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Abstract: An overview is presented of the recent developments in the application of large
eddy simulation (LES) for prediction and analysis of local entropy generation in turbulent
reacting flows. A challenging issue in such LES is subgrid-scale (SGS) modeling of
filtered entropy generation terms. An effective closure strategy, recently developed, is based
on the filtered density function (FDF) methodology with inclusion of entropy variations.
This methodology, titled entropy FDF (En-FDF), is the main focus of this article. The
En-FDF has been introduced as the joint velocity-scalar-turbulent frequency-entropy FDF
and the marginal scalar-entropy FDF. Both formulations contain the chemical reaction and its
entropy generation effects in closed forms. The former constitutes the most comprehensive
form of the En-FDF and provides closure for all of the unclosed terms in LES transport
equations. The latter is the marginal En-FDF and accounts for entropy generation effects,
as well as scalar-entropy statistics. The En-FDF methodologies are described, and some of
their recent predictions of entropy statistics and entropy generation in turbulent shear flows
are presented.
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1. Introduction

Optimum use of energy is a major concern in designing modern energy conversion systems.
According to the second law of thermodynamics, the energy efficiency in practice is always less than
that expected theoretically, because of the irreversibilities in the system. Irreversibility essentially causes
degradation of available energy into internal energy and, thus, destruction of the exergy (availability)
of the working fluid [1]. This leads to a departure from thermodynamic ideality or reduction of the
second-law efficiency. The rate of exergy destruction due to irreversibilities can be characterized in
terms of entropy generation according to the Gouy–Stodola theorem, ID = Ta S g [2,3], where ID, Ta and
S g denote the rate of exergy destruction (also known as lost power), ambient (dead state) temperature
and the entropy generation rate, respectively. Optimizing the energy efficiency thus relies on minimizing
the overall exergy destruction, which can be achieved by minimizing the rate of entropy generated within
the system [4–9].

During the past several decades, the second-law analysis has been the subject of broad investigations.
These include system-level analysis, often termed exergy analysis, to obtain the net rate of exergy
destruction [10–23]. More detailed studies involve identification of specific processes contributing to
losses by considering the local generation of entropy. Such analysis has been performed on laminar
flows in many studies. Teng et al. [24] derived the entropy transport equation to determine the rate
of local entropy generation in multicomponent laminar reacting flows. Datta and Som [18] considered
energy and exergy balance in a gas turbine combustor. Datta [25] conducted entropy generation analysis
of a laminar diffusion flame. Nishida et al. [26] considered premixed and diffusion flames and identified
important entropy generation and exergy loss mechanisms. Datta [27] studied the effect of gravity on the
structure and generation of entropy in confined laminar diffusion flames. Shuja et al. [28] studied the
influence of inlet velocity profile on the efficiency of heat transfer in a laminar jet. Briones et al. [29]
studied the entropy generation processes in a partially-premixed flame. Sciacovelli and Verda [30] used
an entropy generation minimization technique for design modifications in a tubular solid oxide fuel cell.
Jiang et al. [31] presented an analysis of entropy generation in a hydrogen/air premixed micro-combustor
with baffles, and Rana et al. [32] studied the exergy transfer and destruction due to premixed combustion
in a heat recirculating micro-combustor.

In turbulent flows, there have been several studies involving direct numerical simulation (DNS).
Okong’o and Bellan [33–35] performed comprehensive studies on entropy generation effects in
supercritical, multicomponent shear flows; they suggested that, by containing the full extent of
dissipative effects, entropy generation is useful to describe the behavior of small-scale turbulent motions.
McEligot et al. [36] studied the entropy generation in the near wall region of a turbulent channel flow.
Farran and Chakraborty [37] conducted DNS prediction of entropy generation in a turbulent premixed
flame. Ghasemi et al. [38,39] used DNS and Reynolds averaged Navier–Stokes (RANS) to study the
entropy generation and energy dissipation in transitional regions in wall shear flows. The prediction of
entropy generation in the context of RANS has been carried out in many other studies. Stanciu et al. [40]
performed the second-law analysis of a turbulent diffusion flame. Shuja et al. [41] studied local entropy
generation in an impinging jet and used minimum entropy concept to evaluate various turbulence models.
Adeyinka and Naterer [42] provided a model for the entropy transport equation in turbulent flows. Kock
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and Herwig [43] provided wall functions for entropy production and performed analysis of entropy
generation due to fluid flow and heat transfer in the near wall region of a pipe. Yapıcı et al. [44]
performed local entropy generation in a methane-air burner. Herwig and Kock [45] used entropy
generation as a tool for evaluating heat transfer performance in a turbulent shear flow. Stanciu et al. [46]
studied the influence of swirl angle on the irreversibility in a turbulent diffusion flame, and Emadi
and Emami [47] studied entropy generation in a turbulent hydrogen-enriched methane/air bluff-body
flame. Despite the known advantages of large eddy simulation (LES) in turbulence modeling, the extent
of its usage for entropy generation analysis has been insignificant. For the most part, this is due to
the challenges in subgrid-scale (SGS) modeling of the unclosed irreversibility effects. An effective
strategy for modeling of SGS effects is the filtered density function (FDF) methodology [48,49]. This
methodology has been the subject of extensive previous contributions [50–62]. In recent works [63,64],
a methodology based on filtered density function (FDF), termed the entropy FDF (En-FDF), has been
introduced, which allows LES prediction of entropy transport and generation in turbulent reacting
flows. This methodology has been presented as two formulations: the comprehensive and the marginal
En-FDF. The comprehensive En-FDF contains the complete statistical information about the velocity,
scalar, turbulent frequency and entropy fields and, thus, provides SGS closure for all of the unclosed
moments in the filtered transport equations. The marginal En-FDF is the FDF of entropy and scalar
fields and describes the unclosed entropy generation, chemical reaction and entropy-scalar statistics.
This methodology is computationally more affordable and, thus, constitutes a more practical means of
predicting entropy generation in complex turbulent reacting flows. However, it requires closure for all
of the second order SGS moments via the conventional (non-FDF) LES models. The objective of this
paper is to provide an overview of the state of progress in the application of En-FDF for LES prediction
of entropy generation. Both En-FDF formulations are discussed along with their recent applications in
LES of turbulent shear flows. Assessments of LES results against direct numerical simulation (DNS)
and experimental data are also presented.

2. LES Formulation and Modeling

The primary transport variables in turbulent reacting flows, varying in space x ≡ xi (i = 1, 2, 3) and
time t, are the fluid density ρ(x, t), the velocity vector u ≡ ui(x, t) along the xi direction, the specific
enthalpy h(x, t), the specific entropy s(x, t), the pressure p(x, t) and the mass fractions of Ns species,
Yα(x, t) (α = 1, 2, . . . ,Ns), respectively. Implementation in LES involves the use of spatial filtering
operation [65,66]: 〈Q(x, t)〉 =

∫ +∞

−∞
Q(x′, t) G(x′, x) dx′ where G denotes the filter function of width

∆ and 〈Q(x, t)〉 represents the filtered value of the transport variable Q(x, t). In reacting flows, it is
convenient to consider the Favre filtered quantity, 〈Q(x, t)〉L =〈ρQ〉/〈ρ〉. The transport variables satisfy
the conservation equations of mass, momentum, energy and species mass fractions, as well as entropy
transport equation. The filtered form of these equations are:

∂〈ρ〉

∂t
+
∂〈ρ〉〈ui〉L

∂xi
= 0 (1)

∂〈ρ〉〈ui〉L

∂t
+
∂〈ρ〉〈ui〉L

〈
u j

〉
L

∂x j
= −

∂〈p〉
∂xi

+
∂
〈
τi j

〉
L

∂x j
−
∂〈ρ〉τ(ui, u j)

∂x j

(2)
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∂〈ρ〉〈φα〉L
∂t

+
∂〈ρ〉〈ui〉L〈φα〉L

∂xi
=

∂

∂xi
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γ
∂〈φα〉L
∂xi

)
−
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(
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∂xi
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〈
1
T
τi j
∂ui
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〉
+

〈
γ
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T 2

∂T
∂xi

∂T
∂xi

〉
+

Ns∑
α=1

〈
γRα

Xα

∂φα
∂xi

∂Xα

∂xi

〉
−

〈
ρ

T

Ns∑
α=1

µαS α

〉 (4)

where γ denotes the thermal and mass molecular diffusivity coefficients for all of the scalars. We assume
unity Lewis number. In these equations, Rα , Xα and S α are gas constant, mole fraction and chemical
reaction source term for species α, respectively, and µα is the chemical potential per unit mass of species
α. Variables T and cp denote the temperature and the specific heat capacity at constant pressure for
the mixture, respectively. We use the scalar array φ = [φ1, . . . , φNs+1] to represent mass fraction and
enthalpy in a common form with φα ≡ Yα for α = 1, . . . ,Ns and φNs+1 ≡ h. We consider a Newtonian
fluid and employ Fourier’s law of heat conduction and Fick’s law of mass diffusion. The viscous stress
tensor τi j is thus represented as: τi j = µ

(
∂ui
∂x j

+
∂u j

∂xi
− 2

3
∂uk
∂xk
δi j

)
where µ is the fluid dynamic viscosity.

In Equations (2)–(4), the second order SGS moments τ(a, b) = 〈ab〉L − 〈a〉L 〈b〉L appear as unclosed.
In addition, the filtered chemical reaction source term, the last term on the RHS of Equation (3), and
the filtered entropy generation terms, the last four terms on the RHS of Equation (4), require SGS
modeling. The modeled filtered entropy generation terms must be positive semidefinite according to the
second law of thermodynamics. It is important to emphasize that filtered entropy and entropy generation
cannot be obtained from other filtered variables, because of their nonlinear dependency. Moreover, it is
clear that having entropy alone is not sufficient to account for the individual processes contributing to
its generation.

The En-FDF provides an effective means of modeling the unclosed SGS effects. In its comprehensive
form, the En-FDF, denoted by Fen

(
û, φ̂, ω̂, ŝ, x; t

)
, contains complete statistical information about SGS

variation of velocity, scalar, turbulent frequency ω(x, t) and entropy fields. The En-FDF is defined
as [63]:

Fen

(
û, φ̂, ω̂, ŝ, x; t

)
=

∫ +∞

−∞

ρ(x′, t) ζ
[
û, φ̂, ω̂, ŝ ; u(x′, t),φ(x′, t), ω(x′, t), s(x′, t)

]
G(x′ − x)dx′ (5)

where:

ζ
[
û, φ̂, ω̂, ŝ ; u(x, t),φ(x, t), ω(x, t), s(x, t)

]
= δ (ŝ − s(x, t)) δ (ω̂ − ω(x, t))×

3∏
i=1

δ (ûi − ui(x, t))
Ns+1∏
α=1

δ(φ̂α − φα(x, t))
(6)

is the fine-grained density [67] and δ denotes the Dirac delta function. In this formulation, the sample
space variables û, φ̂, ω̂ and ŝ correspond to velocity vector, scalar array, turbulent frequency and entropy,
respectively. The filtered value of any function Q̃

(
û, φ̂, ω̂, ŝ

)
, fully defined by velocity, scalar, frequency

and/or entropy, is obtained from the En-FDF as:

〈ρ(x, t)〉 〈Q(x, t)〉L =

& +∞

−∞

Q̃
(
û, φ̂, ω̂, ŝ

)
Fen

(
û, φ̂, ω̂, ŝ, x; t

)
dû dφ̂ dω̂ dŝ (7)
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The marginal En-FDF [64], denoted by F ′
en

(
φ̂, ŝ, x; t

)
, can be obtained from Equation (5) by integrating

over û, ω̂ spaces. This form of En-FDF thus only contains information on joint scalar-entropy statistics.
It is thus computationally more affordable for the prediction of complex turbulent reacting flows.
Both forms of En-FDF are governed by exact transport equations, which include several unclosed
terms [63,64]. The closure is provided by a stochastic model, which consists of a system of stochastic
differential equations (SDEs). The stochastic model for the comprehensive form of En-FDF consists of
SDEs for position, velocity, scalars, frequency and entropy:

dXi
+ = U+

i dt +

√
2µ
〈ρ〉

dWi (8a)

dU+
i =

− 1
〈ρ〉

∂ 〈p〉
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+
1
〈ρ〉

∂

∂x j

(
µ
∂ 〈ui〉L

∂x j

)
+

1
〈ρ〉

∂
〈
τi j

〉
L

∂x j
+ Gi j

(
U+

j −
〈
u j

〉
L

) dt

+
√

C0 ks ΩdW ′
i +

√
2µ
〈ρ〉

∂ 〈ui〉L

∂x j
dW j (8b)

dφ+
α = −Cφ Ω

(
φ+
α − 〈φα〉L

)
dt + S α(φ+)dt (8c)

dω+ = −Cω Ω

(
ω+ −C f

k1/2
s

∆

)
dt (8d)

ds+ =
εt

T +
dt +

1
T +

Ns∑
α=1

µ+
αCφΩ(φ+

α − 〈φα〉L) dt −
1

T +
CφΩ(h+ − 〈h〉L) dt −

1
T +

Ns∑
α=1

µ+
αS α(φ+) dt (8e)

where X+
i , U+

i , ω+, φ+
α, T +, µ+

α, h+ and s+ are the stochastic representations of position, velocity,
frequency, scalars, temperature, chemical potential per unit mass of species α, specific enthalpy and
specific entropy, respectively. The set of SDEs include the linear mean square estimation (LMSE) [67]
and the simplified Langevin models [68], with Gi j = −Ω

(
1
2 + 3

4C0

)
δi j. The Wi, W ′

i terms denote the
Wiener–Lévy processes [69]. In these equations, ks = τ(ui, ui)/2 denotes the SGS kinetic energy and
Ω is the SGS mixing frequency, modeled as: Ω ≡ CΩ 〈ω

+ |ω+ ≥ 〈ω〉L〉L [57]. The model parameters
C0 = 2.1, Cφ = 1, C f = 1, Cω = 2 and CΩ = 0.9 are set according to previous work [53,56,57]. The
stochastic process corresponding to entropy (Equation (8e)) follows the Gibbs fundamental equation, in
which εt is the total rate of turbulent dissipation, including both SGS and resolved contributions:

εt = ks Ω +
1
〈ρ〉

〈
τi j

〉 ∂ 〈ui〉L

∂x j
(9)

The Fokker–Planck equation [70] conjugate to the set of SDEs is the modeled transport equation for the
comprehensive En-FDF:
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T

Ns∑
α=1

Cφ Ω
[
µα

(
φ̂α − 〈φα〉L

)] ∂Fen
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∂ŝ
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∂ŝ
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∂ŝ
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For the marginal En-FDF, the SDEs for the scalar and the entropy remain the same. However, the
velocity and frequency must be obtained by other (non-FDF) means. In this case, the physical transport
is modeled by [51]:

dX+
i =

(
〈ui〉L +

1
〈ρ〉

∂ (γ + γt)
∂xi

)
dt +


√

2 (γ + γt)
〈ρ〉

 dWi (11)

where the mixing frequency is modeled as Ω = (γ + γt)/〈ρ〉∆2 [50,51] and γt denotes the SGS diffusivity.
The Fokker–Planck equation corresponding to the set of SDEs (Equations (8c), (8e) and (11)) is the
modeled transport equation for the marginal En-FDF:

∂F ′
en

∂t
+
∂ (〈ui〉L F ′

en)
∂xi

=
∂

∂x j

(
(γ + γt)

∂ (F ′
en/〈ρ〉)
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)
+ Cφ Ω

∂

∂φ̂α

[(
φ̂α − 〈φα〉L

)
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]
−
εt

T
∂F ′
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∂ŝ
−

1
T
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Cφ Ω
[
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(
φ̂α − 〈φα〉L

)] ∂F ′
en

∂ŝ
+

1
T

Cφ Ω
(
ĥ − 〈h〉L

)∂F ′
en

∂ŝ

−

Ns∑
α=1

∂

∂φ̂α

[
S α(φ̂)F ′

en

]
+

1
T

Ns∑
α=1

µαS α(φ̂)
∂F ′

en

∂ŝ

(12)

In both En-FDF formulations, the filtered chemical reaction and its entropy generation effect (the last
two terms on the RHS of Equations (10) and (12)) appear in closed forms. Integrating Equation (10)
according to Equation (7) yields the transport equations for all SGS moments implied by the En-FDF.
The first entropy moment describes the transport of filtered entropy:

∂〈ρ〉〈s〉L
∂t

+
∂〈ρ〉〈ui〉L〈s〉L

∂xi
=

∂

∂xi

(
γ
∂〈s〉L
∂xi

)
−
∂〈ρ〉τ(ui, s)

∂xi
+ 〈ρ〉 εt

〈
1
T

〉
L

+ 〈ρ〉CφΩ

 Ns∑
α=1

τ
(
φα,

gα
T

)
− τ

(
h,

1
T

) + 〈ρ〉CφΩ

Ns∑
α=1

Rατ (φα, lnXα) −
〈
ρ

T

Ns∑
α=1

µαS α

〉 (13)

where gα is the Gibbs free energy per unit mass of species α. For the marginal En-FDF, a similar transport
equation is obtained from Equation (12), but the SGS entropy flux is modeled as τ(ui, s) = −

γt
〈ρ〉

∂〈s〉L
∂xi

.
Comparing Equation (13) with Equation (4) reveals the En-FDF implied modeling of the individual
filtered entropy generation terms:〈

S gV

〉
=

〈
1
T
τi j
∂ui
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〉
≈ 〈ρ〉

〈
1
T

〉
L
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〈
S gH

〉
=

〈
γ
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T 2

∂T
∂xi

∂T
∂xi

〉
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α=1

τ
(
φα,

gα
T

)
− τ

(
h,

1
T

)
〈
S gM

〉
=

〈 Ns∑
α=1

γRα

1
Xα

∂φα
∂xi

∂Xα

∂xi

〉
≈ 〈ρ〉CφΩ

Ns∑
α=1

Rατ (φα, lnXα)

(14)

It is noted that the filtered entropy generation by chemical reaction
〈
S gC

〉
= −

〈
ρ

T

∑Ns
α=1 µαS α

〉
in

Equation (13) does not require modeling in the En-FDF.
For numerical solution of the En-FDF, a procedure shown to be effective in FDF simulations is

the hybrid Eulerian/Lagrangian Monte Carlo (MC) method [53,56,57,63,64]. The Eulerian solver is
typically a grid-based finite-difference (FD) or finite volume method. The FD solver used in these
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simulations is based on a fourth order compact parameter scheme [71]. The Lagrangian solver is based
on the MC method to solve the set of SDEs. In this method, an ensemble of MC particles is used to
represent the FDF. These particles carry information regarding the FDF variables: position, velocity,
scalars, turbulent frequency and/or entropy. From the numerical standpoint, the use of the MC method
is significantly easier than solving the modeled FDF transport equations (e.g., Equation (10) or (12))
directly, as shown in previous studies [50–53,56,57,63,64]. The filtered moments are constructed on the
grid points by ensemble averaging the MC particles inside an ensemble domain around each grid point.
The transfer of information from the grid points to MC particles is done by interpolation.

3. Simulations

In this section, we present some of the recent results pertaining to LES prediction of entropy statistics
and entropy generation in turbulent shear flows. These include LES of a non-reacting temporal mixing
layer and a turbulent jet flame. The former involves the comprehensive En-FDF formulation and gives
assessment of this methodology against DNS data. The latter involves the marginal En-FDF and shows
validation of En-FDF against laboratory data. These results demonstrate the capacity of LES/En-FDF in
predicting entropy transport and generation in turbulent mixing and reacting flows.

The comprehensive form of En-FDF is applied for LES of a temporal mixing layer involving
the transport of passive scalars. The objective is to assess the En-FDF prediction of entropy
filtered moments and its rate of generation against DNS data. Large eddy simulation of this
flow using various FDF methodologies are reported in [52,53,56,57,63]. In the following, we
present some of the latest results obtained from the En-FDF. The variables are non-dimensionalized
with the corresponding reference values: the reference length Lo is half of the initial vorticity
thickness; the reference velocity Uo is half of the velocity difference across the shear layer;
and the reference temperature is To = 298 K. The Reynolds number based on these values is
Reo = 50. We assume unity Schmidt Sc and Prandtl Pr numbers. The computational domain spans
0 ≤ x ≤ L, −L

2 ≤ y ≤ L
2 , 0 ≤ z ≤ L where L = Lv/Lo, and Lv is specified, such that Lv = 2Nvλu,

where Nv is the desired number of successive vortex pairings and λu is the wavelength of the most
unstable mode corresponding to the mean streamwise velocity profile imposed at the initial time; x, y
and z denote the streamwise, the cross-stream and the spanwise coordinate directions, respectively.
The velocity components along these directions are denoted by u, v and w, respectively. The filtered
normalized streamwise velocity, density and passive scalar (mixture fraction) φ fields are initialized
using hyperbolic tangent profiles with free-stream conditions as: 〈u〉L = 1, 〈ρ〉 = 0.5 and 〈φ〉L = 1 on
the top and 〈u〉L = −1, 〈ρ〉 = 1 and 〈φ〉L = 0 on the bottom. With the uniform initial pressure field, the
initial filtered temperature is obtained from 〈ρ〉 according to the ideal-gas equation of state. To obtain
the entropy generation by mass diffusion, we consider the top and bottom streams to carry H2 and F2,
respectively. The flow involves pure mixing of these species; thus, mass fraction and enthalpy values
are fully determined by the mixture fraction. The En-FDF predictions are assessed with DNS results.
Simulations using LES and DNS are performed on 333 and 1933 grid points, respectively. The LES filter
size is twice as large as grid spacing in each direction. For comparison, the DNS data is filtered via a
top-hat filter. The periodic boundary condition is used in the streamwise and spanwise directions, and
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the zero-derivative boundary condition is employed at cross-stream boundaries. The initial number of
particles per grid point is 320, and the ensemble domain size is set equal to half the grid spacing in each
direction. Initialization of the MC particles and their treatment at the boundaries are consistent with the
FD initial and boundary conditions.

Figure 1. Isosurfaces of instantaneous filtered entropy in temporal mixing layer simulations
at t = 80, predicted by (a) entropy filtered density function (En-FDF) and (b) direct
numerical simulation (DNS).

(a) (b)

Figure 1 shows the formation of three-dimensional (3D) structures, visualized by the instantaneous
filtered entropy fields obtained from the En-FDF and DNS. This figure shows a visual assessment of the
methodology, as the large-scale coherent structures predicted by the En-FDF resemble those obtained
from the DNS. Further appraisal is made by comparing the Reynolds-averaged statistics. These are
constructed from the instantaneous data by spatial averaging over the homogeneous (streamwise and
spanwise) directions and, hence, vary only in the cross-stream direction. The averaged quantities
are denoted by an overbar. Figure 2 shows the close agreement of the Reynolds-averaged filtered
entropy predicted by the En-FDF and DNS. To illustrate the En-FDF prediction of the second order
SGS moments, the SGS, the resolved and the total entropy flux in the streamwise direction are shown
in Figure 3. The resolved field is denoted by R(u, s), with R(u, s) =

(
〈u〉L − 〈u〉L

) (
〈s〉L − 〈s〉L

)
; the

total field is r(u, s) with r(u, s) = (u − u) (s − s). In DNS, the total component is directly available,
while in LES, it is approximated by r(u, s) ≈ R(u, s) + τ(u, s) [72]. As shown, the streamwise entropy
flux components are predicted well by the En-FDF. Similar agreements are obtained for other first and
second order moments. The En-FDF is capable of accounting for individual filtered entropy generation
effects. As shown in Figure 4, these are predicted favorably by the En-FDF. All mean entropy generation
contributions peak in the fully turbulent region in the middle of the layer where the rate of turbulent
mixing is the highest. The entropy generation by heat conduction is dominant in this flow, due to
the large temperature difference across the layer, followed by that of mass diffusion. The effect of
viscous dissipation is slightly underpredicted, due to underprediction of turbulent dissipation by the
frequency model (Equation (8d)) [57]. However, the contribution of viscous dissipation to overall
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entropy generation is much smaller than that of other effects. These simulations show the favorable
agreement of En-FDF results with the DNS data.

Figure 2. Cross-stream variation of Reynolds-averaged filtered entropy obtained from
temporal mixing layer simulations at t = 80. The solid line denotes the En-FDF prediction.
The circles denote the filtered DNS data.
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Figure 3. Cross-stream variation of Reynolds-averaged streamwise entropy flux
components: (a) subgrid scale (SGS), (b) resolved and (c) total obtained from temporal
mixing layer simulations at t = 80. The solid lines denote the En-FDF results, and the
circles denote the filtered DNS data.
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Figure 4. Cross-stream variation of Reynolds-averaged entropy generation effects: (a) total,
(b) heat conduction, (c) mass diffusion and (d) viscous dissipation obtained from temporal
mixing layer simulations at t = 80. The solid lines denote the En-FDF results, and the circles
denote the filtered DNS data.
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The marginal En-FDF formulation is applied for the LES of the turbulent non-premixed piloted
methane jet flame (Sandia Flame D) [73,74]. The main objectives are to validate the En-FDF against
laboratory data and to conduct entropy generation analysis of a realistic turbulent non-premixed flame.
This flame has been the subject of several previous FDF studies [54,60,61,64]. Here, we discuss
some of the latest results obtained via the En-FDF. The flame configuration includes a main jet with
Reynolds number of ReD = 22, 400 based on the nozzle diameter D = 7.2 mm and the bulk jet velocity
Ub = 49.6 m/s. The coflow temperature is Tc = 291 K. The flame is near equilibrium; thus, the methane
oxidation kinetics is implemented using the flamelet concept [75], in which the detailed kinetics of Gas
Research Institute [76] is employed in a laminar, one-dimensional counterflow (opposed jet) flame. The
thermo-chemical variables are expressed as a function of the mixture fraction, which is carried as an
additional passive scalar. The strain rate on the flame is assumed to be a constant value of 100 s−1 [54].
The flow variables at the inflow are set similar to those in the experiment, including the inlet profiles
of velocity and the mixture fraction. The molecular viscosity increases with T 0.7 and the molecular
Schmidt (and Prandtl) number is Sc = 0.75. Simulations are conducted on a 3D Cartesian mesh with
uniform grid spacings along all coordinate directions. The computational domain spans a region of
18D × 10D × 10D in the axial (x) and the two lateral (y, z) directions, respectively. The number of
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grid points are 91 × 101 × 101 in the x, y and z directions, respectively. The filter size is set equal to
∆ = 2 3

√
∆x∆y∆z, where ∆x, ∆y and ∆z denote grid spacing in the corresponding directions. The boundary

conditions on FD domain boundaries are set according to the characteristic boundary conditions [77].
To account for all of the second order SGS moments in LES transport equations, the modified kinetic
energy viscosity (MKEV) closure [51] is employed. The SGS modeling of the scalar and entropy fluxes
is handled using γt = νt/Sct, where the SGS viscosity νt is described by MKEV, and the turbulent Schmidt
(and Prandtl) number is Sct = 0.75. The ensemble domain size is equal to the filter characteristic width,
and there are approximately 48 MC particles participating in ensemble averaging at each grid point.
According to extensive previous studies [50–53], this number of particles is sufficient to yield good
statistical accuracy with minimal dispersion errors.

Figure 5 shows contours of the instantaneous filtered entropy obtained from the FD and MC solvers.
The similarity of the instantaneous results indicates the consistency of the solvers in predicting the
entropy field. In this figure, the fuel nozzle is located at the centerline of the x = 0 plane, surrounded
by the pilot, which exhibits the highest temperature and entropy values. The region close to the nozzle
is dominated by the molecular diffusion, and the flow resembles a laminar jet. Farther downstream,
the growth of perturbations causes formation of large-scale coherent structures. The overall accuracy
of the En-FDF predictions is assessed by comparing various statistics with the laboratory data; the
experimental data for entropy statistics are constructed using the instantaneous data corresponding to
the scalars. In the following, the notations Q and RMS (Q) denote, respectively, the time-averaged
mean and root mean square fields for a variable Q. To show the validation of En-FDF, some of the
entropy statistics are presented here. In the following, the position, velocity, temperature and entropy
are normalized by D, Ub, Tc and U2

b/Tc, respectively. As shown in Figure 6, the radial (r =
√

z2 + y2)
distributions of the time-averaged filtered entropy at x = 7.5 and x = 15 are in good agreement with the
data. The validation of entropy RMS values is shown in Figure 7. The resolved RMS is R(s, s)

1/2
, where

R(s, s) =
(
〈s〉L − 〈s〉L

) (
〈s〉L − 〈s〉L

)
, and the total RMS is r(s, s)

1/2
, where r(s, s) ≈ R(s, s) + τ(s, s). The

RMS values show reasonable agreements with the experimental data. The En-FDF prediction of the
instantaneous, local entropy generation effects is illustrated in Figure 8. The entropy production by heat
conduction shows local peaks in the inner (jet/pilot) shear layer near the nozzle and the fully turbulent
regions downstream, where high temperature variations occur. Figure 8b depicts the entropy generation
by mass diffusion in which local large values correspond with large gradients in species concentrations
characterized by the mixture fraction. The contribution of the chemical reaction is shown in Figure 8c.
As anticipated, this effect is dominant near the flame zone, identified by large temperature values. It
is noted that experimental data for direct assessment of entropy generation predictions is not available
for this flame; however, close agreement of filtered entropy with the data (Figure 6) indicates accurate
prediction of entropy generation terms (Equation (4)). The mean entropy production at different axial
locations (Figure 9) shows that near the nozzle, all irreversibilities exhibit peaks in the inner shear
layer, due to large velocity and scalar gradients. At downstream locations, the heat conduction effect
shows increased values caused by mixing of hot combustion products with the cold jet. A secondary
peak due to this effect is also observed in the outer (pilot/coflow) shear layer at x = 15. For mass
diffusion and chemical reaction, entropy generation profiles have similar shapes (Figure 9b,c), with
peaks located near r = 1, where large concentration gradients occur because of chemical reaction. To



Entropy 2014, 16 5170

have a quantitative comparison of these effects, Figure 10 shows the entropy generation components
along with the total entropy generation at two axial locations. Consistent with that discussed above, at
x = 5, entropy generation effects are more localized in the inner shear layer region. The contribution
of heat conduction is dominant, followed by chemical reaction and mass diffusion. As the turbulent jet
develops downstream, all entropy production effects show larger spread in the radial direction, and the
effect of chemical reaction becomes more significant. It is noticed that the effect of mass diffusion is
less important, and that of viscous dissipation (not shown) is negligible in this flame. These simulations
show the validation of LES/En-FDF against experimental data and the efficacy of this methodology in
analysis of local entropy generation.

Figure 5. Instantaneous contours of filtered entropy in Sandia Flame D simulations obtained
from the (a) Monte Carlo (MC) and (b) finite-difference (FD) solvers.

(a) (b)

Figure 6. Radial variation of mean entropy in Sandia Flame D simulations at (a) x = 7.5
and (b) x = 15. The lines denote the En-FDF predictions. The circles denote the
experimental data.
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Figure 7. Radial variation of the RMS of entropy in Sandia Flame D simulations at (a)
x = 7.5 and (b) x = 15. The solid and dashed lines denote the resolved and the total
contributions, respectively. The circles denote the experimental data.
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Figure 8. Instantaneous contours of entropy generation terms in Sandia Flame D
simulations: (a) heat conduction (color) with temperature [K] (black) contours, (b) mass
diffusion (color) with mixture fraction (black) contours and (c) chemical reaction (color)
with temperature [K] (black) contours.
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Figure 9. Radial variation of mean entropy generation rate due to (a) heat conduction,
(b) mass diffusion and (c) chemical reaction in Sandia Flame D simulations at x = 1 (5),
x = 5 (�), x = 10 (♦) and x = 15 (−).
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Figure 10. Radial variation of mean entropy generation rate (dashed lines) and its individual
terms: heat conduction (5), mass diffusion (�) and chemical reaction (−) at (a) x = 5 and
(b) x = 15 in Sandia Flame D simulations.
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4. Final Remarks

Large eddy simulation (LES) is shown to be an effective approach to study local, transient entropy
generation effects in turbulent mixing and reacting flows. Analysis of local entropy generation reveals
the irreversible losses that contribute to the destruction of exergy and the reduction of second-law
efficiency. An important issue in consideration of entropy transport equation in LES is subgrid-scale
(SGS) modeling of the unclosed entropy generation effects corresponding to viscous dissipation, heat
transfer, mass diffusion and chemical reaction. These SGS effects are described by the entropy filtered
density function (En-FDF) methodology. The En-FDF is employed to simulate a turbulent shear layer
and a turbulent non-premixed jet flame. The LES/En-FDF results show favorable agreements with
direct numerical simulation (DNS) and experimental data. These simulations demonstrate the predictive
capacity of the methodology and its effectiveness in the analysis of local entropy generation. In summary,
some of the advantages provided by this approach are as follows: (1) the En-FDF accounts for all filtered
moments of entropy in LES; (2) the En-FDF describes the individual entropy generation contributions,
facilitating the second-law analysis of turbulent mixing and reacting flows; (3) in En-FDF, the chemical
reaction and its entropy production effects appear in closed forms; (4) providing a unified description
of dissipation, the entropy generation predicted by the En-FDF is beneficial to understand the behavior
of small-scale motions in turbulent flows involving multi-physics phenomena; and (5) knowledge of
entropy generation is also useful to study the effects of SGS closures and simulation parameters.
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