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Abstract: A variety of problems in, e.g., discrete mathematics, computer science,

information theory, statistics, chemistry, biology, etc., deal with inferring and characterizing

relational structures by using graph measures. In this sense, it has been proven that

information-theoretic quantities representing graph entropies possess useful properties

such as a meaningful structural interpretation and uniqueness. As classical work, many

distance-based graph entropies, e.g., the ones due to Bonchev et al. and related quantities

have been proposed and studied. Our contribution is to explore graph entropies that are based

on a novel information functional, which is the number of vertices with distance k to a given

vertex. In particular, we investigate some properties thereof leading to a better understanding

of this new information-theoretic quantity.
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1. Introduction

Studies of the information content of complex networks and graphs have been initiated in the late

1950s based on the seminal work due to Shannon [1]. Numerous measures for analyzing complex

networks quantitatively have been contributed [2]. A variety of problems in, e.g., discrete mathematics,

computer science, information theory, statistics, chemistry, biology, etc., deal with investigating

entropies for relational structures. For example, graph entropy measures have been used extensively to

characterize the structure of graph-based systems in mathematical chemistry, biology [3] and in computer

science-related areas, see [4]. The concept of graph entropy [5,6] introduced by Rashevsky [7] and

Trucco [8] has been used to measure the structural complexity of graphs [3,9,10]. The entropy of a graph

is an information-theoretic quantity that has been introduced by Mowshowitz [11]. Here the complexity

of a graph [12] is based on the well-known Shannon’s entropy [1,5,11,13]. Importantly, Mowshowitz

interpreted his graph entropy measure as the structural information content of a graph and demonstrated

that this quantity satisfies important properties when using product graphs etc., see, e.g., [11,14–16].

Note the Körner’s graph entropy [17] has been introduced from an information theory point of view

and has not been used to characterize graphs quantitatively. An extensive overview on graph entropy

measures can be found in [6]. A statistical analysis of topological graph measures has been performed

by Emmert-Streib and Dehmer [18].

Dehmer [5] presents some novel information functionals of V that capture, in some sense, the

structural information of the underlying graph G. Several graph invariants, such as the number of

vertices, edges, distances, the vertex degree sequences, extended degree sequences (i.e., the second

neighbor, third neighbor, etc.), degree powers and connections, have been used for developing

entropy-based measures [5,6,19,20]. In this paper, we study graph entropies related to a new information

functional, which is the number of vertices with distance k to a given vertex. Distance is one of the most

important graph invariants. For a given vertex v in a graph, the number of vertices with distance one to v

is exactly the degree of v; the number of pairs of vertices with distance three, which is also related to the

clustering coefficient of networks [21], is also called the Wiener polarity index introduced by Wiener in

1947 [22].

In view of the vast of amount of existing graph entropy measures [3,5], there has been very little

work to find their extremal values [23]. A reason for this might be the fact that Shannon’s entropy

represents a multivariate function and all probability values are not equal to zero when considering

graph entropies. Inspired by Dehmer and Kraus [23], it turned out that determining minimal values of

graph entropies is intricate because there is a lack of analytical methods to tackle this particular problem.

Other related work is due to Shi [24], who proved a lower bound of quantum decision tree complexity by

using Shannon’s entropy. Dragomir and Goh [25] obtained several general upper bounds for Shannon’s

entropy by using Jensen’s inequality. Finally, Dehmer and Kraus [23] proved some extremal results for

graph entropies, which are based on information functionals.

The main contribution of the paper is to study novel properties of graph entropies, which are based on

an information functional by using the number of vertices with distance k to a given vertex. The paper

is organized as follows. In Section 2, some concepts and notations in graph theory are introduced.

In Section 3, we introduce the concept of graph entropies and some types of distance-based graph
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entropies. In Section 4, we state some properties of graph entropy. The paper finishes with a summary

and conclusion in Section 5.

2. Preliminaries

A graph G is an ordered pair of sets V (G) and E(G) such that the elements uv ∈ E(G) are a

sub-collection of the unordered pairs of elements of V (G). For convenience, we denote a graph by

G = (V,E) sometimes. The elements of V (G) are called vertices and the elements of E(G) are called

edges. If e = uv is an edge, then we say vertices u and v are adjacent, and u, v are two endpoints (or

ends) of e. A loop is an edge whose two endpoints are the same. Two edges are called parallel, if both

edges have the same endpoints. A simple graph is a graph containing no loops and parallel edges. If

G is a graph with n vertices and m edges, then we say the order of G is n and the size of G is m. A

graph of order n is addressed as an n-vertex graph, and a graph of order n and size m is addressed as

an (n,m)-graph. A graph F is called a subgraph of a graph G, if V (F ) ⊆ V (G) and E(F ) ⊆ E(G),

denoted by F ⊆ G. In this paper, we only consider simple graphs.

A graph is connected if, for every partition of its vertex set into two nonempty sets X and Y , there is

an edge with one end in X and one end in Y . Otherwise, the graph is disconnected. In other words, a

graph is disconnected if its vertex set can be partitioned into two nonempty subsets X and Y so that no

edge has one end in X and one end in Y .

A path graph is a simple graph whose vertices can be arranged in a linear sequence in such a way

that two vertices are adjacent if they are consecutive in the sequence, and are nonadjacent otherwise.

Likewise, a cycle graph on three or more vertices is a simple graph whose vertices can be arranged in

a cyclic sequence in such a way that two vertices are adjacent if they are consecutive in the sequence,

and are nonadjacent otherwise. Denote by Pn and Cn the path graph and the cycle graph with n vertices,

respectively.

A connected graph without any cycle is a tree. Actually, the path Pn is a tree of order n with exactly

two pendent vertices. The star of order n, denoted by Sn, is the tree with n − 1 pendent vertices. A

tree is called a double star Sp,q, if it is obtained from Sp+1 and Sq by identifying a leaf of Sp+1 with the

center of Sq. So, for the double star Sp,q with n vertices, we have p + q = n. We call a double star Sp,q

balanced, if p = ⌊n
2
⌋ and q = ⌈n

2
⌉. A comet is a tree composed of a star and a pendent path. For any

numbers n and 2 ≤ t ≤ n− 1, we denote by CS(n, t) the comet of order n with t pendent vertices, i.e.,

a tree formed by a path Pn−t of which one end vertex coincides with a pendent vertex of a star St+1 of

order t+ 1.

The length of a path is the number of its edges. For two vertices u and v, the distance between u

and v in a graph G, denoted by dG(u, v), is the length of the shortest path connecting u and v. A path P

connecting u and v in G is called the geodesic path, if it is an induced path, i.e., the distance between u

and v in G is exactly the length of the path P . The diameter of a graph G is the greatest distance between

two vertices of G, denoted by D(G). The set Sj(vi, G) := {v ∈ V |d(vi, v) = j, j ≥ 1} is called the

j-sphere of vi regarding G.

All vertices adjacent to vertex u are called neighbors of u. The neighborhood of u is the set of the

neighbors of u. The number of edges adjacent to vertex u is the degree of u, denoted by d(u). Vertices
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of degrees 0 and 1 are said to be isolated and pendent vertices, respectively. A pendent vertex is also

referred to as a leaf of the underlying graph. A vertex of degree i is also addressed as an i-degree

vertex. The minimum and maximum degree of G is denoted by δ(G) and ∆(G) , respectively. If G has

ai vertices of degree di (i = 1, 2, . . . , t), where ∆(G) = d1 > d2 > · · · > dt = δ(G) and
t
∑

i=1

ai = n,

we define the degree sequence of G as D(G) = [da11 , da22 , . . . , datt ]. If ai = 1, we use di instead of daii for

convenience.

For terminology and notations not defined here, we refer the readers to [26].

3. Distance-Based Graph Entropies

Now we reproduce the definition of Shannon’s entropy [1].

Definition 1. Let p = (p1, p2, . . . , pn) be a probability vector, namely, 0 ≤ pi ≤ 1 and
∑n

i=1 pi = 1. The

Shannon’s entropy of p is defined as

I(p) = −

n
∑

i=1

pi log pi.

To define information-theoretic graph measures, we will often consider a tuple (λ1, λ2, . . . , λn) of

non-negative integers λi ∈ N [5]. This tuple forms a probability distribution p = (p1, p2, . . . , pn), where

pi =
λi

∑n

j=1 λj

i = 1, 2, . . . , n.

Therefore, the entropy of tuple (λ1, λ2, . . . , λn) is given by

I(λ1, λ2, . . . , λn) = −
n
∑

i=1

pi log pi = log

(

n
∑

i=1

λi

)

−
n
∑

i=1

λi
∑n

j=1 λj

log λi. (1)

In the literature, there are various ways to obtain the tuple (λ1, λ2, . . . , λn), like the

so-called magnitude-based information measures introduced by Bonchev and Trinajstić [27],

or partition-independent graph entropies, introduced by Dehmer [5,28], which are based on

information functionals.

We are now ready to define the entropy of a graph due to Dehmer [5] by using information functionals.

Definition 2. Let G = (V,E) be a connected graph. For a vertex vi ∈ V , we define

p(vi) :=
f(vi)

∑|V |
j=1 f(vj)

,

where f represents an arbitrary information functional.

Observe that
∑|V |

i=1 p(vi) = 1. Hence, we can interpret the quantities p(vi) as vertex probabilities.

Now we immediately obtain one definition of graph entropy of graph G.
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Definition 3. Let G = (V,E) be a connected graph and f be an arbitrary information functional. The

entropy of G is defined as

If(G) = −

|V |
∑

i=1

f(vi)
∑|V |

j=1 f(vj)
log

(

f(vi)
∑|V |

j=1 f(vj)

)

= log





|V |
∑

i=1

f(vi)



−

|V |
∑

i=1

f(vi)
∑|V |

j=1 f(vj)
log f(vi). (2)

Distance is one of the most important graph invariants. We first restate some definitions of the

information functionals based on distances. In [5], the following information functional was introduced:

f(vi) = α
∑D(G)

j=1 cj |Sj(vi,G)|,

where cj with j = 1, 2, . . . , D(G) and α are arbitrary real positive parameters. The information

functional proposed in [20] is calculated for a vertex vi as the entropy of its shortest distances from

all other vertices in the graph:

H(vi) = −
∑

u∈V

d(vi, u)

D(vi)
log

d(vi, u)

D(vi)
,

where D(vi) =
∑

u∈V d(vi, u). The aggregation function over all distances of vertices in the graph is

proposed as follows:

H =
∑

v∈V

H(vi).

The information functional based on the shortest distances is introduced in [29]:

f(vi) =
∑

u∈V

d(vi, u).

There are also some functionals based on the betweenness centralities [29,30].

In this paper, we consider a new information functional, which is the number of vertices with distance

k to a given vertex. For a given vertex v in a graph, the number of vertices with distance one to v is

exactly the degree of v. On the other hand, the number of pairs of vertices with distance three, which is

also related to the clustering coefficient of networks, is also called the Wiener polarity index introduced

for molecular networks by Wiener in 1947 [22]. For more recent results on Wiener index and Wiener

polarity index, we refer to [31–41].

Let G = (V,E) be a connected graph with n vertices and vi ∈ V (G). Denote by nk(vi) the number

of vertices with distance k to vi, i.e.,

nk(vi) = |Sk(vi, G)| = |{u : d(u, vi) = k, u ∈ V (G)}|,

where k is an integer such that 1 ≤ k ≤ D(G).

Definition 4. Let G = (V,E) be a connected graph. For a vertex vi ∈ V and 1 ≤ k ≤ D(G), we define

the information functional as:

f(vi) := nk(vi).
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Therefore, by applying Definition 4 and Equality (2), we obtain the special graph entropy

Ik(G) := If (G) = −
n
∑

i=1

nk(vi)
∑n

j=1 nk(vj)
log

(

nk(vi)
∑n

j=1 nk(vj)

)

= log

(

n
∑

i=1

nk(vi)

)

−
1

∑n

j=1 nk(vj)
·

n
∑

i=1

nk(vi) lognk(vi). (3)

In this paper, we will discuss the extremal properties of the above graph entropy.

4. Results and Discussion

Observe that for k = 1, n1(vi) = d(vi) is the degree of vi and

I1(G) = log

(

n
∑

i=1

di

)

−
1

∑n

j=1 dj
·

n
∑

i=1

di log di,

which has been studied in [19] for some classes of graphs. If we denote the number of edges by m, then

we have

I1(G) = log (2m)−
1

2m
·

n
∑

i=1

di log di, (4)

since
∑n

i=1 di = 2m. Denote by pk(G) the number of geodesic paths with length k in graph G. Then

we have
∑n

i=1 nk(vi) = 2pk, since each path of length k is counted twice in
∑n

i=1 nk(vi). Therefore,

Equation (3) can be represented as

Ik(G) = log (2pk)−
1

2pk
·

n
∑

i=1

nk(vi) lognk(vi). (5)

The number of paths with length k in a given graph is widely studied by Erdös and Bollobás; we refer

the readers to [42–47]. Since there are some good algorithms for finding shortest paths in a graph, such

as Dijkstra’s algorithm [26], we can obtain the following result.

Proposition 5. Let G be a graph with n vertices. For a given integer k, the value of Ik(G) can be

computed in polynomial time.

Let T be a tree with n vertices and V (T ) = {v1, v2, . . . , vn}. In the following, we consider the

properties of Ik(T ) for k = 2.

First, we study the values of p2(T ) and nk(vi). Observe that

p2(T ) =
n
∑

i=1

(

di

2

)

=
1

2

n
∑

i=1

di(di − 1) =
1

2

n
∑

i=1

d2i −m =
1

2

n
∑

i=1

d2i − (n− 1)

and

n2(vi) =
∑

u∈N(vi)

d(u).
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Then from Equation (5), we have

I2(T ) = log

(

n
∑

i=1

d2i − 2(n− 1)

)

−

n
∑

i=1

n2(vi) logn2(vi)

n
∑

i=1

d2i − 2(n− 1)
. (6)

If T ∼= Sn is a star graph, then we have

I2(Sn) = log((n− 2)(n− 1))−
(n− 1)(n− 2) log(n− 2)

(n− 1)(n− 2)
= log(n− 1).

If T ∼= Pn is a path graph, then we have

I2(Pn) = log(2(n− 2))−
(n− 4) · 2 log 2

2(n− 2)
= log(n− 2) +

2

n− 2
.

Let T be a tree with n vertices. By calculating the values I2(T ) for n = 7, 8, 9, 10, we can obtain the

trees with extremal values of entropy. The trees with maximum and minimum values of I2(T ) are shown

in Figures 1 and 2, respectively.

Figure 1. The trees with maximum value of I2(T ) among all trees with n vertices for

7 ≤ n ≤ 10.

n = 7 n = 10n = 9n = 8

As we have seen from Figure 1, for n = 7, 8, 9, 10, the maximum value of I2(T ) is attained when T

is the balanced double star S⌊n
2
⌋,⌈n

2
⌉. By some elementary calculations, we have

I2

(

S⌊n
2
⌋,⌈n

2
⌉

)

=







log(n) if n = 2k

3k−1
2k

log(k)− k−1
2k

log(k − 1) + 1 if n = 2k + 1.

It is easy to obtain the following result.

Theorem 6. Let Sn, Pn, S⌊n
2
⌋,⌈n

2
⌉ be the star graph, the path graph and the balanced double star graph

with n vertices, respectively. Then we have

I2(Sn) < I2(Pn) < I2

(

S⌊n
2
⌋,⌈n

2
⌉

)

.

Proof. First, we have

I2(Pn)− I2(Sn) = log

(

n− 2

n− 1

)

+
2

n− 2
> 0

for all n ≥ 3. For n = 2k,

I2

(

S⌊n
2
⌋,⌈n

2
⌉

)

− I2(Pn) = log(2k)− log(2k − 2)−
2

2k − 2
> 0

for all k ≥ 1. The case of n = 2k + 1 is similar.
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Figure 2. The trees with minimum value of I2(T ) among all trees with n vertices for

7 ≤ n ≤ 10.

n = 7 n = 8 n = 9

n = 10(1) n = 10(2)

From Figure 2, for n = 7, 8, 9, 10, the minimum value of I2(T ) is attained when T is a comet. For a

comet CS(n, t) with n− t ≥ 3, by some elementary calculations, we have

I2(CS(n, t)) = log(t2 − 3t+ 2n− 2)−
2(n− t− 3) + n1 log t+ (t− 1)2 log(t− 1)

t2 − 3t+ 2n− 2
.

Let

f(t) = log(t2 − 3t+ 2n− 2)−
2(n− t− 3) + n1 log t+ (t− 1)2 log(t− 1)

t2 − 3t+ 2n− 2

and

g(t) =
∂f(t)

∂t
.

Denote by t0 the root of g(t) = 0. Then CS(n, t0) is the tree with the minimum value of entropy among

all comets.

In fact, for a tree T with n vertices, we can guess the following result. However, this was neither

successfully proved nor disproved despite many attempts.

Conjecture 7. For a tree T with n vertices, the balanced double star and the comet CS(n, t0) can attain

the maximum and the minimum values of I2(T ), respectively.

Observe that the extremal graphs for n = 10 is not unique. From this observation, we can obtain the

following result.

Theorem 8. Let CS(n, t) be a comet with n − t ≥ 4. Denote by T a tree obtained from CS(n, t) by

deleting the leaf that is not adjacent to the vertex of maximum degree and attaching a new vertex to one

leaf that is adjacent to the vertex of maximum degree. Then we have I2(T ) = I2(CS(n, t)).

Proof. Let CS(n, t) be a comet with n − t ≥ 4. Let w be the vertex with maximum degree t.

Denote by u the leaf of CS(n, t) that is not adjacent to w, and v is one leaf that is adjacent to w.

Let T = CS(n, t)− u+ uv. Note that the degree sequence of T is the same as CS(n, t). Then we only

need to check the part
n
∑

i=1

n2(vi) logn2(vi).
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For a given graph G, we define a sequence

s(n2, G) = (n2(v1), n2(v2), . . . , n2(vn)).

By some elementary calculations, we can find that s(n2, T ) = s(n2, CS(n, t)). Then from Equation (6),

we obtain that I2(T ) = I2(CS(n, t)).

Actually, the above proof provides a method to verify whether two graphs have the same value of

entropy. If G and H are two graphs with the same vertex set and the same degree sequence, then we can

use the defined sequence s(n2, G) to check whether G and H have the same value of entropy.

5. Conclusions

Many distance-based entropies have been proposed and studied. In this paper, based on Shannon’s

entropy, we study graph entropies related to a new information functional, which is the number of

vertices with distance k to a given vertex. One of the future works is to explore the discrimination

power of this entropy.

Some properties of this entropy of graphs are characterized. Similar to other entropies [48], to

determine the extremal values of Ik(G) and characterize the extremal graphs is a challenging problem. It

seems also much complicated for trees. One possible attempt is to establish some graph transformations,

which can increase or decrease the values of the entropy.
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