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Abstract:

 This article proposes a Δ−1 – TV0 energy function to fuse a multi-spectral image with a panchromatic image. The proposed energy function consists of two components, a TV0 component and a Δ−1 component. The TV0 term uses the sparse priority to increase the detailed spatial information; while the Δ−1 term removes the block effect of the multi-spectral image. Furthermore, as the proposed energy function is non-convex, we also adopt an alternative minimization algorithm and the L0 gradient minimization to solve it. Experimental results demonstrate the improved performance of the proposed method over existing methods.
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1. Introduction

With the application of multi-source imaging in many areas, such as remote sensing [1,2], medical imaging [3] and quality and defect detection [4], image fusion has become an attractive and important research area in image processing. More specifically, in remote sensing, there is a significant interest in the fusion of high spatial and high spectral resolution images to provide a better description and visual representation of a scene. However, typically, both high spatial and spectral resolution images are not simultaneously presented in a single image, due to commercial constraints. More specifically, panchromatic images contain high spatial resolution with limited spectral resolution, while multi-spectral images contain high spectral resolution with low spatial resolution.

Consequently, many researchers have expressed interest in the fusion of multi-spectral images and panchromatic images. The most common methods are based on the intensity-hue-saturation (IHS) transform [5,6]. However, using the IHS method results in spectral degradation. To solve this problem, some algorithms based on the wavelet transform are proposed. Wavelet transform is an important tool in signal processing [7] and image processing [8,9], especially for image fusion. Núñez et al. [10] fused a high spatial resolution panchromatic image (Satellite pour l’ observation de la Terre (SPOT)) with a low spatial resolution multi-spectral image (Landsat Thematic Mapper (TM)) using the additive wavelet algorithm (AW). The Atrous wavelet approximation of the SPOT panchromatic image is substituted by the bands of TM image. Li et al. [11] proposed a choose-max wavelet fusion algorithm (CMW) based on the wavelet transform. An algorithm based on the multi-scale first fundamental form (MFF) was presented by Scheunders [12], which used a multi-valued image wavelet representation method to fuse images. However, this method is prone to large wavelet coefficients. Chen et al. [13] addressed this issue by proposing a weighted multi-scale first fundamental form method (WMFF). The image fusion methods based on wavelet transform, while reporting good results, have three limitations: empirical selection of the predefined basis; selection of the decomposition level; the wavelet method focuses on preserving spectral information. In order to solve these issues, techniques, such as the TV (total variation)–L1 model [14–16], were proposed as a balanced spatial and spectral information model, which use the primal-dual algorithm and Bregman-splitting algorithm to maximize the matching measurement. In the TV − L1 model, the TV regularization preserves the discontinuity of the magnitudes of gradient difference; and the L1 data term tends to measure the low frequency information by calculating the difference between the result and the multi-spectral image. Another class of literature utilizes population-based optimization to fuse multiple images. Saeedi [17] utilized the population-based optimization to select the weights of the low-frequency wavelet coefficients to improve the infrared and visible image fusion. Saeedi [18] found the optimal pan-sharpened image by applying the multi-objective particle swarm optimization algorithm and using the two initial pan-sharpened results generated by two different fusion rules. Finally, Lacewell [19] used genetic algorithms to get a more optimized combined image for visual and thermal satellite image fusion. While the reported literature produces good results, the multi-spectral images are prone to the block effect, and the existing literature does not address this problem. In this article, we propose to address the block effect within the multi-spectral images by using the TV0− Δ−1 energy function. The Δ−1 component not only deletes the block effect, but also retains the spectral information. Additionally, the L0 gradient term of the proposed energy function increases the spatial resolution within the final fused result.

The contributions of our paper in image fusion can be summarized as follows:


	The Δ−1 term within the fusion energy function is proposed to remove the block effect in multi-spectral images without affecting the spatial information.


	To improve the image fusion accuracy, an alternative minimization algorithm using a non-convex L0 regularization term is proposed.




The rest of the paper is organized as follows: Section 2 presents a detailed description of the proposed fusion algorithm. Section 3 provides experimental results and discussions on IKONOS and QUICKBIRD images. Finally, in Section 4, our conclusions are discussed.



2. Computational Method


2.1. Flowchart of the Proposed Algorithm

The flowchart of the proposed algorithm is presented in Figure 1. In the proposed algorithm, the color multi-spectral image is transformed into the IHS color model [20]. The intensity component is selected as the primary fusion variable. The method uses an energy minimization process solved by an iterative process, which is based on the inverse Laplace transform and sparse norm of the gradient term.

Figure 1. The flowchart of the fusion process.
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2.2. Inverse Laplace Transform Δ−1

The Δ−1 operator is proposed by [21,22] and also applied to image fusion quality assessment [16,23]. Additionally, [22] computes Δ−1 by discrete Fourier transform. The discrete Δ operator is given by:
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(1)




where m and n are the pixel position of image f with size [M,N]. Applying the discrete Fourier transform on (1), we obtain:
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(2)




where p and q are discrete Fourier sample points and F presents the discrete Fourier transform. In order to avoid singularity, we input a small constant ϵ and obtain the Δ−1 as follows:


[image: there is no content]



(3)




As shown in Figure 2, the weighting function [image: there is no content] of Equation (3) focuses on the low frequency component of the image f. An example of the application Δ−1 on the IKONOS’s image is shown in Figure 3. It can be seen that Δ−1 removes the block effect, while preserving the general information.


Figure 2. The weighted function: [image: there is no content]
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Figure 3. (Top) One channel of multi-spectral image S (left) and −Δ−1 (right); (bottom) an enlarged portion from the above images.
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2.3. Functional Form

Xie et al. [14] proposed a TV − L1 fusion method as follows:



[image: there is no content]



(4)




where J is an energy function about the fusion result R, G is a panchromatic image, T is the intensity part of IHS transformation of a multi-spectral image, λ is a weighted parameter and [image: there is no content] stands for a discrete total variation norm. If we use the anisotropic total variation form, we can transform Equation (4) as follows:
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(5)




where Rx is the partial derivative of R with respect to x, Ry is the partial derivative of R with respect to y, Gx is the partial derivative of G with respect to x and Gy is the partial derivative of G with respect to y.
In recent years, many studies have empirically demonstrated through experiments that non-convex potential functions are suitable for optimization-based computer vision problems. Krishnan [24] used a normalized sparsity measure similar to L0 for the image blind deconvolution model. A Lp norm [25] is proposed to solve the optical flow and image denoising model. Fu and Zhang [26] proposed an adaptive non-convex model to solve the image restoration model. Consequently, in our article, we investigate the use of a sparse L0 norm to increase the image details of the fused result. A non-convex L0 norm is substituted for the L1 norm of anisotropic total variation of the TV − L1 model as follows:
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(6)




where [image: there is no content], p is the pixels and ⊕ is the counting operator. We use the L0 norm of the gradient to transform the spatial information, which can retain the spectral information, whose tendency is inconsistent with the spatial information.
While the TV − L1 model demonstrates good results for multi-spectral fusion, the final fused images contain the block effect, as discussed earlier. To address this issue, we apply Δ−1 on the data fitting term and substitute ||R − T||1 with ||Δ−1R − Δ−1T||1 as:
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(7)




where R is the fused result, which retains the spatial information and the spectral information. Moreover, we employ the Δ−1 operator, within ||TV − L1|| as ||Δ−1R − Δ−1T||1, resulting in the function focusing on the low frequency information of R − T and neglecting the high frequency information.
Finally, as Model (7) is a non-convex model, we solve the problem using an alternative minimization algorithm, as detailed in the next subsection.



2.4. Alternative Minimization Algorithm

We use the splitting scheme similar to [20,27] to solve Equation (7). It is well-known that the L0 problem is strongly NP-hard to solve, but we solve it based on the conclusion reported in [26]. Firstly, we introduce two auxiliary variables p1 and p2 to transform Model (7) as follows:
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(8)




The alternative minimization algorithm [28] is employed to solve Model (8). The most important part of the alternative minimization is to solve:
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(9)




It is well known that Model (9) is strongly NP-hard. We use the technique of [27] to decompose it into the following model:
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(10)




where i is the pixel position of the image and H is defined as:


H(|x|)={1,if|x|≠0;0,otherwise.



(11)




Next, Model (9) is rewritten by Model (10). Additionally, solve Model (10) by computing each term as follows:
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(12)




To solve Model (12), we need Proposition 1.
Proposition 1. Model (12) obtains the minimum under the conditions:
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(13)




The proof is similar to [27]. In order for this paper to be self-contained, we present the proof of Proposition 1 as follows.

Proof. If [image: there is no content] and p1,i ≠ 0, we have:
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(14)




If [image: there is no content] and p1,i = 0, we have:
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(15)




Combining (14) and (15), we conclude that if [image: there is no content] and p1,i = 0, Model (12) obtains the minimum (Rx,i − Gx,i)2.
If [image: there is no content] and p1,i ≤ 0, we have:



(Rx,i−Gx,i−p1,i)2+λβH(|p1,i|)=(Rx,i−Gx,i−p1,i)2+λβ≥λβ.(Ifp1,i=Rx,i−Gx,i,theequalityholds.)



(16)




If [image: there is no content] and p1,i = 0, we obtain:
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(17)




Combining (16) and (17), we conclude that if [image: there is no content] and p1,i = Rx,i − Gx,i, Model (12) obtains the minimum [image: there is no content]. Thus, we complete the proof of Proposition 1.
Because every point is considered to be a single point individual, we simplify Equation (13) as follows:
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(18)




Although Proposition 1 can solve the L0 approximately, another sub-problem of the alternate minimization is to solve as follows:
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(19)




Based on the definition of Δ−1 and the discrete Fourier transform, we transform (19) as follows:
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(20)




where ○ represents the element-wise multiplication. Based on (3), Equation (20) can be transformed as follows:
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(21)




Then, we obtain the solution:


[image: there is no content]



(22)




where † represents the conjugate transpose operator, ./ is the element-wise division, F−1 is the inverse Fourier transform and (∂x, ∂y) are differentiated operators.
After we solve the above important sub-optimization, we present our framework by Algorithms 1 and 2 as follows:
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 Algorithm 1 Image fusion algorithm 






 Algorithm 1 Image fusion algorithm
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Remark 1.


	rgb2ihs indicates the transformation from RGB (red, green, blue) space to IHS (intensity, hue, saturation) space.


	ihs2rgb indicates the transformation from IHS space to RGB space.


	ι is a small positive constant.




To give convergence results for the generated sequence [image: there is no content] generated by Algorithm 2, we give Proposition 2 as follows.

 Algorithm 2 Kernel algorithm



[image: Entropy 16 06099f8 1024]





Proposition 2. If ϵ > 0, the sequence[image: there is no content]generated by Algorithm 2 converges monotonically.

Proof. Based on the Plancherel theorem, the energy of (20) is equal to the energy of (19). As Equation (22) presents, the solver of the energy Equation (19) is:



[image: there is no content]



(23)




where [image: there is no content] and [image: there is no content]. If ∀i,j,W2n(i,j)≠0, the solver Rn+1 can be obtained by the Equation (23).
If ϵ > 0, the equation [image: there is no content] is generated. Therefore,



[image: there is no content]



(24)




Accordingly, the optimization problem (19) can be solved. Then, we obtain that [image: there is no content]. Based on Proposition 1, we obtain that [image: there is no content]. From the above discussion, we obtain that:


[image: there is no content]



(25)




It is trivial to obtain that J(·,·,·) is bounded from below. With the monotone convergence theorem, the sequence [image: there is no content] converges to a limit vector a.


2.5. The Selection of the Key Parameter λ

Parameter λ is very important for our fusion energy function. It determines the level of detail of information from the panchromatic image and the level of spectral information from the multi-spectral image present in the final fused image. In this paper, we do not assign a fixed value to λ, but an image A. Image A is constructed of two parts: one is a constant value matrix A1 corresponding to the previous constant parameter, and the other is the logical matrix A2 derived from the dilation operator of the mathematical morphology on the edge image of the panchromatic image. That means if A2(i) is larger, the object function focuses on the panchromatic image; otherwise, the multi-spectral information is considered. An example of image A is shown in Figure 4. Because Equation (13) is the point-wise operator, we can substitute the value λ with matrix A. Thus, we extend Equation (13) as follows:

Figure 4. Generation of the parameter λ = A.
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(26)




where i is the pixel position of the image.



3. Experimental Results

Some experiments on IKONOS and QUICKBIRD images are used to validate the proposed algorithm. We use two metrics to quantify the performance. The correlation measure (CM) [10] is defined as follows:
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(27)




where A and B are the images in the lexicographic order. CM computes correlation coefficients of the red, the green and the blue channels between the multispectral image and the fused result; this computation can be used to assess the preservation of the spectral information of the result.
A feature-based metric QAB/F [29] is adopted. The QAB/F metric is defined as follows:



[image: there is no content]



(28)




where [image: there is no content] and [image: there is no content] are the outputs of the horizontal and vertical Sobel templates centered on pixel (m, n) and convolved with the corresponding pixels of image A. Similarly, gB(m, n) and gF(m, n) can also be obtained by the above definition. The relative strength and orientation values of GAF and AAF of image A with respect to F are defined as:


GAF(m,n)={gF(m,n)gA(m,n),ifgA(m,n)>gF(m,n);gF(m,n)gA(m,n),otherwise.



(29)
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(30)




Then, the edge strength and orientation preservation values are derived as:
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(31)
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(32)




where Γg, Kg,σg,Γα, Kα and σα are constants and determine the exact shape of the sigmoid functions used to form the edge strength and orientation preservation values. Edge information preservation values are then defined as:
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(33)




Therefore, QAB/F is obtained as:
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(34)




where wA(m,n) = (gA(m,n))L,wB(m,n) = (gB(m, n))L and L is a constant. QAB/F considers the amount of edge information transferred from the input images to the fused image. The larger QAB/F value indicates that the fused result contains more information from the input images.
Spatial frequency (SF) measurement [30,31] is about the overall activity level in an image. The spatial frequency is defined as follows:
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(35)
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(36)
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(37)




where SF is defined on an M × N image I, RF is row frequency, CF is column frequency and I(i,j) denotes the samples of image. The large value of SF means that the image contains components in a high frequency area. The spatial frequent measurement can be used to reflect the clarity of the result.
The proposed method is compared to some wavelet-based methods, such as the additive wavelet fusion method (AW) [10], the choose-max wavelet fusion method (CMW) [11], the multi-scale fundamental forms fusion method (MFF) [12] and the weighted multi-scale fundamental forms fusion method (WMFF) [13]. In order to illustrate the superiority of the proposed L0 gradient minimization, we perform a comparative experimentation with L1 gradient minimization-based methods [14,15], and the results are shown in Tables 1 and 2.

Table 1. Quantitative comparison results of Figure 5. AW, additive wavelet fusion method; CMW, choose-max wavelet fusion method; MFF, multi-scale fundamental forms fusion method; WMFF, weighted multi-scale fundamental forms fusion method.


	Fusion Method
	CM(Red channel)
	CM(Green channel)
	CM(Blue channel)
	QAB/F
	SF





	AW
	0.9341
	0.9345
	0.9402
	0.4109
	0.0642



	CMW
	0.9426
	0.9443
	0.9501
	0.3491
	0.0640



	MFF
	0.8281
	0.8255
	0.8497
	0.3700
	0.0810



	WMFF
	0.9268
	0.9265
	0.9353
	0.4304
	0.0738



	Method [14]
	0.9503
	0.9528
	0.9558
	0.4311
	0.0768



	Method [15]
	0.9502
	0.9527
	0.9555
	0.4157
	0.0776



	Proposed method
	0.9505
	0.9534
	0.9570
	0.4485
	0.0842








Table 2. Quantitative comparison results of Figure 6.


	Fusion Method
	CM(Red channel)
	CM(Green channel)
	CM(Blue channel)
	QAB/F
	SF





	CMW
	0.8835
	0.8704
	0.8616
	0.3576
	0.1129



	MFF
	0.8321
	0.8130
	0.7980
	0.3542
	0.0959



	WMFF
	0.8920
	0.8745
	0.8704
	0.4075
	0.0941



	Method [14]
	0.8921
	0.8850
	0.8743
	0.4105
	0.1360



	Method [15]
	0.8921
	0.8847
	0.8746
	0.4073
	0.1372



	Proposed method
	0.8927
	0.8849
	0.8751
	0.4260
	0.1478








From the enlarged portion of the fused result, Figure 5 shows that our proposed algorithm has removed the block effect. We selected the parameter to make CM (r) metric, as close as possible, which means the retained spectral information is as close as possible. We applied the above metric to quantify the results in Table 1. In Table 1, CM (r), CM (g) and CM (b) correspond to the correlation measures of the red channel, the green channel and the blue channel. This shows that our fused result preserves more spectral information than the other methods. The fourth column of Table 1 illustrates that the image obtained by the proposed method gets more feature information from the original image than other methods. The sixth column of Table 1 obtained by the proposed method indicates that our method obtains clearer results than the other methods.

Figure 5. Fused IKONOS images using AW, CMW, MFF, WMFF, method of [14], method of [15] and the proposed method.
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Figure 6 shows the fused QUICKBIRD’s images that are obtained by CMW, MMF, WMMF, the methods of [14,15] and the proposed method. The above metric is applied to quantify the results in Table 2. In Table 2, CM (r), CM (g) and CM (b) correspond to the correlation measure of the red channel, the green channel and the blue channel; this shows that our fused result preserves more spectral information than other methods. The fourth column of Table 2 illustrates that the image obtained by the proposed method gets more feature information from the original images than other methods. The sixth column of Table 1 obtained by the proposed method indicates that our method obtains clearer results than the other methods.

Figure 6. Fused QUICKBIRD images using CMW, MFF, WMFF, method of [14], method of [15] and the proposed method.
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4. Conclusion

The proposed algorithm removes the block effect efficiently by using the Δ−1 operator. In addition, we use a non-convex functional form to improve our fusion result. Simultaneously, our proposed method presents a new energy minimization algorithm to retain the spectral and high frequency information from the original images. We conduct some experiments on the IKONOS and QUICKBIRD images, and the proposed algorithm obtains a better fusion result than other fusion algorithms, in terms of not only visual quality, but also some fusion indicators.
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