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Abstract: Due to pervasive communication infrastructures, a plethora of enabling
technologies is being developed over mobile and wired networks. Among these, video
streaming services over IP are the most challenging in terms of quality, real-time
requirements and security. In this paper, we propose a novel scheme to efficiently secure
variable length coded (VLC) multimedia bit streams, such as H.264. It is based on code
word error diffusion and variable size segment shuffling. The codeword diffusion and the
shuffling mechanisms are based on random operations from a secure and computationally
efficient chaos-based pseudo-random number generator. The proposed scheme is ubiquitous
to the end users and can be deployed at any node in the network. It provides different
levels of security, with encrypted data volume fluctuating between 5.5–17%. It works on the
compressed bit stream without requiring any decoding. It provides excellent encryption
speeds on different platforms, including mobile devices. It is 200% faster and 150%
more power efficient when compared with AES software-based full encryption schemes.
Regarding security, the scheme is robust to well-known attacks in the literature, such as
brute force and known/chosen plain text attacks.
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1. Introduction

Due to recent developments in the field of multimedia communications, applications, such as voice
over IP (VoIP), video conferencing, e-learning and digital TV/HDTV, are now part of everyday life. We
are immersed in a worldwide information network where people do business online and have access to
news, bank accounts, etc., from their offices or homes. These digital commodities have some inherent
risks; communication networks (wired/wireless) are vulnerable to attacks violating the user’s right of
privacy. It is imperative to design fast and secure systems. However, in the case of multimedia data,
security demands addressing new challenges, primarily due to the sheer volume of data involved, the
temporally-dependent nature of the information and time processing restrictions for real-time multimedia
communications. The problem of security for mobile communications is further exacerbated by the
limited processing power and battery life available in diverse devices, particularly handheld or mobile,
for which provisioning of security may be infeasible when the complexity of related decoding operations
is over the processing limit of such devices. Therefore, security solutions have to be power efficient to
allow longer and a greater number of sessions between mobile users within a single battery charging
cycle. Any solution involving full encryption of the information limits itself in terms of scalability.
Furthermore, it is desirable that the solution should work in the compressed domain without requiring
decoding of the bit stream.

Numerous selective encryption schemes have been proposed for multimedia streaming applications
(see [1] for an in-depth review). Following Liu and Koening [1], video encryption can be
classified into two main categories; joint compression-encryption (within the encoding process) and
compression-independent encryption, which can be performed before or after the encoding process.
Joint compression-encryption algorithms are pervasive and codec dependent; they modify the standard
video codec and may affect the final compression ratio (this is the most common form of encryption
in the literature). On the other hand, compression-independent encryption, in particular the encryption
before compression, is rarely used, because cryptographic operations eliminate redundancy, reducing
considerably the compression ratio. Encryption after compression takes into account the relationship
between different video elements (for example, Intra, Predicted and Bidirectional frames) or headers
distribution to alter the VLC bit stream. We describe some of the most representative selective encryption
schemes in the literature. Khanvilkar et al. [2] proposed a selective encryption approach for mp3
bitstreams that partially encrypted selected fields in the mp3 header. Meyer and Gadgast [3] proposed a
selective encryption scheme for MPEG-1 bit streams. The principle data to be secured included: all the
headers, Intra frames and Intra blocks. They proposed a number of combinations of the above scheme to
attain different levels of security. Spanos and Maples [4] proposed encrypting the I frames and the ISO
start and end code of the MPEG stream. Tang [5] proposed an approach to use a random permutation
list instead of the zigzag order for mapping an 8 × 8 DCT block to a 1 × 64 block. Without the actual
permutation list, it would be difficult to perform the inverse DCT transform on this data. This approach
yielded non-optimal compression. Liu and Eskicioglu [6] gave a comparison between the traditional and
selective encryption approach and showed that selective encryption-based techniques suffer in one or
more of the following points:

(1) insufficient security;



Entropy 2014, 16 5577

(2) a decrease in the compression performance of entropy coding;
(3) insignificant computational reduction with respect to total encryption;
(4) a lack of bitstream compliance;
(5) an increase in key size;
(6) require compression decoding.

Wu and Kuo [7] proposed a scheme that performs both compression and encryption by using multiple
Huffman tables in the entropy encoder. The secret key used for encryption and decryption consists
of G distinct Huffman coding tables. Huffman tables are then selected randomly from some public
pool of Huffman tables. Wen et al. [8] proposed a binary arithmetic coding with key interval splitting.
The proposed scheme is designed to achieve both compression and confidentiality by splitting the
intervals according to a secret key. Jakimoski and Subbalakshmi [9] gave a cryptanalysis of different
multimedia encryption schemes. He showed that [8] and [7] are vulnerable to low complexity known
and/or chosen plain text attacks. Park and Shin [10] proposed a selective encryption scheme for
hierarchical video encoding using different keys for each processed layer: the intra-prediction modes
(base layer), the motion vector difference values and the sign bits of the texture data (enhancement
layer). In Wang and Tian [11], the intra-prediction mode, motion vector difference and quantization
coefficients are encrypted. They developed a hierarchical key generation method, in which the encryption
keys are generated based on a cryptographic hash function. A more recent scheme proposed by
Lui et al. [12], describes a format compliant encryption for the H.264 that modifies the
Trailing_ones_sign_flag and level_suffix in the CAVLC (context-based adaptive variable length coding)
mode for both I and P frames.

Independently of their classification, the encryption schemes mentioned above are codec dependent;
they search for video elements in the variable length coded (VLC) bit stream. Our solution is a novel
partial encryption technique aimed at minimizing the encryption complexity while preserving security. It
provides the following advantages compared to previous work: (1) video codec independent; it is targeted
to be used after compression to secure VLC bit streams (mp3, H.263, H.264, etc.) without searching for
video elements, such as headers, motion vectors, transform coefficients, etc, and without affecting video
compression; (2) it can be implemented at any stage of the communication pipeline, that is after the
encoding process on the sending device or at a dedicated server handling multiple multimedia streams
(impossible for current schemes in the literature); (3) scalable; the level of security (or volume data to
be encrypted) can be tuned according to user or application requirements; (4) computer performance
aware; it is flexible enough to be run under different CPU power capabilities going from high-end to
low-end performance (mobile phones, netbooks, iPads, Laptops, etc.); (5) a new pseudo-random number
generator (PRNG) based on coupled chaotic maps that provides long cycles and a uniform distribution for
increased security; and (6) excellent performance (to the best of our knowledge, this is one of the fastest
schemes in the literature). Because our scheme makes no distinction of video elements, the encryption
of the VLC stream generates decoding errors that propagate as long as the resulting codewords are valid.
The longer the propagation error, the more secure is the system.

Contrary to our aim of generating long propagation errors, several works have been proposed to
minimize this effect on subsequent codewords. In [13–18], solutions have been investigated to overcome
such errors by exploiting the correlation among the codewords. A straight forward solution is to drop
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the corrupted sequence once it is detected and resynchronize from the new synch position within
the bit stream. The research work involving self-synchronizing codes that quickly help reestablish
synchronization and, thus, reduce the run length of error propagation can be found in [13–18]. A more
complex solution is to approximate the corrupted coefficient value from previous or/and advance values.
Te-Chung and Kumar [18] have studied the dependency in inter-sub-band coefficient values and showed
that there exists certain correlation between the coefficient of parent and child sub-bands of a picture.
Based on the sub-band coefficient relation, they have proposed a scheme to recover the lost values.
The scheme divides the corrupted sub-band into three regions, the correctly coded region, the error
propagation region and the shifted region. The scheme transmits two parameters within the compressed
stream to be used at the decoder stage to reconstruct the corrupted values. These types of schemes work
under the assumption of isolated bit errors for which the upcoming bit sequence can be resynchronized;
not a threat in our encryption schemes, since we intensively flip bits in the entire VLC stream. For
additional details on security techniques related to VLC bit streams, readers are referred to [16,19].

The main idea of our encryption scheme is to make the decoding/resynchronization of the VLC
codewords in the bitstream computationally infeasible in the absence of a secret key. Assuming the video
stream consists of packets, each packet is divided into random-sized segments. Within each segment,
bits are randomly flipped, such that the correlation present among codewords is diffused. Then, all
of the segments are randomly shuffled. The randomness of bit flipping and shuffling of segments is
based on a secure random number generator. For consecutive packets, the shuffling and flipping patterns
are completely different and are chosen based on unrelated random numbers that are computationally
infeasible to guess from the secret key. We realize such a robust and secure random number generator
using coupled chaotic maps. Our proposed scheme is 200% faster and 150% more power efficient when
compared with AES-based full encryption schemes and secure against common attacks, such as brute
force and known/chosen plain text attacks.

The rest of this paper is organized as follows: In the next section, we describe the major components of
the proposed encryption scheme. Section 3 analyzes the salient characteristics of the proposed scheme.
In Section 4, security analysis and comparisons with existing schemes are provided. Performance
evaluation setup and experimental results are discussed in Sections 5 and 6. The conclusions of the
work are presented in Section 7.

2. Proposed Scheme

The encryption process is applied after the RTP packetizing process (Figure 1). The RTP payload
(VLC bit stream) is transformed by performing the following dynamic operations (they change for every
received packet): random bit flipping, packet division into L segments and packet segment shuffling. The
position of the bits to be flipped, segment size and segment shuffling depend on random values from our
own secure chaotic-based pseudo-random number generator. A block diagram of the proposed scheme
is given in Figure 2. It is composed of three main blocks: (1) secure random number generator based on
coupled chaotic maps; (2) bit flipping; and (3) segment shuffling. Details for each block are discussed in
the next subsections.
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Figure 1. General steps of the video data transformation process.

Figure 2. Illustration of the proposed encryption scheme.

2.1. Secure Random Number Generator Based on Chaotic Maps

The security of the proposed scheme with respect to different attacks depends mainly on the
robustness of the secure pseudo-random number generator (PRNG). The scheme can work with any
secure PRNG, as long as the seed cannot be determined from a partially broken bit stream sequence
(the attacker may know some parts of the bit stream without it). Current PRNGs are not strong
candidates to be included in our scheme, because of their dependency on a fixed-length seed, as
well as the lack of flexibility to dynamically control the security of the system. We develop a novel
PRNG based on a network of N chaotic maps dynamically interacting as one system, but maintaining
their own identity (the use of only one chaotic map does not provide enough security to the system).
Discrete chaotic systems (DCS) have many of the good properties required in cryptography; the most
prominent are sensitivity to parameters, sensitivity to initial conditions and unpredictable trajectories [3].
The first two properties are related to diffusion and the last one to confusion in the cryptographic
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nomenclature. Confusion is intended to make the relationship between ciphertext and plain text
statistically independent, whereas diffusion is intended to spread out the influence of a single plain text
digit over many ciphertext digits to hide the statistical structure of the plain text. These properties have
been the basis to develop secure analog and digital communication systems.

Current research in chaotic systems is focused on two main issues: perturbation-based schemes and
network-based chaotic maps. Perturbation-based schemes transform stable chaotic cycles into non-stable
ones by perturbing the trajectory, as performed in [3]. A network of chaotic maps or coupled map lattices
(CML), on the other hand, considers an array of chaotic maps governed by a coupling transformation
over some defined neighborhood in the array [20]. In this work, we use CML to develop a PRNG that is
robust to ciphertext, known/chosen plain text and differential attacks.

Our proposed PRNG is based on a network of N chaotic maps (1 ≤ i ≤ N), represented by:

Xi,j = (1− ε)f(Xi,j−1) + εH(Xi,j−1, . . . , XN,j−1)

H(Xi,j−1, . . . , XN,j−1) =
N∑
i=1

wiXi,j−1. (1)

The states j in the chaotic network represent the weighted interaction between each individual
map f(Xi,j−1) (local term) and the coupling transformation H (linear/nonlinear interaction term) with
weights wi, such that

∑N
i=1wi and N ≥ 8. When the weight ε is weak (small magnitude), the system

can be regarded as a local map perturbed by contributions from other sites, thus maintaining its main
individual properties. On the other hand, when ε is large, the system reaches an asymptotic collective
(undesired) behavior characterized by intermittent periodic chaotic cycles (this is the case we want
to avoid).

Equation (1) may be modified to include plain text feedback as part of the coupling function H ,
allowing diffusion of the information onto the entire ciphertext output:

Hj(Xi,j, . . . , XN,j, P ) =
N∑
l=1

wlXi,j + wN+1Pprev (2)

where Pprev represents the sum of all previous plain text that were ciphered in the lifetime of Hj−1.
A bit change in P affects the outcome of the bit-flipping and shuffling operations of future iterations
proportionally to the magnitude of wN+1 and ε. Even though the computational complexity of the
scheme is slightly increased, a single plain text change produces a totally different ciphertext, therefore
increasing its robustness to statistical attacks.

For its mathematical simplicity, our selection for f(Xi,j) is the well-known logistic map
represented by:

Xi,j = f(Xi,j−1) = λXi,j−1(1−Xi,j−1) λ ∈ [1, 4) X ∈ (0, 1) (3)

where λ represents the chaotic parameter and X the state variable. To keep the good chaotic properties
of the logistic map, we avoid bad initial values of X and λ and endorse the use ≥ 8 chaotic maps in
order to increase the cycle length period. A viable alternative for extending the cycle-length of a chaotic
system is the use of cycle tracking schemes, as the one proposed in [21]. Once a cycle is detected, the
system is perturbed to modify future trajectories and extend the cycle length without affecting its speed
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performance. It is important to point out that any chaotic map in the literature (Renyi map, piece-wise
linear map, etc.) can be used in Equation (1). The security relies on the scheme itself, rather than the
chaotic map used in the scheme.

As mentioned before, the main reason for developing our own PRNG scheme is to manage the security
of the system by creating a (near) cycle-free chaotic signal capable of handling long-term multimedia
communications, such as VoIP and video streaming. The security is controlled by changing the number
of chaotic maps and periodically perturbing the system state (variables, parameters, coupling function,
weight ε, etc).

To further protect the system against security attacks, the following actions are considered:

(1) Every iteration in Equation (1) produces N 32-bit chaotic trajectories (or pseudo-random
numbers) coming from randomly selected chaotic maps (see Figure 3). That is, the
previously evaluated chaotic map trajectory determines the next map to be iterated
(nextMap = previousChaoticTrajectory mod N). In the case of an attack, the random selection
of maps increases the complexity considerably.

(2) A moving XOR window of a size of three is applied to the entire generated chaotic sequence
generated by Equation (1), as shown at the bottom of Figure 3. This operation along with the
random map selection modify the distribution generated by Equation (1) to yield a more robust
quasi-uniform distribution for the ciphering process, as shown in Figure 4.

Figure 3. Representation of random map selection and the moving XOR window applied to
chaotic trajectories.

(3) The actual random number to be used in the encryption process is produced by operating three
different maps according to the following formula:

Outi = X ′i,j (4)

where X ′i,j = XIi,j ⊕ XIi+1,j ⊕ XIi+2,j , which comes from XORing the integer representation
(XI) of three randomly chosen maps from Equation (1) (see action 2), and⊕ is the XOR operator.



Entropy 2014, 16 5582

Figure 4. (a) Frequency distribution of chaotic trajectories generated by Equation (1).
(b) Same as (a), with random map selection and a moving XOR window.

(4) Only 1 ≤ U ≤ 27 bits of Outi per map are taken into account in the encryption process; the
remaining L = U − 27 bits are used for future encryption in a randomly selected iteration.
These actions prevent the attacker from having complete knowledge of the system, even when
the security of state variables X ′is has been compromised (see Section 4). Equations (1)–(4) form
the chaotic-based random number generator block in Figure 2 and are encapsulated in function
rnd(U), which returns aU -bit random numberOuti from theN 32-bit random numbers generated.

2.1.1. Chaotic System Initialization

The proposed scheme is symmetric; therefore, the initial system-key (K) of size B bits for B ≥ 128

is shared between cipher and decipher. Any suitable key establishment/distribution protocol (public-key
or authenticated protocol) in the literature can be used for the key exchange; the only restriction is that
every session requires a new and independent system-key.

The system-key K is used to initialize the N -array of chaotic maps as follows (see Figure 5):

Xi,0 = Kn/2(2i− 1)/2n/2,

λi = 3.68 +
[Kn/2(2i)/2

n/2 +Kn/2(2i)10hn/2 + (a⊕ b)/2n/4]

10
· [0.3187]

MAX
,

i = 1, 2, . . . , N

(5)

where n = B/N is the assigned number of bits per map (taken from K) for the initialization of λi and
Xi,0 (n/2 bits per variable and parameter) with N � B and (B mod N) = 0, Kn/2(m) represents the
system-key as an array of n/2 bits per element, hn/2 is the number of digits in the largest decimal
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number represented by n/2 bits, the a ⊕ b term is the XOR between the half-most and half-least
significant bits of Kn/2(2i), respectively, yielding an n/4 bits outcome, and MAX is the maximum
value of [Kn/2(2i)/2

n/2 +Kn/2(2i)/10hn/2 + (a⊕ b)/2n/4]/10.
The chaotic variables and parameters are forced to fall in the range Xi,0 ∈ (0, 1) (except

{λ/(λ − 1), 0.5}, which represent bad initial points) and 3.68 ≤ λi ≤ 3.998 for λi 6= λj and i 6= j,
respectively. The remaining variables in Equation (1) ε and wi, 1 ≤ i ≤ N are initialized by iterating
N + 1 times a predefined map Xp in the chaotic system. The first N chaotic values are used to compute
wi = Xp,i/

∑N
j=1Xp,j , and the last value to compute ε = ∆ε ·Xp,N+1 + εmin, which represents a linear

transformation from the chaotic space X ∈ (0, 1) onto the ε ∈ (εmin, εmax) with ∆ε = (εmax − εmin),
εmin and εmax the allowable minimum and maximum value of ε, respectively.

Figure 5. System-key (K) partition (n/2) for the creation of maps variables (Xi, 0) and
corresponding parameters (λi).

After the chaotic system has been created, we perform an additional operation to increase its
sensitivity to bit changes K (if K is changed by one bit, the new chaotic system will differ significantly
from the original one). The original initial chaotic variable Xi,0 is iterated a random number of times,
say R, over the newly created coupled chaotic system, and the corresponding output becomes the initial
state for each map in the encryption process. The same process can be performed for the corresponding
map parameters (λi), if needed, using the new variables.

The system-keyK is used to define the number of chaotic maps to be used in Equation (5), as follows:

N = [KS mod (MAXB + 1)] ,

KS =
∑D/8

i=1 KEY8(i)
(6)

where MINB ≤ N ≤MAXB, following Table 1.

Table 1. Minimum and maximum number of chaotic maps involved in the encryption
process as a function of the system-key length.

Key Length Minimum Number Maximum Number
(Bits) of Maps (MINB) of Maps (MAXB)

128 8 16
256 8 25
512 16 32
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2.2. Bit Flipping

Once the encryption system receives an RTP packet (as shown in Figure 2), the main step in our
scheme is to diffuse and destroy the meaning of the compressed codeword sequence and make it
impractical to predict the original codeword sequence, as explained in Section 3. To achieve this, we
propose the flipping of at least one bit every BF = f ·Av ·MEPL bits, where Av is the average size of
Huffman codes, MEPL is the calculated mean average propagation length (MEPL) in codeword units
(described in Section 3), Av ·MEPL is the average error propagation in bits, and f is a tunable security
factor with values 1/(MEPL) ≤ f ≤ 1. For this range of f , Av ≤ BF ≤ (Av ·MEPL), that is at
least one bit is changed per average Huffman codeword size (Av) up to (Av ·MEPL) bits. This is what
makes our system scalably secure: as f gets smaller, more bits are flipped per BF -bits units, increasing
the system security. Depending on the specific needs of the user, f provides a tradeoff between security
and performance.

The actual location Bi of the bit to be flipped in the stream is calculated as follows:

Bi = [rnd(dlog2(f · Av ·MEPL)e) mod BF ] + 1 (7)

where rnd(#bits) is our own designed PRNG function described in the previous section. The argument
dlog2(f · Av · MEPL)e represents the bit-length of the requested random number with bounds
1 ≤ Bi ≤ BF .

The algorithm for random bit flipping in the payload P of size Ps bytes is outlined in the following:
BF = f · Av ·MEPL

for i = 0 to (Ps ∗ 8)/BF steps do
Bi = [rnd(dlog2(BF )e) mod BF ] + 1

loc = i ∗ (BF )

Flip(P [Bi + loc])

where (Ps ∗ 8)/BF is the number of bits to be flipped in the packet and Bi is the position of
the t − th bit to be flipped in current block loc = i ∗ (BF ) with length BF (there may be many blocks
or flipped bits per packet segment).

2.3. Segment Shuffling

After bit-flipping, the RTP-packet payload is permuted by performing an L-way shuffling process.
Here, the payload is divided into 20 ≤ L ≤ 65 segments, which are shuffled using the algorithm
described below and illustrated in Figure 6. The value of L represents a security-control variable of the
shuffling process, which is indirectly set by users. The specified user-defined levels of security are low,
medium and high, representing 20 ≤ L ≤ 35, 36 ≤ L ≤ 50 and 51 ≤ L ≤ 65 segments, respectively.
The higher the number of segments L in the RTP packet, the higher the security level, since brute force
complexity to de-shuffle the packet is L!. In terms of power of two 2S (for S integer), the brute force
complexity to de-shuffle the packet is the maximum S for which L! ≥ 2S for 60 ≤ S ≤ 272 and
20 ≤ L ≤ 65.
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Once the shuffling security level is specified, L becomes a random variable obtained as follows:

L = (rnd(dlog2(Lmax)e) mod (Lmax − Lmin)) + Lmin (8)

where Lmin and Lmax integers are the limits of L in the corresponding security level (low, medium or
high). In the case of medium security Lmin = 36 and Lmax = 50; therefore, Equation (8) yields a random
number between 36 ≤ L ≤ 50. The number of segments is computed for every RTP packet.

Once L has been computed, the segment size Sg is calculated using Equation (9):

Sg =
Ps

L
(9)

where Ps is the RTP payload size in bytes. For a 300-byte RTP packet, the segment size randomly falls
between 5 ≤ Sg ≤ 15, which corresponds to 20 ≤ L ≤ 60 segments.

The proposed shuffling mechanism starts by creating the shuffling array A of size L that will be used
to shuffle the segments in O(L!) steps, as illustrated in Figure 6. Each entry in the initial shuffling array
is the original block index. The scheme will iterate L− 1 times, starting by the initial value of M = L.
The following algorithm generates the shuffling array:

Initialize A
M = L

for L− 1 steps do
Generate random number R
T = R mod M

Swap(A[T ], A[M ])
M = M − 1

The resulted entries in array A are used to determine the new destination of each segment; the array
elements are moved from current location T to final location M in the same array.

Figure 6. Illustration of building the shuffling array for an RTP packet with L = 5 segments.
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3. Bit Flipping System Analysis

The key feature in our encryption is to make the reading and decoding of Huffman codes impossible
without knowing the private key. The key characteristic exploited here is the prefix condition of the
Huffman codes, which states that no code words can be a prefix of another code word [22].

The prefix code condition is used to guarantee the unique parsing path for each codeword, as shown
in Figure 7. This condition provides hidden (implicit) borders that separate codewords from each other.
As we see in Figure 7, to satisfy the prefix code condition, each codeword ends at a leaf node in the tree.
If any bit in a code word is flipped (shown with the red arrow in Figure 7, then a transition will occur at
that point, which results in one of the following scenarios:

(1) different codeword, same length size;
(2) different codeword, shorter length size;
(3) different codeword, longer length size.

The first scenario will only change the codeword of the flipped bit for either a valid or invalid
codeword. This is unlikely to happen in VLC streams, as the length of codewords is variable. However,
the effect of the corrupted codeword in this scenario on the subsequent codewords depends on the
information carried out by the corrupted codeword, that is the DC or AC coefficient, motion vector,
header, etc. For instance, if the codeword holds the DC value of a block (smallest data-unit for video
encoding corresponding to 8× 8 pixels), the block will not be decoded correctly, as well as all subsequent
blocks (until a synchronization marker is found). However, if the codeword holds the AC value of the
block, only that block will not be decoded correctly (unless the block is used in motion compensation).
The most critical scenario is when a header codeword is modified, which impedes the (total or partial)
progression of the video decoding or playback.

Figure 7. Example of a Huffman code tree with three bits flipped.

The second and third scenarios will break the hidden borders between codewords, thus making the
reading process misaligned and incorrect, as shown in Figure 8. The error will propagate at least to
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the next codeword, where one of the previous scenarios can happen again. The chain of second and
third scenario occurrences is called error propagation. The run length of the error propagation is at
least one codeword on average. Furthermore, the mean error propagation length MEPL (introduced
in Section 2.2) for a particular bit error that occurred in a particular codeword is defined as the number
of codewords in the sentence from the one where the bit error occurs to the one after which the correct
parsing resumes. This concept is illustrated in Figure 8 with an error propagation of 11 codewords. A
visual example of error propagation is depicted in Figure 9. Flipping one bit in the football encoded
video sequence (in Byte 5000) caused severe damage during video playback for about three seconds.
After this time, the system either resynchronized itself or a SYN marker was found. In [4,17,23,24], the
mean error propagation length (MEPL) of codeword trees have been broadly studied. The concept of
MEPL is also referred to as expected error span by Maxted and Robinson in [16]. In [16], the authors
studied an error transition model and gave a method for computing the MEPL. This model was further
extended by Swaszek and DiCicco in [24]. The formulations in [16,23,24] are in algebraic forms and, as
mentioned in [25], a symbolic algebraic software is necessary for computing MEPL, especially when
the code size is large. In [26], Takishima et al. presented a formula for computing MEPL based on
crossover probability, which was further simplified to a new theorem in [24]. We are using the theorem
in [27] to calculate the MEPL used in our encryption technique.

Figure 8. Illustration of error propagation in Huffman codewords.

Figure 9. Error propagation effect caused by flipping one bit in the encoded football video
sequence. Original (left) and corrupted images (right) are shown.
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Our goal is to breach the prefix condition and make it infeasible to read or guess the current or
subsequent codewords. By using the MEPL value, we can approximate the number of codewords the
decoder might be able to resynchronize. Thus, we alter at least one bit every MEPL codewords and
at the most, one bit per codeword, according to the user control security parameter f (as discussed
in Section 2.2), thus forcing the decoder to be always unsynchronized. The randomness of the bit
flipping operation yielding Scenario 1 and Scenarios 2 and 3 discussed above adds a confusion feature
to the encrypted bits. This confusion makes the encryption output uncorrelated within a subsequence
of codewords.

4. Security Analysis

In this section, we analyze the robustness of our scheme against different digital attacks, including
ciphertext only attack, known plain text attack and chosen plain text attack. The analysis will also
consider attacks for each part of our scheme: the random number generator and the shuffling/flipping
bit operations. As mentioned earlier, we are using different random numbers for each shuffling/flipping
operation, which eliminate the practicability of known text attack and chosen plain text attack to find out
the next shuffling or bit flipping operation.

4.1. Ciphertext-Only Attack

Ciphertext-only (brute force) attack can target the two main components of our encryption scheme:
random number generator or the bit flipping/shuffling level. First, we will analyze the complexity of
brute force attack on our random number generator, then the bit flipping/shuffling level.

4.1.1. Chaotic Generator

Key space analysis: A good cryptosystem must be sensitive to its private key, and the key space must
be large enough to make a brute force attack computationally an infeasible task. The secret key provided
by the user in our scheme is assumed to be at least 128 bits, which is split into 2N chunks to initialize
variables and parameters for the generation of the PRNG (Equations (1)–(5)).

Table 2. Specifications of different platforms used in the experiments.

Testbed
CPU Clock

Memory
Operating

Type Speed System

Desktop Intel Duo Core 2 2.2 Ghz 3 GB Ubuntu 8.3
Laptop Intel Duo Core 2 2.2 Ghz 2 GB Ubuntu 9.1

Netbook Intel Atom 1.6 Ghz 1 GB Ubuntu Netbook
Nokia N800 TI Omap 2420 333 Mhz 128 MB Maemo
Nokia N900 TI Omap 3430 600 Mhz 256 MB Maemo 5

For a 128-bit key (see Table 2), we allow at least eight bits to a maximum of 16 bits per parameter or
variable in the initialization process, representing a network of eight to four chaotic maps, respectively.
The weights ε and w are obtained by iterating one of the maps a random number of times. If an attacker
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decides to break the system key by brute force, it will need an order of 2B operations (just the complexity
of the private key for B ≥ 128); if the attacker rather decides to brute force guessing of the variables
and parameters in an N -map network, it will need at least (232×N×2) operations (without considering wi

and ε), which represents 2256 and 2512 operations for the minimum and maximum allowed number of
maps (N), respectively.

4.1.2. Bit Flipping/Shuffle

Brute force attack may include restoring the corrupted codewords. In this case, the attacker needs
to find the correct bit sequence and the correct boundary of the original stream codewords. For this to
happen, the attacker has to try all possible combination of bit flipping and shuffling to find the original
codewords; the complete decoded frame or motion is the only guarantee of the correct order of bits
and segments.

First, we show the complexity to detect the location of the bit that is flipped and restore it back.
Second, we show the complexity to guess the shuffling order. To simplify the problem, we assume that
the attacker knows the average size of codewords, the MEPL value and the f value. Therefore, he
knows the range of the bit locations that the system flips the bits within the RTP packet.

Let V = {v1, v2, . . . , vJ} be the entire video stream of J bits. The system flips one bit every M � J

bits (for (M ≤ BF ) and breaks up the stream into R segments, then shuffles them. A brute force
attack should perform both flipping and shuffling attack at the same time to decide which video stream
is the valid one. In video compression, just decoding part of the image will not produce a valid output;
the sequence of codewords is decidedly dependent on previous and subsequent codewords in order to
produce a valid image. Therefore, the bit flipping complexity attack for the encrypted stream for J/M
segments of M bits can be expressed as:

O(Bits F lipping) = MJ/M (10)

On the other hand, the segment shuffling complexity attack requires the trying of all possible
segment positions:

O(Segment Shuffling) = R! (11)

Hence, the brute force complexity for both bit flipping and segment shuffling is:

O(N) = R!MJ/M (12)

In video transmission, the size of bit streams J depends on the video properties. For example, for one
I-Frame of 320 × 240 video decoded in MPEG4 format, the size will be 2 Kb. The average calculated
MEPL value for this codec is three, and the average codeword size is six bits. Additionally, let us
assume that the value of R is 20. Then, brute force attack complexity is:

O(N) = 20!6910 ∼= 6950 ∼= 21630 (13)

The complexity of constructing one frame of image using brute force is a very complex task. In
addition to the computation complexity, the process of recognizing a valid video output while trying bit
flipping and segment shuffling requires system training and consumes a lot of computation to make a
decision based on the training set. This is again an extremely complex task.
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4.2. Known Plain Text and Chosen Plain Text Attacks

In these attacks, the only candidate part to be targeted is the PRNG (chaotic generator). The
bit-flipping, segmentation and shuffling blocks are vulnerable to these attacks, but only within the same
RTP packet. Successfully decoding one packet has no bearings on the next packet, as it uses a different
setup (bit flipping, shuffling and segment size). Consequently, the attacker has to break down the entire
chaotic system (Equation (1)).

If we assume that the attacker has found the partial values of the chaotic variable Out (least
significant 27 bits used in the encryption process per map), it only knows partial information about
the PRNG, since Out is a mask of three chaotic trajectories from three different maps. Therefore,
the next step for breaking the system is to find the remaining five bits of Out and to solve for the
Xi’s and λi’s altogether. The attacker will need at least 2(N={4,8})×(32+5) = 2{148,296} operations
(32 bits for the parameter λ) to tear down the second security wall, given that he knows the partial
values of Out (this complexity is without considering w′is and ε in Equation (1)). If we take
into account that each map in Equation (1) is randomly selected and transformed with a size-three
XOR window, the complexity of the attack increases considerably. The security of the scheme
can be adjusted according to the secrecy of the ongoing multimedia communication, and higher
security requires increasing both the number of maps and/or the number of bits left out in the
Out variable.

5. Performance Evaluation Setup

To evaluate the performance and power efficiency of our encryption scheme and to compare it with
full encryption methods, we have implemented multiple schemes on the following computing platforms:
Dell desktop, Lenovo laptop, Asus netbook, Nokia 900 and Nokia N800 PDA. Table 2 shows the
specifications of these platforms. These platforms are chosen to reflect the diversity in computation
power and mobility characteristics. We evaluate and compare each scheme in terms of CPU usage,
encryption speed and power consumption (where available).

We installed a Ubuntu Linux distribution on all devices, except the Nokia N900 and N800, which run
a Maemo 5 [28] distribution. Maemo is a mobile operating system for Nokia PDAs based on the Debian
GNU/Linux operating system.

Ubuntu implements battery management using the Advanced Configuration and Power Interface
(ACPI), which exports battery data via the /proc /acpi /battery file system. The data values exported
by ACPI are expressed by millivolts and milliamps, which can be converted to watts; given the current
voltage and amps of the battery using ACPI values, we compute the energy consumed (in W·h).

We conducted energy consumption tests on three battery-equipped devices, laptop, netbook and
N900, while we conducted encryption speed and CPU usage on all four devices. Table 3 shows the
battery specification of the laptop, netbook and N900 devices used in the energy consumption tests. We
adopted the following methodology to measure energy consumption. Each device is first fully charged,
and each encryption schemes is modified, so that it runs in an infinite loop. For each scheme, we
periodically polled (every 60 s) the Linux ACPI values and computed energy usage. To measure the
actual energy used by the encryption operation, each device is first fully charged and then left to run idly.
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We periodically polled (every 60 s) the Linux ACPI values and computed the energy consumption. The
difference of the idle energy and the energy consumed during the encryption operation is reported as the
energy consumed by the encryption scheme.

Table 3. Features of the rechargeable batteries used in the experiments.

Laptop Netbook Nokia N900

Battery Capacity 4752 mAh 4400 mAh 1320 mAh
Voltage 11,100 mV 11,100 mV 4400 mV

Type Li-Ion Li-Ion Li-Ion

Full encryption schemes are focused on the AES standard, which provides higher speed encryption
than obsolete encryption standards, like Data Encryption Standard (DES), Rivest Cipher (RC), etc.,
without degrading the encryption robustness. We compare our selective technique against full
encryption schemes represented by different implementations of AES and a non-conventional encryption
scheme based on chaos theory. We chose Bernstein [29], an AES implementation that takes
advantage of the architecture-dependent reduction of instructions used to compute AES and the
microarchitecture-dependent reduction of cycles used for those instructions. We also chose the earlier
AES implementation by Gladman [30] and PolarSSL [25]. For chaotic encryption, we chose the
Hasimoto [20] scheme. We did not compare our scheme with other selective encryption schemes, as
they require the modification of media encoders/decoders.

The values of f , Av and MEPL used in all experiments are 1/3, 6 and 3 respectively. These values
reflect the maximum complexity or maximum bit flipping frequency of our scheme, that is one bit-flipped
per average codeword Av = 6 bits. The minimum complexity or minimum bit flipping frequency is
reached when f = 1, corresponding to one bit-flipped every 18 bits.

6. Numerical Results

In this section, we analyzed the encryption scheme sensitivity to initial conditions, encryption space
and performance on different platforms (see Table 2) according to the following metrics: speed, CPU
usage and battery dissipation (only for mobile devices).

6.1. Sensitivity to Initial Conditions and Encryption Space

When encrypting VLC compressed bit streams, it is difficult to perceptually analyzed the ciphertext,
because coders are not able to successfully decode the modified image or video information. Headers,
motion vectors, DC and AC coefficients, etc, are modified in such a way that decoders may not find
known codewords in the bit stream. In order to provide a look at the effect of our encryption scheme, we
substitute the compressed plain text for its non-compressed version. Our scheme transforms the original
low-frequency image content to an irregular noisy look pattern, as depicted in Figure 10a,b respectively.
This result gives us a clue of the effect of the bit-flipping scheme on compressed plain text, which is even
worse due to its sensitivity to bit streams changes, as seen in Figure 9.
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An important property of chaos-based encryption is sensitivity to initial conditions. A slight
bit-change in the system key must produce totally different and uncorrelated transformations in both
ciphertext and plain text. To test the sensitivity of our scheme to bit changes in the system key, we
ciphered a non-compressed video frame (compressed video cannot be played back due to errors in the
headers, motion vectors, etc.) with key K1 and deciphered the sequence with key K2, such that K1 and
K2 differ in the least significant bit. The result of this experiment is shown in Figure 10. Figure 10a,b
shows the original non-compressed video frame and corresponding ciphertext using key K1, respectively.
Figure 10c shows the deciphered frame of Figure 10b using the same system key, K1; as expected, the
original frame is perfectly reconstructed. Figure 10d shows the deciphered frame of Figure 10b using
key K2. The effect of modifying the least significant bit in the system key impedes the reconstruction
of the original image/video data, such that the resulting plain text is uncorrelated to the original plain
text sequence (with a noise-like pattern). To evaluate the sensitivity of the scheme to plain text changes,
we modified the least significant bit in the first byte of the non-compressed frame and obtained the
ciphertext for both frames, the original (Figure 10b) and modified one (Figure 10e). Figure 11 represents
the first 100 bytes of both cipher frames. As can be seen, the ciphertext trajectories have an independent
random-like behavior with average correlation within ±0.1 (very low correlation for partially
encrypted frames).

Figure 10. Sensitivity of the proposed scheme to a bit-change in the system key and plain
text. (a) Original non-compressed image; (b) ciphertext; (c) deciphered image (same as the
original); (d) same as (c) with the least significant nit (LSB) change in the system key; and
(e) same as (d) with the LSB change in the first byte of plain text.

Figure 11. Plain text sensitivity to bit changes. Solid and dashed trajectories belong to the
same plain text with one bit changed in the first byte.
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In selective encryption, it is important that the analysis of the encryption space (volume of encrypted
data) is evaluated as the percentage of the number of encrypted bits in the original video sequence.
Since our scheme is scalable, for 1

3
≤ f ≤ 1, the total volume of securely encrypted data fluctuates

between 5.5–17%. Table 4 (taken from Wang et al. [11]) gives the comparison of different selective
encryption algorithms in encrypted information, encryption operation and encrypted data volumes. We
have included two additional schemes in the original table (in bold format), our scheme and Lui and
Wong’s scheme [12]. The minimum security level (f = 1) provided by our scheme represents less data
volume securely encrypted than the other schemes.

Table 4. Comparison of the encrypted data volumes (reproduced from [11]) of several
selective encryption schemes.

Encryption Scheme
for H.264

Encrypted Information
Encryption
Operation

Encrypted Data
Volumes

Lui and Wong [12] Syntax elements of the context-based
adaptive variable length coding (CAVLC)

Chaos encryption 19%

Lian et al. [31] Intra-prediction mode, motion vector
difference, residue data of the
macro-blocks

Stream cipher or
AES

10%

Li et al. [32] Intra-prediction mode, inter-prediction
mode, transform coefficients, motion
vectors

Scrambling, XOR
operation, sign
inversing

9.8%

Jiang et al. [33] Intra-prediction mode, inter-prediction
mode, transform coefficients, motion
vectors

Chaos encryption,
XOR operation

9.8%

Spinsante et al. [34] Quantization parameter, intra-prediction
mode, deblocking filter coefficients

Linear-Filter Shift
Register (LFSR),
XOR operation

12.3%

Lian et al. [35] Intra-prediction mode, motion vector
difference, intra-macro-block’s residue

Stream cipher 10%

Wang et al. [11] Intra-prediction mode, motion vector
difference, quantization coefficients

XOR operation 6.8%

Yuan et al. [36] The sign bit of DC coefficient in I-frame,
I-block in P-frame, I-block in B-frame

Chaos encryption 6.2%

Our scheme VLC error diffusion (bit-flipping) and
shuffling

Chaotic encryption
based on coupled
chaotic maps

5.5%–17%

6.2. Encryption Scheme Performance

In this section, our proposed encryption scheme performance on different platforms (see Table 2) is
analyzed according to the following metrics: speed, CPU usage and battery dissipation (only for mobile
devices). Figure 12 compares the CPU usage assuming different streaming rates; this means that all
implementations are processing the same amount of data over the same period of time. On the desktop,
laptop and netbook, the proposed scheme is using ≈ 15% less CPU power than the chaotic scheme [16].
However, the selective encryption and chaotic encryption are using ≈150% less CPU power than all
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other AES encryption schemes on the laptop, desktop and netbook. On the Nokia N900 and N800,
the proposed scheme is using ≈2-times less CPU than all other encryption schemes, even the chaotic
scheme, whose CPU usage was close to our scheme. On the netbook, Gladman’s scheme improved its
performance in terms of CPU usage. PolarSSL CPU usage performance was poor for all platforms.

Figure 12. Performance results on different platforms in terms of CPU usage.

As shown in the graphs of Figure 13, the selective encryption is by far the fastest scheme
for all platforms, with an average ≈2 (≈ 200%)-times faster than the fastest AES implementation
and 15% faster than the chaotic encryption scheme. Among the AES implementations, Bernstein’s
implementation obtained the best performance in term of speed, except on the netbook and the N800
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device, where Gladman’s was the fastest among all of the other AES implantations. On the N800,
the proposed scheme performance was faster than all other encryption schemes by a factor of ≈3, and
on N900, the proposed scheme enhanced its speed performance to be ≈50-times faster than all other
encryption schemes. This performance improvement is due to the inclusion of a math co-processor in
the Nokia N900 architecture (needed for computing chaotic trajectories in Equation (1)).

Figure 13. Performance results for different platforms in terms of encryption speed.

Figure 14 shows the battery energy consumption on battery-operated devices. Figure 14a shows the
performance of encryption schemes in terms of energy usage and the amount of data encrypted within 60
min of running time. A linear behavior for all implementation is observed, with the AES implementation
having the greatest slopes or energy consumption. For example, Bernstein’s implementation encrypts
280 GB of data and consumes over≈ 32 W·h of battery energy on the laptop platform. On the other hand:

(1) the chaotic scheme encrypts 800 GB of data and consumes the same ≈32 W·h of the energy on
the laptop;
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(2) The selective scheme encrypts almost 900 GB of data and consumes the same ≈32 W·h of the
energy on the laptop.

Figure 14b shows the energy consumed for different data sizes. Overall, selective encryption can
almost process≈200%–≈800% more information with the same energy consumption as all other scheme
implementations on all platforms, except for chaotic encryption on the laptop, desktop and netbook,
where the proposed scheme can process ≈200% more information with the same energy consumption.

Figure 14. Performance results in terms of energy consumed.

Figure 15 shows the loss of energy resulting from performing the maximum encryption speed of
each scheme on the N900 device from the full charge state until a complete discharge. As we see from
Figure 14, all of the schemes follow the same power loss pattern. However, in the case of Gladman’s
scheme and the proposed scheme, the battery lives longer, even when both are operating in full speed,
as for all others. The reason for this is the power control features of the Nokia N900. These results
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shows that the encryption scheme can be further enhanced by controlling which processor units are used
in the encryption.

Figure 15. Loss of energy on the N900.

In Table 5, we compare the proposed scheme with existing work in terms of other parameters and
security features.

Table 5. Comparison among different encryption schemes.

Requires
Vulnerable

Affects
Applicable at

Scheme
Decoding

to plain text
Compression

Intermediate
Attacks Network Nodes

Shashank [2] Yes Yes No No
Meyer [3] Yes No No No
Spanos [4] Yes Yes No No
Tang [5] Yes No Yes No
Wu [7] Yes Yes Yes No
Wen [8] Yes Yes Yes No
Proposed Scheme No No No Yes

7. Conclusions

In this paper, we have presented a highly scalable encryption scheme for VLC multimedia bit streams
that uses a computationally-efficient chaotic maps-based method to generate random numbers. These
secure random numbers are then utilized to diffuse correlations among codewords. The proposed scheme
is highly robust and scales well in terms of encryption speed and CPU usage with the increase in
streaming rate. Our implementation results show over 100% speedups in execution times across multiple
platforms. In terms of CPU usage (and, indirectly, power usage), the proposed scheme is at least 100%
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across platforms. In the work presented in this paper, security is achieved partly due to a robust random
number generator. In our future work, we plan to explore codec-specific selective schemes and the most
robust shuffling and diffusion operations that may work on less secure random number generators.
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