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Abstract: Wheel-bearings easily acquire defects due to their high-speed operating 

conditions and constant metal-metal contact, so defect detection is of great importance for 

railroad safety. The conventional spectral kurtosis (SK) technique provides an optimal 

bandwidth for envelope demodulation. However, this technique may cause false detections 

when processing real vibration signals for wheel-bearings, because of sparse interference 

impulses. In this paper, a novel defect detection method with entropy, time-spectral 

kurtosis (TSK) and support vector machine (SVM) is proposed. In this method, the 

possible outliers in the short time Fourier transform (STFT) amplitude series are first 

estimated and preprocessed with information entropy. Then the method extends the SK 

technique to the time-domain, and extracts defective frequencies from reconstructed 

vibration signals by TSK filtering. Finally, the multi-class SVM was applied to classify 

bearing defects. The effectiveness of the proposed method is illustrated using real  

wheel-bearing vibration signals. Experimental results show that the proposed method 

provides a better performance in defect frequency detection and classification than the 

conventional SK-based envelope demodulation. 

Keywords: wheel-bearing; defective frequency; spectral kurtosis; time-spectral kurtosis; 

feature extraction 
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1. Introduction 

Wheel-bearings are an essential mechanical component of railway vehicles. The high-speed operating 

conditions and constant metal-metal contact easily leads to defects, such as axle burn-off, metal losses 

and cage fragmentation. They can affect the normal operation of railway traffic systems, and ultimately 

lead to train derailments. Therefore, the detection of bearing defects is of great importance, especially 

with the great improvements of train speed in recent years. 

Vibration or sound signals generated by bearings usually contain rich information. Their 

corresponding analysis is an effective way to detection defects, and has received wide attention in 

recent years [1–4]. The above methods can be classified into three categories according to the type of 

features, namely time-domain, frequency-domain, and time-frequency domain analysis techniques. 

Time-domain techniques usually calculate statistical features directly from time waveforms. Some 

scholars have studied in-depth the defect characteristics of roller bearings according to the peak, root 

mean square (RMS), kurtosis, and duration of the acoustic emission (AE) signals [5–8]. Frequency-domain 

techniques, such as the Fourier transform, fast Fourier transform (FFT) and spectral kurtosis (SK), have 

the ability to identify certain interest frequencies and their locations [9–11]. Time-frequency analysis 

techniques such as wavelet transform [12–15], Wigner-Ville distribution [16], Hilbert-Huang transform 

(HHT) [17], empirical mode decomposition [18–21], and local mean decomposition (LMD) [22–24] 

have also been used for fault diagnosis of rotating machinery. In general, time-frequency techniques are 

effective for non-stationary signals. Furthermore, the classification schemes, such as artificial neural 

networks [25,26], decision tree [27,28], and support vector machine (SVM) [27,29,30], have also been 

introduced for identifying different types of bearing faults. 

In addition, in recent years some detection systems have been developed with different inspection 

techniques to identify defective bearings prior to failure. The Hot Bearing Detector (HBD) was 

developed first. It uses wayside rail-mounted infrared transducers to monitor bearings’ temperatures as 

a train passes the detector. The system issues an alarm if the bearing operating temperature exceeds a 

certain threshold. The catastrophic failure of roller bearings happens very quickly and results in axle 

burn-off, even derailment. Unfortunately, current HBD systems may miss overheated roller bearings. 

In order to prevent catastrophic bearing failure, acoustic methods have been employed to identify 

defective bearings. Among the well-known systems are Railway Bearing Acoustic Monitoring System 

(RailBAM) and Trackside Acoustic Detection System (TADS). They are developed by VIPAC,  

Inc. [31], and Transportation Technology Center, Inc. (TTCI) [32], respectively. TADS is a joint effort 

between the Federal Railroad Administration (FRA) and the Association of American Railroads 

(AAR) to develop alternative wayside detection systems. It uses microphone arrays to detect 

interfering airborne acoustic signals from the surrounding train noise and all other wheels. TADS has 

been successful in detecting a majority of defects at different stages. However, the system still faces 

challenges in detecting small defects, especially in inward rollers. 

Recently, ENSCO, Inc. has investigated a novel technology, which used accelerometers mounted 

on the rail, designed to detect bearing defects early. They investigated the transmissibility of the 

vibration signals from defective bearings to rails, a transient mechanical path formed by the bearing, 

axle, wheel, rail, and accelerometers. The rolling wheel-rail contact patch was considered a challenge 

for the technology. The data analysis appeared to indicate defective bearing signals could transmit 
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from the bearing down to the accelerometers on the rail. However, the field test was conducted under 

less than ideal conditions. A credible signal-to-noise ratio (SNR) to allow meaningful detection of 

bearing defects was not established. 

The above systems have an important role in detecting defects, but they cannot discover all 

potential defects. To fullfil the strict safty regulations of railroads, wheel-bearings require regularly 

servicing at maintenance workshops. As far as we know, the detection is conducted manually in China. 

More reliable and automatic detection methods are needed. To realize defect detection and 

classification accurately, a major challenge is how to find characteristic frequencies of roller bearings. 

Conventional envelope analysis technique gives an effective extraction method from low SNR 

vibration signals with a band-pass filter. In practical applications, the resonance frequency band (RFB) 

for a band-pass filter may vary as the locomotive wheel sets, axles or bearings change. The key 

problem is how to accurately find the optimal RFB. Antoni et al. [9] investigated and introduced SK to 

solve this issue. It is shown that SK can indicate not only transient components in signals, but also their 

locations in the frequency domain, therefore providing the optimal bandwidth for demodulation. However, 

it may cause false detections when processing real vibration signals collected from wheel-bearings, 

which usually contain sparse interference impulses. 

Based on an in-depth study of SK abnormity, a defect detection method with entropy, time-spectral 

kurtosis (TSK) and SVM is proposed in this paper. In the method, entropy is introduced to estimate 

and preprocess possible outliers in STFT amplitude series (STFTAS) of raw vibration signals. Then 

the SK is extended to the time-domain, and the vibration signal is reconstructed with TSK filtering. 

The TSK technique can indicate not only the transients in frequency domain, but also their locations in 

the time domain. Finally, extracted features are used as an input eigenvector of the SVM model to 

classify bearing defects. Experimental results show that the proposed method could effectively identify 

defects from real vibration signals collected from wheel-bearings. 

2. Spectral Kurtosis and Its Abnormity for Wheel-Bearings 

2.1. Definition and Physical Interpretation 

Dwyer [33] originally proposed spectral kurtosis for stationary signals as the normalized  

fourth-order moment of the real part of the Fourier transform. While vibration signals of  

wheel-bearings are non-stationary. Recently, Antoni et al. [9] proposed the formalization for both 

stationary and non-stationary signals, and introduced the SK technique into mechanical fault diagnosis. 

SK has been proven efficient in detecting incipient faults from strong noise, and is widely used in fault 

diagnosis of roller bearings. 
For a given non-stationary signal ( )Y t , the Word-Cramér’s decomposition is as follows: 

2( ) ( , ) ( )j ftY t e H t f dX f


   (1)

where ( , )H t f  is the Fourier transform of time-varying impulse response ( , )h t s , ( )dX f  is the 

spectral process associated with the white signal ( )X t , which has a symmetric probability density 

function. In other words, the time-varying transfer function ( , )H t f  can also be interpreted as the 

complex envelope of ( )Y t  at frequency f . 
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Let 4 ( )YC f and 2 ( )nYS f be the fourth-order spectral cumulants and 2n-order spectral components of 

non-stationary signal ( )Y t , respectively, the spectral kurtosis is defined [9]: 

2
4 4 2 4
2 2 2
2 2 2

( ) ( ) 2 ( ) ( )
( ) 2

( ) ( ) ( )
Y Y Y Y

Y
Y Y Y

C f S f S f S f
SK f

S f S f S f


     (2)

where:  

   2 2

2 2( ) ( , ) ( ) / ( , )
n n

nY nXS f E H t f dX f df E H t f S    (3)

when n = 1, it gives the classical power spectral density of ( )Y t . It can be shown that the larger the 

deviation, the larger its fourth-order cumulant. The energy-normalized fourth-order spectral cumulant 

gives a measure of the peakiness of the probability density function of the signal.  
Given a non-stationary signal ( )Y t  and STFT ( , )Y k f , the SK estimator is defined as follows [9]: 

4

2 2

| ( , ) |
( ) 2, mod(1/ 2) 1/

| ( , ) |
k

Y
k

Y kp f
SK f f N

Y kp f

 
   
 

 (4)

where 2( , ) ( ) ( ) j nf

n
Y k f y n w n kP e 


  , ( )w n  is the analysis window under length N , p  is a 

temporal step, 
k

  stands for the time-average operator over index k. In addition, the optimal step p

should satisfy the following condition: 

/ 4p N  (5)

When roller bearings have defects, they will generate a series of impacts and excite the resonance of 

the structure. The measured vibration signal ( )Z t  and real defect signal ( )Y t  can be expressed as 

follows, respectively: 

( ) ( ) ( )Z t Y t N t   (6)

( ) ( )k kk
Y t h t A   (7)

where ( )N t is the additive stationary noise, ( )h t is the impulse response of a single impact. kA and k

denote the random amplitude and time of k - th  impulse. 
If ( )N t is an additive stationary noise independent of ( )Y t , then SK is: 

   

2

2 2

( )( )
( )

1 ( ) 1 ( )
NY

Z

f SKSK f
SK f

f f


 

 
 

 (8)

where 0f  , 2 2( ) ( ) / ( )N Yf S f S f   is the SNR. 2 ( )NS f , 2 ( )YS f denote the power spectral density 

of the noise and defective signals, respectively. 
If ( )N t is an additive stationary Gaussian noise independent of ( )Y t , then SK is: 

 2
( )

( ) , 0
1 ( )

Y
Z

SK f
SK f f

f
 


 (9)

From Equation (9), we can see the value of ( )ZSK f is similar to ( )YSK f  at frequencies with high 

SNR. If the SNR is very low, it is close to zero. Therefore, SK value directly indicates the SNR of 
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defective signal at each frequency, and can find the RFB of vibration signal automatically while 

designing a band-pass filter. 

2.2. The Abnormity for Wheel-Bearings 

SK could detect the transients in non-stationary signals, and indicate the locations in the frequency 

domain by calculating the kurtosis of each spectral line. However, when processing the real vibration 

signals collected from wheel-bearings, we found that RFBs selected by the SK technique cannot 

always detect defective frequencies. This may be caused by sparse interference impulses, which are 

usually caused by the impurities in the lubricant oil, striking of wheel-sets, and surrounding 

constructions at the wheel maintenance workshop. 

To study the effect of interference impulses on the SK technique, we first simulated a synthesized 

signal as shown in Figure 1. It is composed of pink noise, a single impulse with the center frequency at 

10 kHz, and cyclical impulses with the center frequency at 4 kHz, which simulates the defect on outer 

the race with a 40 Hz characteristic frequency. The sampling frequency is 32,768 Hz. In the 
simulation, we choose the Hanning window and set parameters 128N  , 32p  . In addition, the block 

size N  was chosen according to the duration of impulses and the minimum resolution of defective 

frequencies. We have considered other block sizes. The value of SK varies with different block sizes. 

For example, the SK value would be smaller as the block size increases. However, the relative change 

trend is consistent. 

Figure 1. The synthesized signal. 

 

The results of SK and envelope demodulation analysis of the synthesized signal are shown in Figure 2. 

We can obviously see the SK value of an interference impulse (10 kHz) is larger than the defective 

impulse (4 kHz). If we select RFB according to the maximum value of SK, we cannot discover the 
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defect frequency of interest at 40 Hz after envelope demodulation. However, the defective frequency 

of the outer race (DFOR) and its corresponding harmonics (2DFOR, 3DFOR, 4DFOR) can be clearly 

observed using the correct 3.5–4.5 kHz bandwidth for demodulation. 

Figure 2. Analysis results of simulated signal. (a) SK; (b) Envelope demodulation results 

zoomed in 0–200 Hz. 

 
(a) 

 
(b) 

To study in depth the amplitude and intensity of interference impulses influenced on the SK 
technique, a new series  ( ) ( ),s n y k z is constructed, where ( ) ( , )y k Y kp f  denotes the STFTAS of 

a white Gaussian signal at frequency f , and z is a positive value which denotes an intensive impulse. 

Similarly, the SK value can be calculated as: 

4

2 2

| ( ) |
( ) 2

| ( ) |
n

S
n

s n
SK f

s n

 
 
 

 (10)

Figure 3 gives the SK and statistical distributions of a white Gaussian signal. We can see the values 

of SK are near zero, which conforms to the theoretical value. Figure 3(b) denotes the statistical 

distribution of STFTAS for a white Gaussian signal at certain frequencies. For other frequencies, their 
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distributions are similar and approximately symmetrical. Figure 4 shows the SK amplitude varying 

with different 
( ( ))

z
R

mean y k
 . It increases exponentially as R  is greater than 10. That is to say, the 

SK value will become large greatly as an outlier far away from initial statistical distribution. We 

consider it an abnormity phenomenon of SK. In addition, the SK value depends on relative but not 

absolute values of interference impulses. 

Figure 3. Analysis results of signal. (a) SK; (b) The statistical distribution of STFTAS. 

 
(a) 

 
(b) 

Figure 4. The SK amplitude varying with different intensive impulses. 
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3. Feature Extraction with Time-Spectral Kurtosis and Entropy 

3.1. Estimation of Possible Outliers with Entropy  

In 1948, Shannon proposed entropy to characterize information hidden in data [34]. In general, the 

entropy increases with the degree of disorder and reaches the maximum for a completely random 

system (Gaussian random variables). It is determined by the power spectrum density of the signals in 

the probability density function. There are several ways to calculate entropy, such as the approximate 

entropy, spectral entropy, multi-scale entropy, energy entropy. They are widely applied in feature 

extraction and fault diagnosis of machinery [35–38]. 

The advantage of entropy is introduced to estimate possible outliers in STFTAS. Let ( , ) ,i jY t f  

( 1, , ;i K   1, , )j N  be the STFTAS of raw vibration signals at time block it  and frequency jf , 

the probability density function of time series at frequency f is then defined as: 

1

( , )
( )

( , )

i
STFTAS i K

ii

Y t f
P t

Y t f





 (11)

The entropy is thus formulated as: 

1
( ) ( ) log( ( ))

K

STFTAS STFTAS i STFTAS ii
E f P t P t


   (12)

The corresponding normalization with different frequencies is defined as: 



1

( )
( )

( )

STFTAS j
j N

STFTAS jj

E f
E f

E f





 (13)

According to Equation (13), the entropy of the synthesized signal can be calculated as shown in 

Figure 5. There is a sharp decline of about 11.8% at 4 kHz. By contrast, it has an obvious but slight 

drop of 1.1% at 10 kHz. Therefore, entropy can be used to estimate the possible outliers in STFTAS. 

That is to say, it contains real defect information only if the entropy value declines beyond a certain 

degree. Otherwise, it is due to interference and needs to be preprocessed. 

Figure 5. The entropy of STFTAS. 
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On the basis of above principles, this paper gives a realization method by replacing those large value 
points with near one. Among them, the ratio outlierP is decided by the entropy value. Figure 6 shows the 

statistical distribution of synthesized signal at different frequencies ( 1.0%outlierP  ). We can see: 

Figure 6. Statistical distribution at different frequencies. (a) 2 kHz; (b) 4 kHz; (c) 10 kHz. 
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(1) At 2 kHz, the statistical distribution has no change after preprocessing the outliers in signals, 

which mainly contains the pink noise. Its shape is similar to the white Gaussian signal as 

shown in Figure 3(b). 

(2) As the signal mainly contains defect information at 4 kHz, the statistical distribution has also 

no obvious change after preprocessing. 

(3) In contrast, the statistical distribution changes notably after preprocessing at 10 kHz, which 

mainly contains a single interference impulse. It can be concluded that it mainly changes the 

distribution of random interference impulse. 

3.2. Proposed Time-Spectral Kurtosis Filtering 

The SK estimator depends only on statistical distribution of amplitude series, but has nothing to do 

with time information. In fact, the appearance of defective impulses in vibration signal is regular and 

periodic. However, SK has no reflection on time-domain information. In this section, motivated by 

previous SK efforts, we extend SK further to time-domain with entropy analysis, and propose a  

time-spectral kurtosis filtering method. 

The definition of time-spectral kurtosis is: 





4

2 2

| ( ( , ), | ( , ) |) |
( , ) , 0

| ( ( , ), | ( , ) |) |

STFT n
G

STFT n

G m f Y k f
TSK k f SK f

G m f Y k f

 
  
 

 (14)

where 


( , )G m f  is the estimated Gaussian series from the STFTAS | ( , ) |Y k f of raw vibration signal, 

and 



4

2 2

| ( , ) |

| ( , ) |
n

G

n

G m f
SK

G m f

 

 

. Even if the estimated ( , )G m f is real Gaussian series, the SK value may not 

equal to zero according to Figure 3a, but near zero. It will cause a slight deviation as calculating the 

TSK value directly with ( , )G m f . In low SNR conditions, the relative variation information caused by 

positive values may be slight. If we donot consider this influence, the useful information may get lost 
and cannot be captured. Therefore, it subtracts the GSK component in Equation (14).  

Detailed TSK-based filtering can be summarized as follows. 

Step 1: The STFT of raw vibration signal is calculated. 

Step 2: The outliers are preprocesed with entropy for the STFTAS.  
Step 3: The Gaussian component ( , )G m f  is estimated from preprocessed STFTAS. Firstly, the 

mean value of STFT amplitude series is calculated. Then finding points whose amplitude is less than 

n-times mean, and constructing a new series with these selected points. By through of several iterative 

computations, the objective series with approximate Gauss distribution can be obtained. 
Step 4: Yhe TSK value of k-th frame signal at frequency f  is calculated with | ( , ) |Y k f and 

( , )G m f  according to Equation (14). 

Step 5: The filter ( , )H k f  is deesigned according to the TSK value. 

1
( , )

0.01

TSK Threshold
H k f

TSK Threshold


  

 (15)

Step 6: The signal reconstruction by ( , )H k f  multiplying STFT values.  
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Step 7: Demodulation of the reconstructed signal using the Hilbert transformation. 

3.3. Defective Frequency Calculation 

If roller bearings have defects on the inner race, outer race or balls, it generates a series of periodic 

vibrations as a running roller passes over the surfaces of the defects. These vibrations occur at certain 

characteristic frequencies, which are determined by the rotational speed, locations of defects, and 

geometric parameters [1]. For a given bearing with stationary outer race, these defective frequencies 

are given as follows: 

Defective frequency of the outer race ORf : 

(1 cos( ))
2
b s

OR b c

n f d
f n f

D
    (16)

Defective frequency of the inner race (DFIR) IRf : 

( ) (1 cos( ))
2
b s

IR b s c

n f d
f n f f

D
     (17)

Defective frequency of the roller element (DFRE) REf : 

2
2

2(1 cos ( ))
2RE s

D d
f f

d D
   (18)

Defective frequency of the cage (DFC) Cf : 

(1 cos( ))
2

s
C

f d
f

D
   (19)

where sf is the shaft rotation frequency, bn is the number of rollers,  is a contact angle, d and D

is the roller and pitch diameter, respectively. 

In order to reduce the influence caused by the slight change of motor speed, the maximum values 
are chosen in intervals [ ORf  , ORf  ], [ IRf  , IRf  ], [ REf  , REf  ], and [ Cf  , Cf  ] Hz 

as the feature of DFOR, DFIR, DFRE and DFC, respectively. These characteristic frequencies are 

constructed into an eigenvector, used as the input eigenvector of the SVM model to recognize and 

classify bearing defects. The parameter   depends on the frequency resolution and the variation range 

of speed. 

4. Experiments and Analysis 

In this section, the effectiveness of proposed method is illustrated by the vibration signals collected 

from real wheel-bearings at the Xuzhou Wheel Maintenance Workshop, Jiangsu Province, China.  

4.1. Test-Rig and Data Acquisition 

Figure 7 shows the structure of the wheel-bearing test-rig, which consists of a motor, hydraulic 

equipment, a friction wheel, a wheel set, and accelerometers. The wheel set is uplifted by hydraulic 

equipment, and runs at 245 rpm. Vibration signals were collected through accelerometers using a B&K 

PULSE instrument (6-channels) with sampling frequency 32,768 Hz. In addition, the accelerometers 
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were mounted on the surface of outer race at 3 and 12 o’clock positions. Detailed geometric parameters of 

wheel-bearings and experimental parameters are listed in Table 1. According to Equations (16)–(19), 

characteristic frequencies of the wheel-bearing system at speed 245 rpm are calculated, and given  

in Table 2. 

Figure 7. The test-rig for wheel-bearing. 

 

 

Table 1. Roller diameter and experimental parameters. 

Contents Value 

Type of wheel-bearing 197726 
Contact angle 10° 
Diameter of roller 23.776 mm 
Pitch diameter  180 mm 
Number of rollers 20 
Sampling frequency 32,768 Hz 
Rotational speed  245 rpm 
Type of accelerometer Lance2052 
Threshold of TSK value 0.3 
Proportion outlierP  0.8% 
Data length 65,536 

Table 2. The defective frequencies at speed of 245rpm. 

Contents Value 

DFOR 35.5216 Hz 
DFIR 46.1450 Hz 
DFRE 15.1952 Hz 

DFC 1.7761 Hz 
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4.2. Defective Frequency Analysis for Real Wheel-Bearing 

Figure 8 shows an image of a real inner race fault bearing. The waveform, spectrum, SK, TSK and 

DFIR features extracted from collected vibration signals are shown in Figure 9.  

Figure 8. The defect on the inner race. 

 

Figure 9. The analysis results of inner race fault bearing. (a) Time domain waveform and 

spectrum; (b) SK; (c) TSK; (d) Comparisons between TSK and SK-based filterin. 
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Figure 9. Cont.  

 
(c)  

 
(d) 

The SNR of the defective signals is low, except for two strong impulses in the time-domain. 

According to Equation (4), the SK values with STFT are shown in Figure 9(b). It increases 

significantly beyond 4 kHz. This phenomenon conflicts with the real conditions of the defective signal. 

In fact, it mainly reflects the spectrum structure of two strong impulses. Therefore, it cannot indicate 

the correct RFB of wheel-bearings. The reason for this phenomenon is that conventional SK technique 

is much sensitive to sparse large interference impulses in signals. By contrast, the TSK value is very 

small in Figure 9(c). It reflects the real SNR of vibration signals. 

Band-pass filtering is firstly implemented to extract the envelope signal according to the maximum 

value of SK. After demodulation, the corresponding spectrum zoomed in 0–100 Hz is illustrated in 

Figure 9(d). The DFIR feature can be more clearly discenrned by the TSK than by the SK-based 

envelope demodulation. Moreover, the sidebands, clearly detected with the TSK method, have the 

bandwidth of twice the rotational frequency. 

In addition, vibration signals collected from an outer race fault bearing, shown in Figure 10, are also 

analyzed. Figure 11 gives the results of waveform, spectrum, SK, TSK from vibration signals. The 

spectra obtained by TSK filtering and SK-based envelope demodulation are presented in Figure 11(d), 

respectively. It can be seen that our proposed method provides better abilities of DFOR detection than 

SK-based envelope demodulation. Moreover, the second harmonic 2DFOR (about 71 Hz) can be seen 
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clearly, having greater energy. However, this phenomenon doesnot always exist for different testing 

bearings. Therefore, this feature is not stable for classification. 

Figure 10. The defect on the outer race. 

 

Figure 11. The analysis results of outer race fault bearing. (a) The waveform and 

spectrum; (b) SK; (c) TSK; (d) Comparisons between TSK and SK-based filtering. 
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Figure 11. Cont. 

 
(c) 

 
(d) 

4.3. Defect Classification with SVM 

In this section, a dataset collected from the test-rig is used to illustrate the effectiveness of the 

proposed method. It consists of four conditions, namely normal state, inner race fault, outer race fault 

and roller fault. For each condition, 30 samples were used, and the dataset contains 120 samples. Each 

sample is a section of vibration signal containing 65,536 sampling points. In addition, cage defecta are 

rare because of the improvement in materials, and we don’t have this type of samples. 

Considering a frequency resolution of 0.5 Hz (32768/65536), variation range of speed and the 

defective frequencies in Table 2, the maximum value in intervals [35 36], [45.5 46.5], and [14.5 15.5] Hz 

are chosen as the DFOR, DFIR and DFRE, respectively. These features are used to construct an input 

eigenvector for the classifier. The distributions of extracted features with TSK and SK-based envelope 

demodulation are given in Figure 12. As applying with the SK technique, the samples have serious 

overlap among the four conditions. By contrast, they are separated and have better aggregation with 

the proposed method. 

We choose the multi-class SVM technique (one-versus-one) to classify different conditions, and 

adopt LIBSVM software [39]. In experiment, 60% of each class samples were randomly selected as 
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training set, and the remaining samples are used for prediction. In addition, the accuracy of prediction 

is the average of 50 tests. The predicted results with extracted features are presented in Table 3. 

Figure 12. The distribution of defective features. (a) SK-based envelope demodulation; 

(b)TSK filtering. 

 
(a) 

 
(b) 

Table 3. The accuracy of prediction. 

Extraction Methods Average accuracy 
Recognition results 

Normal Inner race Outer race Ball fault 

SK-based method 81.67% 76.33% 83.17% 86.50% 80.67% 

Proposed method 98.04% 96.50% 98.17% 99.67% 97.83% 
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From Table 3, as applying with the SK-based method, the classification accuracies for normal state, 

inner race fault, outer race fault and ball fault are 76.33%, 83.17%, 86.50% and 80.67%, respectively. 

The overall average classification accuracy is 81.67%. By contrast, the average accuracy is 98.04% 

with TSK filtering technique, which increases the recognition accuracy by 17.57%. It is concluded that 

proposed method provides a higher accuracy in defect classification than SK-based envelope demodulation. 

Therefore, it is more robust for interference impulses at the wheel-bearing maintenance workshop. 

However, there are still a small percentage (about 1.96%) of false positives. Furthermore, it has the 

highest false classification accuracies (3.5%) for the normal state. That is to say, about 3.5% normal 

samples are misclassified as faults. In previous experiments, we found that impurities in the lubricant 

oil for normal wheel-bearings may also produce defective frequencies, especially outer race ones, 

which will lead to the errors in classification. In our future work, we will study how to distinguish 

impurities from defects. 

5. Conclusions 

Based on an in-depth study of the SK abnormity for real wheel-bearings, a defect detection method 

with entropy, time-spectral kurtosis and SVM has been investigated. Through entropy, it can effectively 

estimate and preprocess outliers in STFTAS, and reduce the influence of interference impulses on 

characteristic frequency extraction greatly. The TSK filtering technique extends SK to the time-domain, 

and is sensitive to the relatively slight variations caused by the positive value under low-SNR conditions. 

Real vibration signals collected from wheel-bearings at a maintenance workshop are measured for 

validating the effectiveness of the proposed method. Experimental results show that the method provides a 

higher accuracy for the defective frequency detection, and classifies four conditions of roller bearings 

more accurately than the conventional SK-based envelope demodulation. In addition, the proposed 

method has better generalization and robustness for interference impulses in railway applications. 
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