 0.6402 0.1649 

Table 19. Shannon’s entropy and importance degree of Example 4. 

DMU 
Shannon’s Entropy 

Importance Degree 
Inputs Outputs 

LWR 0.9792 0.9022 0.2721 
LWRP 0.9757 0.9450 0.2778 
IGCC 0.5169 0.9022 0.2052 

IGCCS 0.8731 0.8206 0.2449 

Table 20. Efficiency evaluation of Example 4 by different models. 

DMU CCR Model Model (3) Result in [33] Model (5) Our Model 

LWR 1 1 0.2498 1 0.7348 
LWRP 1 0.9867 0.1614 0.7831 0.4490 
IGCC 1 1 1 1 1 

IGCCS 0.8969 0.7488 0.6094 0.6282 0.3830 

Therefore we can say that our proposed methodology is more powerful in discriminating DMUs while 

keeping the property of the basic DEA methodology. The validity and effectiveness of our proposed 

methodology has been proved. 

5. Conclusions 

The common weights DEA model is an important extension of the traditional DEA methodology. In 

this paper, we proposed a comprehensive methodology combining DEA with Shannon’s entropy. The 

main idea of our proposed method is to aggregate different sets of optimal weights into a common set of 

weights using Shannon’s entropy. Within our methodology, we proposed a new weight restriction model 

for calculating non-zero optimal weights in the DEA method. Then these non-zero optimal weights are 

aggregated to a common set of weights with Shannon’s entropy. By the application into some numerical 

examples, it has been proved that out proposed methodology is more powerful in discriminating DMUs. 
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In the provided numerical examples, a full ranking of all DMUs has been obtained. It has also been 

proved that our proposed model is accordant with the basic DEA method considering the evaluation of 

most efficient DMU and most inefficient DMU. Determining the unique set of optimal weights during 

the computing procedure may be a future research direction. 
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