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Abstract: The computational prediction of nonlinear interactive instabilities in  

three-dimensional boundary layers is obtained for a warm dense plasma boundary layer 

environment. The method is applied to the Richtmyer–Meshkov flow over the rippled 

surface of a laser-driven warm dense plasma experiment. Coupled, nonlinear spectral 

velocity equations of Lorenz form are solved with the mean boundary-layer velocity 

gradients as input control parameters. The nonlinear time series solutions indicate that after 

an induction period, a sharp instability occurs in the solutions. The power spectral density 

yields the available kinetic energy dissipation rates within the instability. The application 

of the singular value decomposition technique to the nonlinear time series solution yields 

empirical entropies. Empirical entropic indices are then obtained from these entropies. The 

intermittency exponents obtained from the entropic indices thus allow the computation of 

the entropy generation through the deterministic structure to the final dissipation of the 

initial fluctuating kinetic energy into background thermal energy, representing the resulting 

entropy increase. 

Keywords: boundary layer flows; deterministic structures; fractal intermittency exponents; 

entropy generation; warm dense plasma 
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1. Introduction 

In this article, we present the results of an exploratory computational study of a possible instability 

in the Richtmyer–Meshkov flow over a surface deflection in a warm dense plasma environment. Over 

the past several decades, powerful laser facilities have been constructed to provide the hot dense 

matter required for the initiation of inertial fusion (Atzeni, Meyer-ter-Vehn [1], Drake [2]). Additional 

laser facilities have been implemented to support this effort and are capable of providing the warm 

dense matter required to simulate the environment found in supernova plasma [2]. Results obtained 

from these facilities have confirmed the existence of the Rayleigh–Taylor instability (buoyancy effect 

between two adjacent layers), the Kelvin–Helmholtz instability (the effect of shear between adjacent 

layers), and the Richtmyer–Meshkov instability (induced parallel flow due to surface ripples) [2]. 

Recently, Harding [3] presented the results of a carefully conducted experimental study of the 

Richtmyer–Meshkov effect using the absorption of laser energy in an Al foil over a foam substrate. 

These results demonstrate that a rippled foam surface represents a flow deflection, resulting in a strong 

oblique shock wave and an induced parallel flow over the deflected foam surface  

(Richtmyer–Meshkov effect) [3]. These results also indicate the possible presence of an instability not 

accounted for by the three processes listed above. The three cited references provide an extensive 

bibliography to the literature in this field of study. 

In the study reported here, the warm dense plasma environment is modeled as a supersonic flow 

through a strong oblique shock wave produced by a wedge deflection of the flow [3]. The  

three-dimensional laminar boundary layer along the wedge surface is computed by well-established 

computer procedures as presented in detail by Cebeci and Bradshaw [4] and Cebeci and Cousteix [5]. 

The fluctuating velocity equations are Fourier-transformed into Lorenz-form and time-integrated with 

the mean velocity gradients from the boundary layer solutions serving as input parameters. The singular 

value decomposition method provides the fraction of kinetic energy distributed over the empirical 

modes of the decomposition of the deterministic structures predicted by the integration of the Fourier 

spectral equations for the fluctuating velocity wave components. The introduction of the empirical 

entropic index, and the subsequent evaluation of the intermittency exponent provide a connecting link 

from the predicted deterministic structures to the computation of the entropy generation rate through 

the dissipation of the kinetic energy to thermal energy within the deterministic structures. 

This article is presented with the following sections: 

In Section 2, we discuss the warm dense plasma conditions produced by a strong oblique shock 

process (Atzeni and Meyer-ter-Vehn [1], Drake [2], Harding [3], Zucrow and Hoffman [6]) and the 

computational results for the thermo-transport properties (Sonntag and Van Wylen [7], Chase [8], 

Spitzer [9], Cambel [10]) that are used throughout the computational processes. The boundary layer flow 

environment that forms the basis for the evaluation of boundary layer deterministic structures is presented 

in Section 3. In Section 3, we assume that our flow environment is a three-dimensional laminar flow 

over a flat plate with a constant velocity in the streamwise (along the x-axis) direction, with no pressure 

gradient, and that the flow is incompressible (Isaacson [11]). We assume a weak cross-flow velocity 

created by asymmetry in the surface ripple. The laminar boundary layer development is computed 

from the starting point of the surface ripple, providing a priori the three-dimensional boundary layer 

velocity profiles at various stations in the streamwise direction (Cebeci and Bradshaw [4], Isaacson [12], 
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Hansen [13]). In Section 4, the Townsend equations [14] are written for all three fluctuating  

velocity components within the given three-dimensional boundary layer flow. These equations are 

Fourier transformed into a set of deterministic equations (Hellberg and Orszag [15], Isaacson [16], 

Manneville [17]) from which the time-dependent behavior of the both the Fourier components of the 

wave number vectors and the Fourier components of the fluctuating velocity wave vectors are 

obtained. The results for these computations are presented in Section 5. The power spectral density of 

the resulting non-linear time series solution for the streamwise velocity wave component is presented 

in Section 6 (Chen [18], Cover and Thomas [19], Rissanen [20,21], Li and Vitanyi [22]). The results 

for the singular value decomposition of selected regions of the nonlinear time series solutions are 

presented in Section 7 (Holmes et al. [23]). From these results, empirical entropy is defined for each of 

the empirical modes obtained in the computation [11,20]. In Section 8, the empirical entropic index 

(Tsallis [24]) is computed from the empirical entropy value for each empirical mode ([11,20],  

Mariz [25], Glansdorff and Prigogine [26]). Section 9 presents the intermittency exponent (Arimitsu 

and Arimitsu [27], Mathieu and Scott [28]) from the associated empirical entropic index for each 

empirical mode of the singular value decomposition process (Press et al. [29], Isaacson [31]). Section 

10 presents the calculation of the entropy generation rate (de Groot and Mazur [34], Truitt [35],  

Bejan [36]) through the dissipation of the appropriate part of the total kinetic energy applied as input to 

the original deterministic structures produced within the three-dimensional boundary layer 

environment (Fung and Vassilicos [37], Hurst and Vassilicos [38], Seoud and Vassilicos [39], 

Mazellier and Vassilicos [40] and Valente and Vassilicos [41]). The article closes with a discussion of 

the results and final conclusions. 

2. Warm Dense Plasma Environment 

Harding [3] has suggested that the Richtmyer–Meshkov flow over a rippled surface may be represented 

as the flow produced by a strong oblique shock produced by a wedge-type flow deflection of an upstream 

supersonic flow environment. The gas dynamic analysis for this type of supersonic flow deflection, with a 

complete configuration of the flow environment, has been presented in [6] (pp. 356–369). The flow 

environment that we consider, as shown in Figure 1, for the computation of the entropy generation 

through deterministic boundary layer structures is assumed to be the supersonic flow of warm dense 

plasma over a two-dimensional wedge of deflection angle δ. The plasma is assumed to be a mixture of 

atomic hydrogen, H, ionic hydrogen, H+, and electrons, e−, in chemical equilibrium. The equilibrium 

composition and the thermodynamic properties are computed using the statistical thermodynamic 

methods outlined by Sonntag and Van Wylen [7]. The statistical parameters required in these 

calculations are obtained from the NIST-JANAF Thermochemical Tables [8]. The transport properties 

of the mixture are computed using the expressions given by Spitzer [9].  

The incoming Mach number is assumed to be 2.80, with an incoming flow temperature of 1.0 × 105 K 

and a static pressure of 4.6 × 109 N/m2. For the upstream Mach number of 2.80, a wedge deflection angle 

of 18°, and a ratio of specific heats of 1.54, the equations of gas dynamics [6] yield a strong oblique 

shock wave at a shock wave angle of approximately 81°. The subsonic, deflected flow downstream of 

this strong oblique shock wave is now considered as our warm dense plasma environment. Table 1 

presents the thermodynamic and transport properties used throughout the computational procedures. 
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Figure 1. Schematic of the strong oblique shock wave is shown.  
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Table 1. Thermodynamic and transport properties across the strong oblique shock wave. 

Parameter Applied value 

Upstream Mach number (M1) 2.80 
Upstream temperature (T1) 1.00 × 105 K 
Upstream static pressure (p1) 4.63 × 109 N/m2 

Upstream gamma (γ1) 1.54 
Flow deflection angle (δ) 18° 

Strong oblique shock wave angle (ε) 81° 

Downstream Mach number (M2) 0.54 
Downstream temperature (T2) 2.86 × 105 K 
Downstream static pressure (p2) 4.20 × 1010 N/m2 

Downstream gamma (γ2) 1.65 
Downstream kinematic viscosity (ν2) 1.46 × 10−4 m2/s 
Downstream velocity (V2) 3.4 × 104 m/s 

3. Boundary-Layer Development 

From the experimental results presented by Harding [3], we assume that the Richtmyer–Meshkov 

flow downstream of the strong oblique shock wave forms a laminar boundary layer over the foam 

substrate surface. We also assume that additional asymmetric ripples on the substrate surface produce 

a weak spanwise cross-flow to the streamwise laminar boundary layer. The resulting three-dimensional 

boundary layer flow over the substrate surface is assumed to consist of a spatially developing Blasius 

boundary layer in the downstream x-y plane, and a weak spanwise Blasius boundary layer in the z-y 

plane. A schematic diagram of the assumed three-dimensional boundary layer configuration may be 

found in [11]. Cebeci and Bradshaw [5] present computer source codes for the numerical solutions for 

both laminar and turbulent boundary layers over the substrate surface. The equations required for the 

laminar boundary layer mean velocity gradients have been presented in [12]. The mean boundary-layer 
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velocity gradients serve as control parameters for the solution of the non-linear coupled Lorenz-type 

equations for the prediction of instabilities within the three-dimensional boundary layer environment. 

The mathematical and computational procedures for the solution of the boundary layer flow 

equations have been presented in [12]. However, it is our intention in this article to provide a 

consistent mathematical basis for the overall computational procedure used for the determination of 

the entropy generation by deterministic boundary layer structures. Therefore, we have included a 

summary of the essential equations used by Cebeci and Bradshaw [4]. The momentum equation for the 

streamwise boundary-layer flow, including the contributions from both laminar and turbulent flows, 

may be written as: 

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ
dp

dx
+ 1

ρ
∂
∂y

μ ∂u

∂y
− ρu'v '



  



. (1)

The definitions of the terms in this equation are found in the Nomenclature. In Equation (1), the term 

−ρ u 'v '
______

 represents the streamwise boundary layer stress produced by the correlation of the streamwise 

and the normal fluctuating velocity components. We have included this term in the development 

because we will use the computation of the turbulent boundary layer at the streamwise station of 

interest to compute the rate of entropy generation by the turbulent boundary layer at that station. 

The boundary conditions for Equation (1) are: 

y = 0  u = v = 0 (2)

y = δ(x) u = ue x( ) (3)

The Reynolds shear stress for the computation of turbulent boundary layers is modeled with the 
“eddy viscosity”, εm, having the dimensions of (viscosity)/(density), by: 

−ρu'v' = ρεm

∂u

∂y
 (4)

The computer program we have chosen to implement for the solution of the streamwise boundary 

layer equation (Equation (1)) is based on the Keller–Cebeci box method presented by Cebeci and 

Bradshaw [4] and Cebeci and Cousteix [5]. One of the basic aspects of this method is to transform 

Equation (1) into a system of first-order ordinary differential equations. The Falkner–Skan transformation, 

in the form:  

η =
ue

νx


 
 


 
 

1/ 2

y  (5)

is introduced into the transformation process. The dimensionless stream function, f x( ,η), is defined by: 

Ψ x( , y) = ueνx( )1/ 2
f x( ,η). (6)

These definitions yield the results for the mean boundary layer velocities u and v as: 

u = ue f ' v = −∂
∂ x

ue( ν x)1/2
f ] + η

2

ueν
x









1/2

f '  (7)
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Differentiation with respect to η is indicated by the prime in these expressions. From Bernoulli’s 

equation, the pressure gradient term is given by 
dp

dx
= −ρue

due

dx
. To simplify the resulting equations, 

the parameter m is defined as: 

m = x

ue

due

dx
 (8)

After a rather lengthy transformation process, (we refer the reader to Cebeci and Bradshaw [4] for 

the details) the basic partial differential equation for the boundary layer (Equation (1)) is replaced with 

three first-order partial nonlinear differential equations in the following form: 

f '= u (9)

u'= v (10)

(bv)'+
m +1

2

 
 
 


 
 fv + m(1− u2) = x u

∂u

∂x


 
 − v

∂f

∂x



 (11)

In Equation (11), b = 1( +εm
+ )  and εm

+ =
εm

ν
. The corresponding boundary conditions for  

Equations (9)–(11) are: 

f(x, 0) = 0,  u(x, 0) = 0,   u(x, η∞) = 1. (12)

Note that in Equation (10), v is not the y-component velocity. 

Cebeci and Bradshaw [4] discuss in detail the numerical solution of the system of first-order 

differential equations, Equations (9)–(11). An arbitrary rectangular net using “centered-difference” 

derivatives and averages at the midpoints of net rectangles and net segments, as required, are used to 

get a resulting set of finite-difference equations. Newton’s method is then used to solve the resulting 

system of equations. 

The computational procedure developed by Cebeci and Bradshaw [4] has been used as the basis for 

our computations of the three-dimensional laminar boundary layer flow. The streamwise flow is of the 

Falkner–Skan type with an initial free stream velocity of unity, making the boundary layer edge 

velocity dimensionless. The main computer program in the computational procedure establishes 

various station numbers for the streamwise direction and assigns vertical grid numbers for the 

calculation of the vertical profiles at a given streamwise station. The computational domain in the 

streamwise direction uses stations separated by spaces of 0.02 dimensionless units beginning at the 

initial edge of the boundary layer development. The spanwise flow has a freestream velocity 

approximately ten percent of the streamwise velocity. The computational domain in the spanwise 

direction uses stations in increments of 0.00075 dimensionless units in the spanwise direction. 

Hansen [13] has shown that the laminar boundary layers along the starting planes for the x-y and  

z-y planes are similar in nature. This similarity allows the computation of the laminar mean velocity 

profiles in both the x-y and the z-y planes. The laminar velocity profiles in the z-y plane are computed 

at the fourth spanwise station, z = 0.003, and in the x-y plane at the fourth streamwise station, x = 0.08. 

The gradients for the boundary layer mean velocity components are obtained from the 

computational results for both the streamwise boundary layer and the spanwise boundary layer. These 

gradients then serve as control parameters for the solution of the nonlinear time-dependent Townsend 
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equations for the fluctuating velocity wave components in the boundary layer environment. The  

three-dimensional field of mean boundary layer velocity gradients serves as a computational container 

in which the fluctuating velocity field is placed. Thus, the three-dimensional field of boundary-layer 

mean velocity gradients provides the control parameters required for the solution of the Lorenz-type 

time-dependent coupled fluctuating velocity wave component equations. These non-linear time-series 

solutions indicate the presence of deterministic structures within the boundary layer flow. 

4. Equations of Lorenz Form for the Spectral Velocity Wave Components 

The primary hypothesis of this article is that a three-dimensional laminar boundary layer with a 

weak spanwise or cross-flow velocity will induce instabilities within the boundary layer leading to the 

development of deterministic structures within the boundary layer flow. These instabilities arise 

through the nonlinear interactions among the streamwise velocity fluctuations and the spanwise and 

normal velocity fluctuations within the laminar boundary layer flow. Separating the equations of 

motion into steady and unsteady equations, the equations for the velocity fluctuations may then be 

written as [14–16]: 

∂ui

∂t
+U j

∂ui

∂x j

+ uj

∂Ui

∂x j

+ uj

∂ui

∂x j

= − 1

ρ
∂p

∂xi

+ν ∂2ui

∂uj∂uj

 (13)

In these equations, ρ is the density and ν is the kinematic viscosity, Ui represent the mean velocity 

components with i = 1, 2, 3 indicating the x, y, and z components, and xj, with j = 1, 2, 3, designate the 

x, y and z directions. The pressure term is eliminated by taking the divergence of Equation (13) and 

invoking incompressibility, yielding: 

− 1

ρ
∂2 p

∂xl
2

= 2
∂Ul

∂xm

∂um

∂xl

+ ∂ul

∂xm

∂um

∂xl

.  (14)

The equations for the velocity and pressure fluctuations represent the variables of interest in the 

physical plane. However, the computational procedures we employ require the equations to be in the 

spectral plane. The solution of the spectral equations yields the fluctuating wave vector components 

and the fluctuating velocity wave components. The statistical analysis of the nonlinear time series 

solution for the streamwise velocity wave component involves the product of these components. 

Through Parseval’s theorem, the spectral fluctuating velocity component products also represent the 

products of the streamwise fluctuating velocity components in the physical plane. These quadratic 

terms in the physical plane are then applied to the determination of the entropy generation rate in the 

thermodynamic analysis of the irreversible dissipation rate within the boundary layer deterministic 

structures. 

The fluctuating velocity and pressure fields of Equations (13) and (14) are expanded in terms of the 

Fourier components [28]: 
( , ) ( , ) exp( )i iu x t a k t ik x

k
•=  (15)

and: 

( , )
( , ) exp( ).

k

p x t
b k t ik x

ρ
•=  (16)
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The pressure component in Equation (13) is transformed into a function of fluctuating velocity 

wave components and boundary layer velocity gradients through Equations (16) and (14). Substituting 

the resulting equations and Equation (15) into Equation (13) yields an expression for the fluctuations 

of the velocity wave vector components with time. The resulting equations for the three spectral 

velocity wave components, ai(k), are then given as: 

' ''

2 ' ''
2 2

( )
( ) ( ) 2 ( ) ( ) ( ) ( ).i i i l l i m

i i i l im l l m
k k ki m

da k U k k U k k
k a k a k a k i k k a k a k

dt x k x k
ν δ

+ =

∂ ∂= − − + + −
∂ ∂   (17)

The time-series solutions for the wave numbers, ki are obtained from the general equations for the 

balance of transferable properties: 

dki

dt
= − ∂Ul

∂xi

kl. (18)

The set of equations for the time-dependent wave number components, including the gradients of 

the mean velocities in the x-y and z-y boundary layers, may be written: 

dkx

dt
= − ∂U

∂x
kx − ∂Vx

∂x
ky,

 
(19)

              

dky

dt
= − ∂U

∂y
kx − ∂Vx

∂y
ky − ∂W

∂y
kz,

 
(20)

dkz

dt
= − ∂Vz

∂z
ky − ∂W

∂z
kz.

 
(21)

The nonlinear products of the fluctuating velocity wave components in Equations (17) are retained 

in our series of equations by characterizing the coefficients: 

kl (δim − kikm

k2
) (22)

as a projection matrix (Mathieu and Scott [28]). This coefficient represents the projection of a given 

velocity wave vector component, ai, normal to the direction of the corresponding wave number 

component, ki. A model equation for this expression in the form: 

( )(1 cos ( ) )K k t−   (23)

is introduced to retain the effect of the projection matrix on the nonlinear interactive terms in our 

equations. K is an empirical weighting amplitude factor [9] and k(t) is given by: 

k(t) = (kx
2 ). (24)

The weighting factor, Equation (23), has been used by Manneville [17] to obtain pattern formations 

for simple configurations. To simplify the form for Equations (17), the feedback parameter, F, is 

introduced as: 

( )cos ( )F K k t=   (25)

The value of K used in the computational procedure is the empirical value that yields unstable 

solutions for the fluctuating spectral velocity wave components within the laminar boundary layer 
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flow. We have found that a value of K = 0.005 yields the prediction of boundary layer instabilities for 

the particular value of kinematic viscosity listed in Table 1. The resulting “modified Townsend 

equations” are obtained by including the expressions for the mean boundary layer velocity gradients in 

Equations (17), including the feedback parameter for the nonlinear coupling terms. Arranging these 

equations into Lorenz form yields a set of first-order nonlinear time-dependent coupled differential 

equations. The mean boundary-layer velocity gradients, the gas mixture kinematic viscosity and the 

feedback factor serve as control parameters for the solution of these equations. 

The equations for the velocity wave components, Equations (17), are written in Lorenz format as [16]: 

,x
y y x x

da
a a

dt
σ σ= −  (26)

                   
day

dt
= −(1− F)axaz + r1ax − s1ay,  (27)

        
daz

dt
= (1− F)axay − b1az. (28)

From Equations (17), the coefficients of the velocity wave component terms have the following 

forms [16]: 

σ y =
2kxky

k 2
−1










∂U

∂y
+

2kxky

k2

∂Vx

∂y
+ 2kxkz

k2

∂W

∂y









,  (29)

σ x = υk2 − 2kxkx

k2
−1








∂U

∂x
+

2kxky

k2

∂Vx

∂x
+ 2kxkz

k2

∂W

∂x



















,  (30)

r1 =
2kykx

k2

∂U

∂x
+

2kyky

k2
−1










∂Vx

∂x
+

2kykz

k2

∂W

∂x









,  (31)

s1 = υk 2 −
2kykx

k2

∂U

∂y
+

2kyky

k2
−1










∂Vz

∂y
+

2kykz

k2

∂W

∂y






















,  (32)

b1 = υk2 − 2kzkx

k2

∂U

∂z
+

2kzky

k2

∂Vz

∂z
+ 2kzkz

k 2
−1








∂W

∂z



















.  (33)

The coefficients represented by these equations are dependent on both the time-dependent wave 

number components and the steady boundary-layer velocity gradients. Since the control parameters for 

the wave number component equations are the steady boundary layer velocity gradients, an essential 

observation is that the solutions for the fluctuating velocity wave components are therefore dependent 

only on the imposed control parameter environment provided by the steady boundary layer velocity 

gradients. Note that the internal feedback parameter (1 – F) is applied to the nonlinear terms, and not 

to one of the individual variable terms. 

The computational procedure involves the solution of six simultaneous first-order differential 

equations. The three equations for the wave number components, Equations (19)–(21) are solved first, 

given the necessary control parameters for the mean velocity gradients from the boundary layer 

solutions. The solutions for these equations are then stored to disc for input into the solution of the 

time-dependent velocity wave component equations, Equations (26)–(28). 
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The solutions of Equations (26)–(28) yield the fluctuating velocity wave components at the 

streamwise location of x = 0.08 and the spanwise location of z = 0.003. The outer edge of the 
boundary layer is assumed to be at the normalized distance ηe = 8.00, with the boundary layer 

instability observed within the boundary layer at a normalized distance of η = 3.00. The initial values 

for the wave number components are kx[1] = 0.04, ky[1] = 0.02 and kz[1] = 0.02, while the initial 

conditions for the velocity wave components are ax[1] = 0.20, ay[1] = 0.01 and az[1] = 0.001. For the 

thermodynamic and transport conditions given in Table 1, the weighting factor that yields a flow 

instability has been found to be K = 0.005. 

Press et al. [29] (pp. 714–720) have presented computer source codes for the integration of the 

Equations (26)–(28) using a fifth-order Runge–Kutta technique. The time step is 0.0001 s using 12,288 

time steps over the total time frame for the integration process. The time series solution for each 

velocity wave vector component is saved to disc for processing to extract various statistical properties 

of the deterministic structures represented in the time series solution. 

The individual steady velocity gradients, obtained from the solution of the three-dimensional 

boundary layer equations, and the time series solutions for the wave number components provide the 

necessary control parameters for the solution of the set of three nonlinear deterministic equations, 

Equations (26)–(28). Figure 2 presents the fluctuating streamwise velocity wave components over the 

total time range of the integration process. Figure 3 shows the corresponding normal velocity wave 

components over the same time frame. 

Figure 2. Shown is the streamwise velocity wave vector component, ax as a function of the 

time step, n. 
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Mathieu and Scott [28] (pp. 239–282) have presented a thorough discussion of the method of 

spectral analysis applied to turbulent flow, involving both the spectral wave number components and 

the spectral velocity wave components. We should note that we have not restricted the solutions for the 

wave number components, but have simply transferred the resulting time series solutions to disk for 

retrieval in the solution of the time dependent velocity wave component equations, Equations (26)–(28). 
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Also, an essential aspect of our computational procedure in the spectral plane is that the statistical 

analysis of the resulting time series solutions for the velocity wave components involves only the 

quadratic representations of these components to obtain the statistical properties of interest. Thomas [30] 

presents an extensive discussion, including a number of definitions and propositions, regarding the use 

of Parseval’s theorem to show the identity between the quadratic form of the spectral velocity wave 

components and the quadratic form of the corresponding velocity fluctuations. We have therefore 

assigned the results of the statistical analysis of the quadratic spectral velocity wave components to the 

kinetic energy content of the corresponding physical fluctuating velocity components. This allows us 

to carry our computational procedure to the dissipation of kinetic energy into background thermal 

energy, representing the increase in thermal entropy. 

Figure 3. Shown is the normal velocity wave vector component, ay as a function of the 

time step, n. 
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5. Power Spectral Density Within the Deterministic Structure 

The time series solutions for the spectral wave number components and the spectral velocity wave 

components indicate that after an induction period, a sharp instability occurs in the solutions. We 

classify this instability as a deterministic boundary layer structure. To obtain the entropy generation 

rate through this deterministic structure, it is necessary to extract the underlying structural 

characteristics of the nonlinear time series solutions. Chen [18] has presented a series of studies of 

methods for the extraction of such structural information from time series information. A computer 

source code has been presented in [20] that implements the maximum entropy method (Burg’s method) 

for spectral analysis of geophysical seismic time data records. This method considerably improves the 

spectral resolution of the power spectral density for short time series records. 

Burg’s method has its theoretical roots in information theory (Cover and Thomas [19]), where a 

discussion and a proof of Burg’s maximum entropy rate theorem are given. These authors also make 

reference to the work of Rissanen [20,21], where the maximum entropy method is related to the 

concept of Kolmogorov complexity [22]. 
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One of the significant advantages of Burg’s method is the enhancement of the spectral peaks in the 

power spectral density distribution. Our previous experience with Burg’s method and the existence of 

useful source codes for the analysis of the predicted time series led to our use of this method for the 

evaluation of the power spectral density of the streamwise velocity wave vector, ax, for each segment 

in the time series. 

Press et al. [29] (pp. 572–575) present computer source codes for the prediction of the power 

spectral density using the maximum entropy method. The power spectral density for the streamwise 

velocity wave component time series is computed for 1024 time step data samples from time step of 

11,264 to time step 12,288. The selected time series is divided into 32 segments with 32 data sets per 

segment. Burg’s method [29] is then applied to each segment of the 32 data sets to obtain 16 spiked 

values of the power spectral density of the streamwise velocity wave component over the selected time 

series. The resulting power spectral density results for the deterministic structure for the conditions 

listed in Table 1 are presented in Figure 4. 

Figure 4. Shown is the power spectral density of the streamwise velocity wave vector 

component, ax as a function of the frequency at station x = 0.08. 
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The results shown in Figure 4 for the power spectral density indicate that the spectral energy is 

distributed in well-defined spectral peaks. We speculate at this point that the distribution of the kinetic 

energy available for dissipation is spread across these spectral peaks. We, therefore, number the 

“modes”, starting with the maximum peak as mode 1, numbering the peaks in decreasing amplitude to 

mode 16. We determine the kinetic energy dissipation rate [28] for each mode with the relation: 

2

1

3 22
2 ( ) ( ) .

f

avail
ef

E f E f df
u

πν=   (34)

The graphing program uses the trapezoidal rule to calculate the kinetic energy dissipation rate for 

each of the indicated peaks or modes. The total spectral energy dissipation rate is then obtained as the 

sum of the individual contributions across the modes. Figure 5 shows the distribution of the fraction of 
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total available kinetic energy dissipation rate across the sequence of peaks or modes in the power 

spectral density distribution shown in Figure 4. The relatively low level indicated in mode 1 is 

apparently due to the narrow frequency range used in the integration process for the kinetic energy 

dissipation rate. In the development of a computational procedure for the determination of the entropy 

generation through the deterministic structure, we need to evaluate how much of the total kinetic 

energy dissipation rate in these modes actually contributes to the background thermal energy by 

dissipation within the deterministic structure. In the next section, we described the singular value 

decomposition process as a means to obtain a deeper definition of the underlying spectral 

characteristics of the time series solution found for the deterministic structure previously described. 

Figure 5. Shown is the percentage distribution of the available kinetic energy dissipation 

rate for the streamwise velocity wave vector component, ax. 
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6. Singular Value Decomposition and Empirical Entropy 

Holmes et al. [23] have developed the method of proper orthogonal decomposition, or singular 

value decomposition, as a means of identifying additional characteristics of the nonlinear time series 

solutions for coupled, nonlinear flow equations. With the results from a direct numerical simulation of 

flow field structures serving as input data, these methods yield useful information concerning the 

distribution of fluctuating kinetic energy across coherent structures within the flow. We have 

incorporated into our numerical procedure singular value decomposition computer source codes 

presented by Press et al. [29] (pp. 59–65). Figure 6 shows the fraction of kinetic energy in each of the 

empirical modes predicted by the application of the singular value decomposition to a selected time 

frame of the nonlinear time series for the streamwise velocity wave component. 

The singular value decomposition computational procedure is made up of two parts, the 

computation of the autocorrelation matrix and the singular value decomposition of that matrix [28]. 

The computation of the autocorrelation of the fluctuating streamwise velocity wave components is 

accomplished with the source code presented by Press et al. [29] (pp. 545–546). The source code 

presented by Press et al. [29] (pp. 66–70) for the computation of the singular value decomposition 
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procedure, is also included in the computational process. This computational procedure yields the 

empirical eigenvalues for each of the empirical eigen functions for the given time series data segment. 

Figure 6. The fractional distribution of kinetic energy is shown as a function of the 

empirical mode number from the singular value decomposition process. 
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The application of the singular value decomposition procedure to a specified segment of the 

nonlinear time-series solution for the streamwise velocity wave component yields the distribution of 

the component eigenvalues λj across the empirical modes, j, for the flow conditions listed in Table 1. 

The empirical entropy, Sempj, is defined from these eigenvalues by the expression (Rissanen [20,21]): 

Sempj = − ln(λ j ). (35)

The singular value decomposition procedure for a specified segment of the nonlinear time-series 

solution yields the various eigenvalues λj across the empirical modes, j for the given segment [9]. The 

particular empirical entropy of a particular mode j provides an indication of the nature of the directed 

kinetic energy that exists within that particular mode. 

The empirical entropies for each of the empirical modes from one to sixteen for streamwise station 

x = 0.08 are shown in Figure 7. The distribution of the empirical entropy over the empirical modes 

indicates three different characteristics for the nature of kinetic energy within the modes (Isaacson [31]). 

The initial three eigenmodes contain relatively low levels of empirical entropy, indicating highly 

ordered directed kinetic energy. The following two modes indicate a steep increase in value, indicating 

a sharp increase in disorder within the kinetic energy environment. The following eleven modes indicate 

disordered kinetic energy, with the empirical entropy approaching the maximum of unity in value. 

The interpretation we make for the eigenvalues λj is that they represent twice the kinetic energy 

within each eigenmode distributed across j values [23]. These eigenmodes are obtained for the 

streamwise velocity wave components across a specified set of time series data, taken as a total 

ensemble of data values, and not as a sequence of values. Thus, these empirical entropy values exist as 

a collection of values within the nonlinear time series, and not as a cascade from low entropy modes to 

high entropy modes. The computation of the empirical entropy has thus provided additional insight 
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into the thermodynamic nature of our nonlinear time series solutions. We have, thus far, demonstrated 

the production of instabilities at a particular vertical station within a three-dimensional laminar 

boundary layer as a result of nonlinear interactions within the boundary layer. The empirical entropy 

further characterizes the nonlinear time series into regions of low empirical entropy, a transition 

region, and an extensive region of high empirical entropy, coexisting simultaneously within the time 

series solutions. 

Figure 7. The empirical entropy is shown as a function of the empirical mode number. 
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We wish to now explore some speculative thermodynamic concepts that allow us to extend our 

computational procedure through the deterministic structures produced by the instability process to a 

connection with the entropy generation rate produced in the final stage of the decay of the 

deterministic structure. These exploratory concepts are the empirical entropic index, the empirical 

intermittency exponent and the final entropy generation rate expression. 

7. Empirical Entropic Index for Deterministic Structures 

The empirical entropy for the fluctuating streamwise velocity wave component time series indicates 

different characteristics for the various deterministic regions within the time series. These results 

indicate that the majority of the kinetic energy in the deterministic structures is contained within the 

first three or four empirical modes of the singular value decompositions, with relatively low empirical 

entropy. These structures have been classified as coherent [23] with well-defined structural 

boundaries. To characterize these structures, Tsallis [24] postulated a generalized entropic form 

Sq = k

1− pi
q

i=1

W


q −1  

pi =1
i=1

W










.

 

(36)
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In this expression, k is a positive constant, pi is the probability of the subsystem to be in the state i, 

and W is the total number of microscopic possibilities of the system. The Tsallis entropic index, q, 

would be found from this expression for an ensemble of accessible microscopic subsystems. 

It is tempting to apply this expression for the ordered structures as calculated in the previous section 

on empirical entropy. However, the Tsallis entropic form is applicable to an ensemble of microscopic 

subsystems, while we are working with a set of individual macroscopic systems spread over a limited 

number of empirical modes, j. In fact, the premise of the computation of the empirical entropy, Sempj 

is that this is the entropy of an ordered region described by the empirical eigenvalue, λj, for the 

singular value decomposition empirical mode, j. Hence, we simply adopt, in an ad hoc fashion, an 

expression from which we may extract an empirical index, qj, from the empirical entropy. This 

expression may be written as: 

Sempj = − ln(λ j ) =
(λ j )

qj −1

(1− qj )
. (37)

We have to keep in mind that this expression does not have a mathematical basis in non-extensive 

thermo-statistics but is simply an artifact that allows us to include the effects of the nonlinear,  

non-equilibrium nature of the deterministic structures we are following. The expression has the format 

of entropic index; hence, we simply call it an empirical entropic index or simply an entropic index. We 

have used this expression to extract the empirical entropic index, qj, from the empirical entropy for 

streamwise stations x = 0.08. Figure 8 shows the empirical entropic indices for the streamwise velocity 

wave components at this station as a function of the empirical mode. The empirical entropic indices for 

empirical modes one through four indicate a zero value. Mariz [25], indicates that for an entropic 

index of zero value, dSempj/dt = 0. These modes thus contain a high fraction of directed kinetic 

energy, flowing in the streamwise direction in a reversible and adiabatic process.  

Figure 8. The empirical entropic index, qj is shown as a function of the empirical mode, j 

for the streamwise station x = 0.08. 
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Glandsdorff and Prigogine [26] find that for the general evolution criterion for non-equilibrium 

dissipative processes, dSempj/dt < 0. When the Tsallis entropic index is negative, Mariz [25] found 

that the empirical entropy change is also negative, dSempj/dt < 0. The results presented in Figure 8 

indicate that significant deterministic structures exist within the specified time frame of the nonlinear 

time series solution. These regions may therefore be classified as ordered, dissipative structures. 

Therefore, the significant negative nature for the extracted empirical entropic indices from empirical 

modes five to sixteen at the streamwise station x = 0.08 is in agreement with both the Prigogine 

criterion and the Mariz results for the Tsallis entropic index. The ad hoc introduction of an empirical 

entropy index may thus provide a representation of the nonlinear, non-equilibrium structures in a 

significant way. 

8. Intermittency Exponents for Deterministic Structures 

In this section, we introduce a speculative method to connect the deterministic results for the entropic 

indices with the turbulent dissipation processes occurring in the downstream fully developed turbulent 

flow. We explore this computational connection through the concept of turbulent intermittency. 

The concept of intermittency arises in the observation that within a fully developed turbulent flow, 

regions of the dissipation of kinetic energy are interspersed with regions in which the dissipation rate 

is very low, with the regions separated by distinct boundary surfaces. This observation led to the 

characterization of the dissipation of turbulent kinetic energy in the inertial range as fractal in nature 

(Tsallis [24]). Mathieu and Scott [28] also present a thorough discussion of intermittency in the 

dissipation of turbulent kinetic energy within fully developed turbulent flows.  

Figure 9. The intermittency exponent, ζj is shown as a function of the empirical mode 

number, j for streamwise station x = 0.08. 
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The deterministic structures discussed in previous sections are of a macroscopic nature embedded 

within the nonlinear time series solution of the nonlinear equations for the fluctuating velocity field. 

We have found, through the singular value decomposition method, that the four lowest empirical 
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modes contain nearly 99 per cent of the kinetic energy. We have also found that the empirical modes 

obtained from the singular value decomposition indicate empirical entropic indices. We will therefore, 

heuristically, apply a relationship, found by Arimitsu and Arimitsu [27], between the entropic index of 

Tsallis and the intermittency exponent required to account for the fractal nature of turbulent energy 

dissipation. We will substitute the absolute value of the empirical entropic index discussed in the previous 

section into the original derivation by Arimitsu and Arimitsu [27]. This expression is written as: 

q
j

=1−
1+ζ

j
− log

2
(1+ 1− 2

−ζ j )× log
2
(1− 1− 2

−ζ j )

log
2
(1+ 1− 2

−ζ j ) − log
2
(1− 1− 2

−ζ j )
. (38)

Given the absolute value of the empirical entropic index, qj, the intermittency exponent, ζj for the mode, 

j, is extracted from this expression by the use of Brent’s method [29] (pp. 397–405).  The intermittency 

exponent is shown in Figure 9 as a function of empirical mode, j. Arimitsu and Arimitsu [27] derive the 

intermittency exponents for turbulent eddies that dissipate turbulent kinetic energy into thermal energy 

within the flow. 

9. Entropy Generation Rate through the Deterministic Boundary-Layer Structures 

The fundamental need to improve the efficiency of thermal systems has sparked considerable  

effort to understand and reduce the generation of entropy in these systems. Recent studies  

(Ghasemi et al. [32,33]) have computationally explored the entropy generation in transitional 

boundary layers subjected to various imposed free stream conditions. In Reference [32], the effect of 

free-stream turbulence in the production of bypass transition was studied for the resulting generation 

of entropy within the boundary layer. Various computational methods were employed to gain a better 

understanding of the mechanisms involved in the generation of entropy within the boundary layer 

flows. Reference [33] reports the results of the study of the effects of favorable and unfavorable 

pressure gradients imposed on the boundary layer in the generation of entropy within the boundary 

layer. Again, various computational methods were employed to obtain the extensive results.  

An essential observation is presented in these studies. In Reference [33], the imposition of external 

turbulence induces a “bypass” or early transition to turbulent flow. Experiments have indicated that 

transition is initiated by a primary instability mechanism in which a fundamental understanding is still 

lacking, thus hindering our understanding of entropy generation phenomena [33]. The essential 

objective of the study reported here is to provide additional insight into possible mechanisms leading 

to the generation of deterministic structures within boundary-layer flows and the mechanisms by 

which entropy is generated through these structures. 

At this point, we are ready to evaluate the entropy generation rate through the deterministic 

structures produced by the nonlinear interactions within the three-dimensional laminar boundary layer. 

To review what we have accomplished, we note that we have the local flow kinetic energy at the 

normalized vertical distance in the boundary layer that indicates the production of the initial 

instabilities. Through the power spectral density of the nonlinear fluctuating streamwise velocity wave 

component, we have the kinetic energy dissipation rate within each of the indicated peaks in the 

spectral distribution of the kinetic energy. The singular value decomposition procedure applied to the 

nonlinear time series solution for the streamwise velocity wave component yields a distribution of 
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empirical entropic indices across a range of empirical mode numbers. Then, from these entropic 

indices, we have extracted corresponding empirical intermittency exponents for the range of empirical 

modes. Thus, we have calculated the input energy source for the deterministic structure, the 

distribution of the dissipation rates of the energy across the empirical modes of the spectral distribution 

within the deterministic structure, and the fraction of the energy in each of these empirical modes that 

dissipates into background thermal energy, thus increasing the entropy. 

The entropy generation rate for an internal relaxation process from the Gibbs equation of 

thermodynamics may be written (de Groot and Mazur [34]) 

∂s

∂t
= −J(x)

∂μ(x)

∂x
 (39) 

In this expression, s is the entropy per unit mass, µ is the mechanical potential for the dissipation of 

the ordered structures into background thermal energy and J(x) is the net source of the dissipation rates 

for the ordered kinetic energy available for dissipation. The kinetic energy initially applied to the 

deterministic structure is u2/2 while the kinetic energy dissipation rate finally available is that found 

from the summation of the fraction of kinetic energy dissipation rate in each empirical mode, ξj times 

the intermittency exponent for that mode, ζj [27]. We consider the dissipation of the ordered structures 

into background thermal energy as a relaxation process of the streamwise velocity in the initial state to 

the final equilibrium state of the streamwise velocity over the internal parameter x. The expression for 

the entropy generation rate may then be written as: 

S
•

gen = (ρ)(
1

2

u2

T
) (ξ j

j=1

16

 ζ j )[−(
u( final)− u(initial)

x
)].  (40) 

The boundary layer mean velocity may be written, from Equation (7), as u = uef’ and the 

streamwise Mach number is given by: 

Me
2 = ue

2 / (
γRu

M _ mol
T )  (41) 

At the final equilibrium state, the streamwise velocity of the dissipated structure vanishes. 

Substituting these expressions into Equation (40), the entropy generation rate in energy per unit 

volume, temperature and time may be written as: 

S
∗

gen = 1

2
ρ γRu

M _ mol
Me

2 ( ′f )2 (ξ j

j=1

16

 ζ j )(
ue

x
).  (42) 

Substituting the results of the computational procedures as outline in the previous sections, the 

resulting value of the entropy generation rate is shown as a single point in Figure 10. 

For a comparison of this value of the entropy generation rate, we compute the entropy generation 

rate across a turbulent boundary layer for the given streamwise location. Following Truitt [35] and 

Bejan [36], the expression for the entropy generation rate in a turbulent boundary layer may be written, 

incorporating Equation (4), as: 

S
•

turb = ρ (υ +εm )

T
(
∂u

∂y
)2  (43) 
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Applying the Falkner-Skan transformation, Equation (5), in the differentiation with respect to y and 

the definition of the term: 

εm
÷ = εm

ν
,
 

(44)

the entropy generation rate across the turbulent boundary layer may be written as 

S
•

turb = (ρ)
γRu

M _ mol
Me

2 (1+εm
+ )( f '')2 (

ue

x
). (45) 

The computation of the turbulent boundary layer begins at the initial streamwise station, at the 

initiation of the surface ripple, with transition enforced at that location. Hence, the turbulent boundary 

layer for our calculations at the streamwise location x = 0.08 is much smaller than a naturally 

occurring transition further along the streamwise direction. The distribution of the entropy generation 

rate across the turbulent boundary layer is shown in Figure 10. 

Figure 10. The entropy generation rate is shown as a function of the normalized distance 

from the surface. 
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It is important to clarify why we have given only one data point in Figure 10 for our computation of 

the rate of entropy generation through the deterministic structure within the instabilities in the laminar 

boundary layer. We emphasize that this is the value that is computed for the flow, thermodynamic, and 

transport properties given in Table 1. We could change these values slightly and compute a new value 

for the entropy generation rate. We could then represent that value on Figure 10. However, this 

becomes very misleading. Such a representation does not provide additional information concerning 

the validity of the procedure. The representation of additional data points could thus lead to a 

presumption of an inherent theoretical foundation that our exploratory computational procedure does 

not have. For example, a heuristic assumption is made in replacing the transfer matrix with a cosine 

function. Next, the empirical entropy function is heuristically constructed from the singular value 



Entropy 2014, 16 6026 

 

decomposition results. Then, an entropic index form is extracted from these empirical entropy values 

with an artifact that simply yields reasonable computational values. The intermittency exponent for each 

of the empirical modes is obtained from an expression developed for fully consistent non-extensive 

entropic index values. Finally, the entropy generation rate is obtained from a non-equilibrium 

thermodynamic expression for the relaxation of an internal degree of freedom within an adiabatic 

system and is applied to the final dissipation of the ordered structure into background thermodynamic 

internal energy. Thus, the computational procedure has been constructed on a series of heuristic 

assumptions and some outright speculation. However, the computational results are encouraging and 

perhaps indicate some thread of truth in the computational procedure. 

The thread we are seeking may possibly be found in the fabric of fractal-generated turbulent decay 

woven by the research group directed by Vassilicos [37–41]. In this research work, the decay of 

turbulence generated by low-blockage fractal square grids has been experimentally studied with a 

variety of fractal grids in several wind tunnel facilities. Of particular interest to us is the experimental 

result for the dissipation rate for fractal-generated turbulence [38,40], in which the turbulence 

dissipation rate has the same form as our Equation (42). Thus, we have an independent experimental 

verification for our entropy generation rate results. 

The flow through each of the square grids employed in the fractal-generated turbulence decay 

experiments has the same form as the flow through a short square duct. The developing boundary 

layers in the corners of a square duct develop secondary flows which appear as counter-rotating vortex 

structures [4] (pp. 319–321). These developing boundary layers have the same three-dimensional 

nonlinear interactions that we have modeled in our computational procedure. For example, a Blasius 

boundary layer develops over the lower horizontal side of the square grid, with a velocity profile in the 

x-y plane. A similar Blasius boundary layer develops over the left-hand vertical side of the grid in the 

x-z plane. This boundary layer produces a velocity parallel to the lower horizontal side and in the 

positive z direction, acting normal to the x-y boundary layer profile. This three-dimensional nonlinear 

interaction produces deterministic structures in the boundary layer flow.  

A corresponding effect occurs between the boundary layer produced in the x-z plane and a cross-

flow velocity produced by the boundary layer flow in the x-y plane, thus producing a second 

deterministic structure in the corner three-dimensional boundary layer flow. The results for these 

nonlinear interactions are two, counter-rotating vortices, called secondary flow instabilities, occurring 

in each of the corners of the square fractal grids. Thus, our computational scenario should be 

applicable to this fractal flow environment, for the appropriate values of the thermodynamic and 

transport properties. 

We have found in our research that dropping the pressure gradient contributions to the spectral 

equations for the velocity wave components, Equations (17), yields a set of modified Burgers 

equations. The solution of these equations within the three-dimensional boundary-layer environment, 

with the steady boundary layer velocity gradients as control parameters, yields deterministic tightly 

wound spiral vortex structures. Application of this procedure to the corners of square ducts should then 

produce a pair of counter-rotating spiral vortices in each corner of the duct. 

Our reference to the fractal-generated turbulence decay rate for validation of our entropy  

generation rate results has a direct relationship to our application of the computational scenario to the  

Richtmyer–Meshkov generated flow instabilities. The concept of the Tsallis entropic index [24] is 
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based in fractal concepts. We have introduced an empirical entropic index following these same 

concepts, but our index is simply an artifact that happens to yield numerical values for our given flow 

environment. Also, Arimitsu and Arimitsu [27] developed the expression for the intermittency 

exponents that appear in our entropy generation rate expression through the consideration of turbulent 

dissipation of kinetic energy as a fractal process. Therefore, experimental results for the fractal-generated 

turbulence dissipation rate are of direct interest in the study reported here.  

10. Discussion 

The rippled surface of a foam substrate in a high power laser warm plasma experiment produces  

a strong oblique shock wave. It has been shown that such oblique shock waves produce a  

Richtmyer–Meshkov flow over the inclined substrate surface [3]. We have developed a computational 

procedure to compute the development of boundary layer instabilities when a weak cross flow 

disturbance is applied to the boundary layer developed by the Richtmyer–Meshkov flow over the 

substrate surface [3]. We have characterized these instabilities as a deterministic boundary layer 

structure. The computational procedure provides the power spectral density across a selected time 

frame within the deterministic structure [11]. The rate of dissipation of kinetic energy within the 

narrow frequency range for each of the spectral peaks in the power spectrum has been computed [28]. 

The kinetic energy at the given normalized vertical location in the boundary layer serves as the source 

of energy to the deterministic structure. The fraction of the dissipation rate of this total kinetic energy 

that is available in each of the modes within the deterministic structure is obtained from the power 

spectral density distribution across the selected time frame of the nonlinear time series. The method of 

singular value decomposition [23] applied to a selected time frame of the time series solution yields 

values for the empirical entropy [31] for a selected range of empirical modes. Empirical entropic 

indices [31] are extracted from these empirical entropy values [30]. Using results obtained from the 

fractal theory of turbulence dissipation [27], the intermittency exponent is extracted for each of the 

empirical modes identified in the results of the singular value decomposition procedure. An essential 

aspect of the intermittency exponents is that these exponents represent the fraction of kinetic energy 

dissipation rate available in each empirical mode that is actually dissipated into background thermal 

energy of the flow [26]. The product of the local boundary layer kinetic energy with the sum over the 

empirical modes of the fraction of the kinetic energy dissipation rate for each mode and the 

intermittency exponent for the corresponding mode represents the net dissipation rate for the kinetic 

energy within the deterministic structure that is actually transformed into background thermal energy.  

From concepts of non-equilibrium thermodynamics [31], we obtain an expression for the rate at 

which the flux of kinetic energy dissipation is converted into thermal energy. This rate turns out to be 

the global turnover rate as found in the experimental studies of fractal-generated turbulence decay [38]. 

Thus, the entropy generation rate through a deterministic structure is found to be the product of the 

kinetic energy dissipation rate within the structure times the rate of relaxation along internal 

coordinates into background thermal energy divided by the local absolute temperature. Using the flow 

environmental parameters from Table 1, the entropy generation rate is computed for warm dense 

plasma conditions. The resulting value is compared with entropy generation rates in a weak turbulent 

boundary layer [33,34] for these same input parameters and found to be comparable in value. 
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11. Conclusions 

Recent experimental results for laser generated Al foil warm dense plasma has indicated the 

development of Richtmyer–Meshkov surface flow over a rippled substrate surface. A computational 

procedure for this environment predicts boundary layer instability, denoted as a deterministic structure. 

Application of Burg’s maximum entropy method yields the fraction of available kinetic energy 

dissipation rate for selected peaks within the spectrum of a selected time frame of the series solution. 

The singular value decomposition technique applied to specified segments of the solution yields 

empirical entropies over decomposition modes. Empirical entropic indices are obtained from these 

empirical entropies that indicate the ordered nature within the deterministic structure. These entropic 

indices then yield the intermittency exponents for each of the empirical modes. The product of these 

terms provides the kinetic energy dissipation rate within the deterministic structure. Concepts from 

non-equilibrium thermodynamics provide the expression for the rate of entropy generation as the 

kinetic energy dissipation occurs within the deterministic structure. The resulting expression is 

compatible with experimental results from fractal-generated turbulence decay rates. Computation of 

the entropy generation rate for warm dense plasma yields results comparable with similar 

computations for the entropy generation rates for a weak turbulent boundary layer in the same warm 

dense plasma environment. 

Nomenclature 

ai Fluctuating i-th component of velocity wave vector 

b Coefficient in Equation (11) 

b Fluctuating Fourier component of the static pressure 

b1 Coefficient in modified Townsend equations defined by Equation (33) 

E Power spectral density for a particular frequency, f 

Eavail Available kinetic energy dissipation rate for a given mode 

f Frequency for power spectral density distribution 

f1 Initial frequency for integration of power spectral density, Equation (34) 

f2 Final frequency for integration of power spectral density, Equation (34) 

F Time-dependent feedback factor 

fr Power spectral density of the r-th time series segment 

j Mode number empirical eigenvalue 

j Spectral entropy segment number 

J Net source of kinetic energy dissipation rate, Equation (39) 

k Time-dependent wave number magnitude 

k Dimensional constant, Equation (36) 

ki Fluctuating i-th wave number of Fourier expansion 

K Adjustable weighting factor 

m Pressure gradient parameter, Equation (8) 

M1,2 Flow Mach number upstream and downstream of oblique shock wave 

M_mol Molecular weight of plasma mixture 



Entropy 2014, 16 6029 

 

n Time step number 

p Local static pressure 

p2 Static pressure in the boundary layer 

pi Probability of being in a state i, Equation (36) 

p1,2 Static pressure upstream and downstream of oblique shockwave 

q Tsallis nonextensive entropic index 

qj Empirical entropic index for the empirical entropy of mode, j 

r1 Coefficient in modified Townsend equations defined by Equation (35) 

Ru Universal gas constant 

s Entropy per unit mass 

s1 Coefficient in modified Townsend equations defined by Equation (32) 

Sempj Empirical entropy for empirical mode, j 

Sq Tsallis entropy, Equation (36) 

S
•

gen  Entropy generation rate through kinetic energy dissipation 

S
•

turb Entropy generation rate in a turbulent boundary layer 

t Time 

T1,2 Static temperature upstream and downstream of oblique shockwave  

u Mean streamwise velocity in the streamwise direction in Equation (1) 

u’ Fluctuating streamwise velocity in Equation (1) 

ue Streamwise velocity at the outer edge of the x-y plane boundary layer 

ui The i-th component of the fluctuating velocity 

Ui Mean velocity in the i-th direction in the modified Townsend equations 

v Mean normal velocity in Equation (1) 

v’ Fluctuating normal velocity in Equation (1) 

V2 Flow velocity downstream of oblique shock wave 

we Spanwise velocity at the outer edge of the z-y plane boundary layer 

W Total number of microscopic states in a system, Equation (36) 

x Streamwise distance 

xi i-th direction 

xj j-th direction 

y Normal distance 

z Spanwise distance 

Greek Letters  

γ Ratio of specific heats 

δ Surface deflection angle 

δ Boundary layer thickness 

δlm Kronecker delta 

ε Oblique shock wave angle 

εm Eddy viscosity 
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εm
+

 
Normalized eddy viscosity 

ζj Intermittency exponent for the j-th mode in Equation (38) 

η Transformed normal distance parameter 

λj Eigenvalue for the empirical mode, j 

µ Mechanical potential in Equation (39) 

ν1 Kinematic viscosity of the gas mixture 

ξj Kinetic energy dissipation rate in the j-th empirical mode 

ρ Density 

σy Coefficient in modified Townsend equations defined by Equation (29) 

σx Coefficient in modified Townsend equations defined by Equation (30) 

Subscripts  

e Outer edge of the x-y plane boundary layer 

i, j, l, m Tensor indices 

x Component in the x-direction 

y Component in the y-direction 

z Component in the z-direction 
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