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Abstract: The purpose of this paper is to present a new kind of analytical method, the  

so-called residual power series, to predict and represent the multiplicity of solutions to 

nonlinear boundary value problems of fractional order. The present method is capable of 

calculating all branches of solutions simultaneously, even if these multiple solutions are 

very close and thus rather difficult to distinguish even by numerical techniques. To verify 

the computational efficiency of the designed proposed technique, two nonlinear models are 

performed, one of them arises in mixed convection flows and the other one arises in heat 

transfer, which both admits multiple solutions. Graphical results and tabulate data are 

presented and discussed quantitatively to illustrate the multiple solutions. The results 

reveal that the method is very effective, straightforward, and powerful for formulating 

these multiple solutions. 
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1. Introduction 

Multiple or dual solutions of nonlinear boundary value problems (BVPs) of fractional order are an 

interesting subject in the area of mathematics, physics, and engineering. In fact, it is more consequential 

not to lose any solution of nonlinear BVPs of fractional order due to their wide application in scientific 

and engineering research. Based on this important fact, the present paper is going to present an 

analytical method, the so-called residual power series (RPS), that enables us to predict the multiplicity 

of solutions which nonlinear BVP of fractional order admits and furthermore to calculate the multiple 

solutions analytically at the same time. 

BVPs of fractional order have received considerable attention in the recent years due to their wide 

applications in the areas of physics and engineering. Many important phenomena in electromagnetics, 

acoustics, viscoelasticity, electrochemistry, and material science are well described by fractional  

BVP [1–4]. It is well known that the fractional order differential and integral operators are non-local 

operators. This is main reason why differential operators of fractional order provide an excellent 

instrument for description of memory and hereditary properties of various physical and engineering 

processes. For example, half-order derivatives and integrals proved to be more useful for the 

formulation of certain electrochemical problems than the classical models [5–9]. Indeed, for example, 

applying fractional calculus theory to entropy theory has become a significant part and a hotspot 

research domain [10–19], since the fractional entropy could be used in the formulation of algorithms 

for image segmentation where traditional Shannon entropy has presented limitations [13] and in the 

analysis of anomalous diffusion processes and fractional diffusion equations [14–19]. 

In general, most BVPs of fractional order do not have exact solutions. Particularly, there is no 

known method for solving these types of equations in closed form solution. As a result, numerical and 

analytical techniques have been used to study such problems. The reader is referred to [20–27] in order 

to know more details about the fractional BVPs, including their history and kinds, their existence and 

uniqueness of solution, their applications and methods of solutions, etc. 

Series expansions are a very important aid in numerical calculations, especially for quick estimates 

made in hand calculations, for example, in evaluating functions, integrals, or derivatives. Solutions to 

differential equations can often be expressed in terms of series expansions. Since, the advent of 

computers, it has, however, become more common to treat differential equations directly, using 

different approximation method instead of series expansions, but in connection with the development 

of automatic methods for formula manipulation, one can anticipate renewed interest in series methods. 

These methods have some advantages, especially in multidimensional and multiple solutions for BVPs 

of fractional order. 

The RPS method was developed by the first author [28] as an efficient method for determining 

values of coefficients of the power series solution for first and the second-order fuzzy differential 

equations. It has been successfully applied in the numerical solution of the generalized Lane-Emden 

equation, which is a highly nonlinear singular differential equation [29] and in the numerical solution 

of higher-order regular differential equations [30]. The RPS method is an effective and easy to 

construct power series solution for strongly linear and nonlinear equations without linearization, 

perturbation, or discretization [28–30]. Different from the classical power series method, the RPS 

method does not need to compare the coefficients of the corresponding terms and a recursion relation 
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is not required. This method computes the coefficients of the power series by a chain of equations of 

one or more variables. In fact, the RPS method is an alternative procedure for obtaining analytic 

solutions for BVPs of fractional order that admits multiple solutions. By using the residual error 

concept, we get a series solution, in practice a truncated series solution. Moreover, the multiple 

solutions and all their fractional derivatives are applicable for each arbitrary point in the given interval. 

On the other aspect as well, the RPS method does not require any conversion while switching from the 

low-order to the higher-order; as a result the method can be applied directly to a given problem by 

choosing an appropriate initial guess approximation. 

In the present paper, the RPS method will investigate how to construct new algorithms for 

predicting and finding multiple solutions for those nonlinear BVPs of fractional order that admit 

multiple solutions. Furthermore, we will adapt a new generalization of Taylor’s series formula that 

involves Caputo fractional derivatives in order to apply the RPS method. 

The results dealing with multiple solutions of BVPs of fractional order are relatively scarce. 

Recently, many authors have discussed the multiple solutions to some problems using some of the 

well-known methods. However, the reader is referred to [31–35] in order to know more details about 

these methods, including their types and history, their motivation for use, their characteristics, and 

their applications. On the other hand, the numerical solvability of other version of differential 

equations and other related equations can be found in [36–43] and references therein. 

The outline of the paper is as follows: in the next section, we utilize some necessary definitions and 

results from fractional calculus theory. In Section 3, the general form of generalized Taylor’s formula 

is mentioned and proved. In Section 4, basic idea of the RPS method is presented in order to construct 

and predict multiple solutions for BVPs of fractional order. In Section 5, two nonlinear models are 

performed in order to illustrate the capability and simplicity of proposed method. Finally, conclusions 

are presented in Section 6. 

2. Review of Fractional Calculus Theory 

In this section, we present some necessary definitions and essentials results from fractional  

calculus theory. There are various definitions of fractional integration and differentiation, such as 

Grunwald-Letnikov’s definition and Riemann-Liouville’s definition [5,6,8]. The Riemann-Liouville 

derivative has certain disadvantages when trying to model real-world phenomena with fractional 

differential equations (FDEs). Therefore, we shall introduce a modified fractional differential operator 

 Գ the	௦ఈ proposed by Caputo in his work on the theory of viscoelasticity [4]. Throughout this paper,ܦ

set of integer numbers, Թ the set of real numbers, and ߁ is the Gamma function. 

Definition 2.1: A real function ݂ሺݔሻ, ݔ ൐ 0 is said to be in the space ܥఓ, ߤ ∈ Թ if there exists a real 

number ݌ ൐ ሻݔsuch that ݂ሺ ߤ ൌ ௣ݔ ଵ݂ሺݔሻ, where ଵ݂ሺݔሻ ∈   ఓ௡ܥ ሾ0,∞ሻ, and it is said to be in the spaceܥ

if ݂ሺ௡ሻሺݔሻ ∈ ,ఓܥ ݊ ∈ Գ. 

Definition 2.2: The Riemann-Liouville fractional integral operator of order ߙ ൒ 0 of ݂ ∈ ߤ ,ఓܥ ൒ െ1 

is defined as: 
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ሻݔ௦ఈ݂ሺܬ ൌ ቐ
1

ሻߙሺ߁
න ሺݔ െ ሻఈିଵݐ
௫

௦
݂ሺݐሻ݀ݐ, ݔ ൐ ݐ ൐ ݏ ൒ 0, ߙ ൐ 0

݂ሺݔሻ, ߙ ൌ 0
 (1)

Definition 2.3: The Caputo fractional derivative of order ߙ ൐ 0 of ݂ ∈ ଵିܥ
௡ , ݊ ∈ Գ is defined as: 

ሻݔ௦ఈ݂ሺܦ ൌ ቐ
௦௡ିఈ݂ܬ

ሺ௡ሻሺݔሻ, ݔ ൐ ݏ ൒ 0, ݊ െ 1 ൏ ߙ ൏ ݊
݀௡݂ሺݔሻ
௡ݔ݀

, ߙ ൌ ݊
 (2)

On the one hand, for some certain properties of the operator ܦ௦ఈ , it is obvious that when  

ߛ ൐ െ1, ݔ ൐ ݏ ൒ 0, and ܥ ∈ Թ, we have ܦ௦ఈሺݔ െ ሻఊݏ ൌ ௰ሺఊାଵሻ

௰ሺఊାଵିఈሻ
ሺݔ െ ሻఊିఈݏ  and ܦ௦ఈܥ ൌ 0 . On the 

other hand, properties of the operator ܬ௦ఈ  can be summarized shortly in the form of the following:  

for ݂ ∈ ,ఓܥ ߤ ൒ െ1 ,ߙ , ߚ ൒ 0 ܥ , ∈ Թ , and ߛ ൒ െ1 , we have ܬ௦ఈܥ ൌ
஼

௰ሺఈାଵሻ
ሺݔ െ ሻఈݏ ௦ܬ௦ఈܬ ,

ఉ݂ሺݔሻ ൌ

௦ܬ
ఈାఉ݂ሺݔሻ ൌ ௦ܬ

ఉܬ௦ఈ݂ሺݔሻ, and ܬ௦ఈሺݔ െ ሻఊݏ ൌ ௰ሺఊାଵሻ

௰ሺఈାఊାଵሻ
ሺݔ െ  .ሻఈାఊݏ

Theorem 2.1: If ݊ െ 1 ൏ ߙ ൑ ݊ , ݂ ∈ ఓ௡ܥ , ݊ ∈ Գ , and ߤ ൒ െ1 , then ܦ௦ఈܬ௦ఈ݂ሺݔሻ ൌ ݂ሺݔሻ  and 

ሻݔ௦ఈ݂ሺܦ௦ఈܬ ൌ ݂ሺݔሻ െ ∑ ݂ሺ௝ሻሺݏାሻ
ሺ௫ି௦ሻೕ

௝!
௡ିଵ
௝ୀ଴ , where ݔ ൐ ݏ ൒ 0. 

3. General form of Generalized Taylor’s Formula 

In this section, we will introduce general form of generalized Taylor’s formula that contains the 

Caputo definition for fractional derivatives. In fact, we need this generalization in the application of 

the RPS method in order to predict and find the multiplicity of solutions. 

We will begin with the following definition which is needed throughout this work, especially, in the 

two succeeding sections. After that, we present a new and a fundamental theorem called general form 

of generalized Taylor’s formula, which can formulate any function with certain properties in term of 

its fractional power series (FPS) representation. 

Definition 3.1: A power series of the form 

෍ ෍ ܿ௡௞ሺݐ െ ଴ሻݐ ௞ା௡ఈ
௠ିଵ

௞ୀ଴

ஶ

௡ୀ଴

, 0 ൑ ݉ െ 1 ൏ ߙ ൑ ݉ , ݐ ൒ ଴ (3)ݐ

is called FPS about ݐ଴, where	ݐ is a variable and ܿ௡௞’s are constants called the coefficients of the series.  

As a special case, when ݐ଴ ൌ 0, the expansion ∑ ∑ ܿ௡௞ݐ	௞ା௡ఈ
௠ିଵ
௞ୀ଴

ஶ
௡ୀ଴  is called a fractional Maclaurin 

series. Notice that in writing out the term corresponding to ݊ ൌ 0 and ݇ ൌ 0 in Equation (3) we have 

adopted the convention that ሺݐ െ ଴ሻ଴ݐ ൌ 1  even when ݐ ൌ ଴ݐ . Also, when ݐ ൌ ଴ݐ  each of terms of 

Equation (3) are vanished for ݊ ് 0⋀݇ ് 0  and so. On the other hand, the FPS representation  
of Equation (3) always converges when 	ݐ ൌ ௧బܦ ଴. In the next lemma byݐ

௡ఈ we mean that ܦ௧బ
ఈ ⋅ ௧బܦ

ఈ ⋅ … ⋅
௧బܦ
ఈ  (݊-times). 

Lemma 3.1: Suppose that ݂ሺݐሻ ∈ ,଴ݐሾܥ ଴ݐ ൅ ܴሻ and ܦ௧బ
௝ఈ݂ሺݐሻ ∈ ,଴ݐሺܥ ଴ݐ ൅ ܴሻ for ݆ ൌ 0, 1, 2, … , ݊ ൅ 1 

where 0 ൑ ݉ െ 1 ൏ ߙ ൑ ݉. Then we have: 
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௧బܬ
ሺ௡ାଵሻఈܦ௧బ

ሺ௡ାଵሻఈ݂ሺݐሻ ൌ
ቀܦ௧బ

ሺ௡ାଵሻఈ݂ቁሺߞሻ

൫ሺ݊߁ ൅ 1ሻߙ ൅ 1൯
ሺݐ െ ଴ሻݐ

ሺ௡ାଵሻఈ (4)

with ݐ଴ ൑ ߞ ൑ ݐ ൏ ଴ݐ ൅ ܴ. 

Proof: From the definition of the operator ܬ௧బ
ఈ  and by using the second mean value theorem for 

fractional integrals, one can find: 

௧బܬ
ሺ௡ାଵሻఈܦ௧బ

ሺ௡ାଵሻఈ݂ሺݐሻ ൌ
1

൫ሺ݊߁ ൅ 1ሻߙ൯
නሺݐ െ ߬ሻሺ௡ାଵሻఈିଵܦ௧బ

ሺ௡ାଵሻఈ݂ሺ߬ሻ݀߬

௧

௧బ

 

																			ൌ 	
ቀܦ௧బ

ሺ௡ାଵሻఈ݂ቁሺߞሻ

൫ሺ݊߁ ൅ 1ሻߙ൯
නሺݐ െ ߬ሻሺ௡ାଵሻఈିଵ݀߬

௧

௧బ

 

												ൌ 	
ቀܦ௧బ

ሺ௡ାଵሻఈ݂ቁሺߞሻ

൫ሺ݊߁ ൅ 1ሻߙ ൅ 1൯
ሺݐ െ ଴ሻݐ

ሺ௡ାଵሻఈ 

(5)

Theorem 3.1: Suppose that 	݂ሺݐሻ ∈ ,଴ݐሾܥ ଴ݐ ൅ ܴሻ ௧బܦ ,
௝ఈ݂ሺݐሻ ∈ ,଴ݐሺܥ ଴ݐ ൅ ܴሻ , and ܦ௧బ

௝ఈ݂ሺݐሻ  can be 

differentiated ሺ݉ െ 1ሻ-times on ሺݐ଴, ଴ݐ ൅ ܴሻ for ݆ ൌ 0,1,2,… , ݊ ൅ 1, where 0 ൑ ݉ െ 1 ൏ ߙ ൑ ݉. Then: 

݂ሺݐሻ ൌ෍෍
൫ܦ௞ܦ௧బ

௝ఈ݂൯ሺݐ଴ሻ

ߙሺ݆߁ ൅ ݇ ൅ 1ሻ

௠ିଵ

௞ୀ଴

ሺݐ െ ଴ሻ௞ା௝ఈݐ
௡

௝ୀ଴

൅
ቀܦ௧బ

ሺ௡ାଵሻఈ݂ቁሺߞሻ

൫ሺ݊߁ ൅ 1ሻߙ ൅ 1൯
ሺݐ െ ଴ሻݐ

ሺ௡ାଵሻఈ (6)

with ݐ଴ ൑ ߞ ൑ ݐ ൑ ଴ݐ ൅ ܴ. 

Proof: From the certain properties of the operator ܬ௧బ
ఈ , we have: 

௧బܬ
ሺ௡ାଵሻఈܦ௧బ

ሺ௡ାଵሻఈ݂ሺݐሻ ൌ ௧బܬ
௡ఈ ቀ൫ܬ௧బ

ఈ ௧బܦ
ఈ ൯ܦ௧బ

௡ఈ݂ሺݐሻቁ ൌ ௧బܬ
௡ఈ ቀ൫ܬ௧బ

௠ܦ௧బ
௠൯ܦ௧బ

௡ఈ݂ሺݐሻቁ 			

ൌ ௧బܬ
௡ఈ ൮ܦ௧బ

௡ఈ݂ሺݐሻ െ ෍
൬
݀௞

௞ݐ݀ ௧బܦ
௡ఈ݂൰ ሺݐ଴ାሻ

݇!

௠ିଵ

௞ୀ଴

ሺݐ െ ଴ሻ௞൲ݐ

ൌ ௧బܬ
௡ఈܦ௧బ

௡ఈ݂ሺݐሻ െ ௧బܬ
௡ఈ ൭෍

൫ܦ௞ܦ௧బ
௡ఈ݂൯ሺݐ଴ሻ

݇!

௠ିଵ

௞ୀ଴

ሺݐ െ ଴ሻ௞൱ݐ

ൌ ௧బܬ
ሺ௡ିଵሻఈ ቀ൫ܬ௧బ

௠ܦ௧బ
௠൯ܦ௧బ

ሺ௡ିଵሻఈ݂ሺݐሻቁ

െ ෍
൫ܦ௞ܦ௧బ

௡ఈ݂൯ሺݐ଴ሻ

ߙሺ݊߁ ൅ ݇ ൅ 1ሻ
ሺݐ െ ଴ሻ௞ା௡ఈݐ

௠ିଵ

௞ୀ଴

									

ൌ ௧బܬ
ሺ௡ିଵሻఈ ቌܦ௧బ

ሺ௡ିଵሻఈ݂ሺݐሻ െ ෍
ቀܦ௞ܦ௧బ

ሺ௡ିଵሻఈ݂ቁሺݐ଴ሻ

݇!

௠ିଵ

௞ୀ଴

ሺݐ െ ଴ሻ௞ቍݐ

െ ෍
൫ܦ௞ܦ௧బ

௡ఈ݂൯ሺݐ଴ሻ

ߙሺ݊߁ ൅ ݇ ൅ 1ሻ
ሺݐ െ ଴ሻ௞ା௡ఈݐ

௠ି	ଵ

௞ୀ଴

 

(7)

On the other direction, if we keep the repeating of this process, then after ݊-times of computations, 

we will obtain: 
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௧బܬ
ሺ௡ାଵሻఈܦ௧బ

ሺ௡ାଵሻఈ݂ሺݐሻ ൌ 	݂ሺݐሻ െ෍෍
൫ܦ௞ܦ௧బ

௝ఈ݂൯ሺݐ଴ሻ

ߙሺ݆߁ ൅ ݇ ൅ 1ሻ

௠ିଵ

௞ୀ଴

ሺݐ െ ଴ሻ௞ା௝ఈݐ
௡

௝ୀ଴

, ଴ݐ ൑ ݐ ൑ ଴ݐ ൅ ܴ (8)

Thus, by using Lemma 3.1, the proof of the theorem will be complete. 

Remark 3.1: We mention here that, if we fixed ݉ ൌ 1, then the series representation of ݂ in Theorem 3.1 

will leads to the following expansion of ݂ about ݐ଴: 

݂ሺݐሻ ൌ෍
௧బܦ
௝ఈ݂ሺݐ଴ሻ

ߙሺ݆߁ ൅ 1ሻ

௡

௝ୀ଴

ሺݐ െ ଴ሻ௝ఈݐ ൅
ቀܦ௧బ

ሺ௡ାଵሻఈ݂ቁሺߞሻ

൫ሺ݊߁ ൅ 1ሻߙ ൅ 1൯
ሺݐ െ ଴ሻݐ

ሺ௡ାଵሻఈ (9)

with ݐ଴ ൑ ߞ ൑ ݐ ൏ ଴ݐ ൅ ܴ, which is the same as of Generalized Taylor’s series that obtained in [44] for 

0 ൏ ߙ ൑ 1.  

As with any convergent series, this means that ݂ሺݐሻ is the limit of the sequence of partial sums.  

In the case of general form of generalized Taylor’s series, the partial sums are given as  

௡ܶሺݐሻ ൌ ∑ ∑
ቀ஽ೖ஽೟బ

ೕഀ௙ቁሺ௧బሻ

௰ሺ௝ఈା௞ାଵሻ
௠ିଵ
௞ୀ଴ ሺݐ െ ଴ሻ௞ା௝ఈݐ

௡
௝ୀ଴ . In general, ݂ሺݐሻ  is the sum of its general form of 

generalized Taylor’s series if ݂ሺݐሻ ൌ lim௡→ஶ ௡ܶሺݐሻ . But on the other aspect as well, if we set  

ܴ௡ሺݐሻ ൌ ݂ሺݐሻ െ ௡ܶሺݐሻ, then ܴ௡ሺݐሻ is the remainder of general form of generalized Taylor’s series. 

That is, ܴ௡ሺݐሻ ൌ
ቀ஽೟బ

ሺ೙శభሻഀ௙ቁሺ఍ሻ

௰൫ሺ௡ାଵሻఈାଵ൯
ሺݐ െ ଴ሻݐ

ሺ௡ାଵሻఈ, ଴ݐ ൑ ߞ ൑ ݐ ൏ ଴ݐ ൅ ܴ. 

Corollary 3.1: If ቚܦ௧బ
ሺ௡ାଵሻఈ݂ሺݐሻቚ ൑ ଴ݐ on ܯ ൑ ݐ ൑ ݀, where ݉ ൏ ߙ ൑ ݉ െ 1, then the reminder ܴ௡ሺݐሻ 

of general form of generalized Taylor’s series satisfies the inequality: 

|ܴ௡ሺݐሻ| ൑
ܯ

ሺሺ݊߁ ൅ 1ሻߙ ൅ 1ሻ
ሺݐ െ ଴ሻݐ

ሺ௡ାଵሻఈ, ଴ݐ ൑ ݐ ൑ ݀ (10)

4. RPS Method for BVPs of Fractional Order 

In this section, we predict and find multiple solutions for BVPs of fractional order that admit 

multiple solutions by substituting a FPS expansion with undetermined coefficients through the given 

equation. From the FDE a recursion formula for the computation of the coefficients was derived. On 

the other hand, the coefficients in the FPS expansion can be computed recursively by differentiating 

the FDEs. 

For convenience, the reader is referred to [28–30] in order to know more details about the classical 

RPS methods, including their construction, their motivation for use, their characteristics compared to 

the conventional method, and their applications for solving different categories of linear and nonlinear 

differential equations of different types and orders. 

In fact, the main goal of our work is to predict and find out multiple series solutions for nonlinear 

BVPs of fractional order. To illustrate the basic idea of the RPS method for solving fractional BVPs 

analytically, we first consider the following nonlinear fractional functional equation: 

௥బܦ
ఈ ሻݎሺݑ ൌ ࣨሾݑሺݎሻሿ, ݎ ∈ Ω,݉ െ 1 ൏ ߙ ൑ ݉ (11)

subject to the boundary conditions: 



477 Entropy 2014, 16 

 

 

ࣜ ቆݑሺݎሻ,
ሻݎሺݑ߲

߲݊
ቇ ൌ 0, ݎ ∈ Π (12)

where ܦ௥బ
ఈ  is a Caputo fractional derivative of order α, ࣨ is general nonlinear operator has Caputo 

fractional derivative term, ࣜ is boundary operator, and Π is the boundary of the domain Ω. 

The crucial step of the RPS method for solving Equations (11) and (12) analytically is based on the 

fact that the boundary conditions of Equation (12) should be transcribed into equivalent form, so that, 

the new version conditions involves an unknown parameter so-called prescribed parameter ߜ and are 

split to: 

ࣜ∗ ቆݑሺݎሻ, ,ߜ
ሻݎሺݑ߲

߲݊
ቇ ൌ 0, ݎ ∈ Π, ሻߙሺݑ ൌ (13) ߚ

where ݑሺߙሻ ൌ  ∗ࣜ is the forcing condition that comes from original conditions of Equation (12) and ߚ

is the remainder boundary operator which contains the prescribed parameter ߜ. Now, we investigate 

and apply the RPS method on the following problem: 

௥బܦ
ఈ ሻݎሺݑ ൌ ࣨሾݑሺݎሻሿ, ݎ ∈ Ω,݉ െ 1 ൏ ߙ ൑ ݉ (14)

subject to the split conditions: 

ࣜ∗ ቆݑሺݎሻ, ,ߜ
ሻݎሺݑ߲
߲݊

ቇ ൌ 0, ݎ ∈ Π (15)

In order to apply the RPS method in the fractional sense, we assume firstly that we can apply the 
operator ܦ௥బ

௜ఈܦ௥బ
௝ , ݆ ൌ 0, 1, … ,݉ െ 1, ݅ ൌ 0, 1, … on the term of ࣨሾݑሺݎሻሿ in Equation (14) and also we 

suppose that all solutions ݑሺݎሻ  that satisfy Equations (14) and (15) can be expanded by FPS 

representation as follows: 

ሻݎሺݑ ൌ෍෍ ܿ௜௝ሺݎ െ ଴ሻ௝ା௜ఈݎ
௠ିଵ

௝ୀ଴

ஶ

௜ୀ଴

, ݎ ൒ ଴ (16)ݎ

where ܿ௜௝ are coefficients to be determined and ݎ଴ is the initial value of the independent variable of 

Equations (14) and (15). 

Assume that Equation (14) satisfies the initial conditions ݑሺ௜ሻሺݎ଴ሻ ൌ ,௜ߜ ݅ ൌ 0, 1, 2, … ,݉ െ 1, with 

௜ߜ  as a prescribed parameters, where the unknown parameters ߜ௜  can be determined later by 

substituting ݑሺߙሻ ൌ ߚ  and/or any other constraint conditions into the obtained solution form. It is 

worth noting that some of ߜ௜ may be known from the given initial conditions in Equation (15). As the 
first step in the prediction of multiple solutions, we set ݑ଴,଴  be as an initial guess approximation  

of exact function solution ݑሺݎሻ  of Equation (14). On the other hand, ݑ଴,଴  will be of the form  

଴,଴ݑ ൌ ;ݎ଴,଴ሺݑ ,଴ߜ ,ଵߜ … , ௠ିଵሻߜ  which satisfies the known initial conditions in Equation (15) 
automatically. It was proved in [28–30] that the coefficients ܿ଴௝ in Equation (16) will take the form 

ܿ଴௝ ൌ
ஔೕ
௝!
, ݆ ൌ 0, 1, 2, … ,݉ െ 1. Therefore, we can consider the expansion formula: 

ሻݎ଴,଴ሺݑ ൌ ෍
௝ߜ
݆!
ሺݎ െ ଴ሻ௝ݎ

௠ିଵ

௜ୀ଴

, ݎ ൒ ଴ (17)ݎ
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as an initial guess approximation for solution of Equations (14) and (15). But on the other aspect as 

well, depending on Equations (16) and (17), we can write: 

ሻݎሺݑ ൌ ෍
௝ߜ
݆!
ሺݎ െ ଴ሻ௝ݎ

௠ିଵ

௝ୀ଴

൅෍෍ ܿ௜௝ሺݎ െ ଴ሻ௝ା௜ఈݎ
௠ିଵ

௝ୀ଴

ஶ

௜ୀଵ

, ݎ ൒ ଴ (18)ݎ

Again, as the second step in the prediction of multiple solutions, we will let the double ሺ݇, ݈ሻ to 

denote the ሺ݇, ݈ሻ-truncated series approximation of ݑሺݎሻ. That is: 

ሻݎ௞,௟ሺݑ ൌ ෍
௝ߜ
݆!
ሺݎ െ ଴ሻ௝ݎ

௠ିଵ

௝ୀ଴

൅෍෍ܿ௜௝ሺݎ െ ଴ሻ௝ା௜ఈݎ
௟

௝ୀ଴

௞

௜ୀଵ

, ݎ ൒ ଴ (19)ݎ

where the indices counter ݈ and ݇ whenever used mean that ݇ ൌ 1, 2, 3, … and ݈ ൌ 0, 1, 2, … ,݉ െ 1. 
Prior to applying the RPS technique for finding the values of coefficients ܿ௜௝ in the series expansion 

of Equation (19), we must define the residual function concept for the main nonlinear fractional 
functional Equation (14) as Resሺݎሻ ൌ ௥బܦ

ఈ ሻݎሺݑ െࣨሾݑሺݎሻሿ, ݎ ൒ ଴ݎ  and the following truncated  

ሺ݇, ݈ሻ-resudial function: 

Resሺ௞,௟ሻሺݎሻ ൌ ௥బܦ
ఈ ሻݎ௞,௟ሺݑ െࣨൣݑ௞,௟ሺݎሻ൧, ݎ ൒ ଴ݎ (20)

As in [28–30], it is clear that Resሺݎሻ ൌ 0  for each ݎ ∈ ሾݎ଴, ଴ݎ ൅ ܴሻ , where ܴ  is the radius of 

convergence of Equation (18). In fact, this shows that ܦ௥బ
ሺ௜ିଵሻఈܦ௥బ

௝ Resሺݎሻ ൌ 0 for each ݅ ൌ 1, 2, 3, … , ݇ 

and ݆ ൌ 0, 1, 2, … , ݈, since the fractional derivative of a constant function in the Caputo sense is zero. 

In the mean time, the fractional derivatives ܦ௥బ
ሺ௜ିଵሻఈܦ௥బ

௝  for each ݅ ൌ 1, 2, 3, … , ݇ and ݆ ൌ 0, 1, 2, … , ݈ of 

Resሺݎሻ and Resሺ௜,௝ሻሺݎሻ are matching at ݎ ൌ  :଴; it is obvious thatݎ

௥బܦ
ሺ௜ିଵሻఈܦ௥బ

௝ Resሺݎ଴ሻ ൌ ௥బܦ
ሺ௜ିଵሻఈܦ௥బ

௝ Resሺ௜,௝ሻሺݎ଴ሻ ൌ 0, ݅ ൌ 1, 2, 3, … , ݇, ݆ ൌ 0, 1, 2, … , ݈ (21)

To obtain the value of coefficients ܿ௩௪ in Equation (19) for ݒ ൌ 1, 2, 3, … , ݇ and ݓ ൌ 0, 1, 2, … , ݈, 
we apply the following subroutine: substitute ሺݒ, ሻݓ -truncated series approximation of ݑሺݎሻ  into 

Equation (20), find the fractional derivative formula ܦ௥బ
ሺ௩ିଵሻఈܦ௥బ

௪  of Resሺ௩,௪ሻሺݎሻ at ݎ ൌ ଴ݎ , and then 

finally solve the obtained algebraic equation to get the required coefficients. 

To summarize the computation process of RPS method in numerical values, we apply the 

following: fixed ݅ ൌ 1 and run the counter ݆ ൌ 0, 1, 2, … , ݈ to find ሺ1, ݆ሻ-truncated series expansion of 

suggested solution, next fixed	݅ ൌ 2 and run the counter ݆ ൌ 0, 1, 2, … , ݈ to obtain the ሺ2, ݆ሻ-truncated 

series, and so on. In fact, to get ሺ1,0ሻ-truncated series expansion for Equations (14) and (15), we use 

Equation (19) and write: 

ሻݎଵ,଴ሺݑ ൌ ଴ߜ ൅ ݎଵሺߜ െ ଴ሻݎ ൅ ⋯൅ ݎ௠ିଵሺߜ െ ଴ሻݎ
ሺ௠ିଵሻ ൅ ܿଵ଴ሺݎ െ ଴ሻ௔ (22)ݎ

On the other hand, to determine the value of first unknown coefficient, ܿଵ,଴, in Equation (22), we 

should substitute Equation (22) into both sides of the ሺ1,0ሻ-residual function that obtained from 

Equation (20), to get the following result: 

								Resሺଵ,଴ሻሺݎሻ ൌ ܿଵ,଴߁ሺߙ ൅ 1ሻ 
																					െࣨൣߜ଴ ൅ ݎଵሺߜ െ ଴ሻݎ ൅ ⋯൅ ݎ௠ିଵሺߜ െ ଴ሻݎ

ሺ௠ିଵሻ ൅ ܿଵ଴ሺݎ െ 	଴ሻ௔൧ݎ
(23)
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Now, depending on the result of Equation (21) for ሺ݅, ݆ሻ ൌ ሺ1,0ሻ, Equation (23) gives ܿଵ଴ ൌ
ࣨሾஔబሿ

௰ሺఈାଵሻ
. 

Hence, using the ሺ1,0ሻ-truncated series expansion of Equation (22), the ሺ1,0ሻ-RPS approximation for 

Equations (14) and (15) can be expressed as: 

ሻݎଵ,଴ሺݑ ൌ ଴ߜ ൅ ݎଵሺߜ െ ଴ሻݎ ൅ ⋯൅ ݎ௠ିଵሺߜ െ ଴ሻݎ
ሺ௠ିଵሻ ൅

ࣨሾδ଴ሿ

ߙሺ߁ ൅ 1ሻ
ሺݎ െ ଴ሻ௔ (24)ݎ

Similarly, to find ሺ1,1ሻ-truncated series expansion for Equations (14) and (15), we use Equation (19) 

and write: 

ሻݎଵ,ଵሺݑ ൌ ଴ߜ ൅ ݎଵሺߜ െ ଴ሻݎ ൅ ⋯൅ ݎ௠ିଵሺߜ െ ଴ሻݎ
ሺ௠ିଵሻ ൅

ࣨሾδ଴ሿ

ߙሺ߁ ൅ 1ሻ
ሺݎ െ ଴ሻ௔ݎ

൅ ܿଵଵሺݎ െ  ଴ሻଵା௔ݎ
(25)

Again, to find out the value of second unknown coefficient, c11 in Equation (25), we must find and 
formulate ሺ1,1ሻ-residual function based on Equation (20) and then substitute the form of ݑଵ,ଵሺݎሻ in 

Equation (25) to find new discretized form of this residual function as follows: 

Resሺଵ,ଵሻሺݎሻ ൌ ௥బܦ
ఈ ሻݎଵ,ଵሺݑ െࣨൣݑଵ,ଵሺݎሻ൧

ൌ ܿଵ଴߁ሺߙ ൅ 1ሻ ൅ ܿଵଵ߁ሺߙ ൅ 2ሻሺݎ െ ଴ሻݎ

െࣨ ቈߜ଴ ൅ ݎଵሺߜ െ ଴ሻݎ ൅ ⋯൅ ݎ௠ିଵሺߜ െ ଴ሻݎ
ሺ௠ିଵሻ ൅

ࣨሾδ଴ሿ
ߙሺ߁ ൅ 1ሻ

ሺݎ െ ଴ሻ௔ݎ

൅ ܿଵଵሺݎ െ ଴ሻଵା௔൨ݎ

(26)

while, on the other hand, by considering Equation (20) for ሺ݅, ݆ሻ ൌ ሺ1,1ሻ and applying the operator ܦ௥బ 

to the both side of Equation (26), we get: 

଴ሻݎ௥బResሺଵ,ଵሻሺܦ

ൌ ܿଵ,ଵ߁ሺߙ ൅ 2ሻ

െ ௥బࣨܦ ቈߜ଴ ൅ ݎଵሺߜ െ ଴ሻݎ ൅ ⋯൅ ݎ௠ିଵሺߜ െ ଴ሻݎ
ሺ௠ିଵሻ

൅
ࣨሾδ଴ሿ

ߙሺ߁ ൅ 1ሻ
ሺݎ െ ଴ሻ௔ݎ ൅ ܿଵଵሺݎ െ ଴ሻଵା௔൨ݎ

௥ୀ௥బ

 

(27)

Now, using the fact that ܦ௥బResሺଵ,ଵሻሺݎ଴ሻ ൌ 0, we can easily obtain: 

ܿଵଵ ൌ
1

ߙሺ߁ ൅ 2ሻ
௥బࣨܦ ቈߜ଴ ൅ ݎଵሺߜ െ ଴ሻݎ ൅ ⋯൅ ݎ௠ିଵሺߜ െ ଴ሻݎ

ሺ௠ିଵሻ

൅
ࣨሾδ଴ሿ

ߙሺ߁ ൅ 1ሻ
ሺݎ െ ଴ሻ௔ݎ ൅ ܿଵଵሺݎ െ ଴ሻଵା௔൨ݎ

௥ୀ௥బ

 
(28)

Hence, using the ሺ1,1ሻ-truncated series expansion of Equation (25), the ሺ1,1ሻ-RPS approximation 

for Equations (14) and (15) can be expressed as: 

ሻݎଵ,ଵሺݑ ൌ ෍
௝ߜ
݆!
ሺݎ െ ଴ሻ௝ݎ

௠ିଵ

௝ୀ଴

൅
ܰሾߜ଴ሿ

ߙሺ߁ ൅ 1ሻ
ሺݎ െ ଴ሻఈݎ

൅
1

ߙሺ߁ ൅ 2ሻ
௥బࣨܦ ቈߜ଴ ൅ ݎଵሺߜ െ ଴ሻݎ ൅ ⋯൅ ݎ௠ିଵሺߜ െ ଴ሻݎ

ሺ௠ିଵሻ

൅
ࣨሾδ଴ሿ

ߙሺ߁ ൅ 1ሻ
ሺݎ െ ଴ሻ௔ݎ ൅ ܿଵଵሺݎ െ ଴ሻଵା௔൨ݎ

௥ୀ௥బ

ሺݎ െ ,଴ሻଵାఈݎ ݎ ൒ 	଴ݎ

(29)
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This procedure can be repeated till the arbitrary order coefficients of FPS solution for Equations (14) 

and (15) are obtained. Moreover, higher accuracy can be achieved by evaluating more components.  

Remark 4.1: It is worth indicating that there are still unknown prescribed parameters ߜ௜ in the series 

expansion of Equation (19) (and simply in Equation (29)) that should be determined. It is essential that 

the existence of a unique or multiple solutions in terms of Equation (19) (and simply in Equation (29)) 

for the original BVP which is covered by Equations (11) and (12) depends on the fact that whether the 

forcing condition ݑሺߙ	ሻ ൌ  and/or any other constraint condition in Equation (13) admits a unique or ߚ

multiple values for the formally introduced prescribed parameters ߜ௜ . This stage is called rule  

of multiplicity of solutions that is a criterion in order to know how many solutions the BVP in  

Equations (11) and (12) admits.  

Anyhow, as the final step in the construction, if we substitute ݑሺߙሻ ൌ  and/or any other constraint ߚ

conditions into the obtained solution form of Equation (19) (and simply in Equation (29)), then we 

obtain a system of nonlinear algebraic equations in the prescribed variables ߜ଴, ,ଵߜ ,ଶߜ … ,  ,௠ିଵ (hereߜ

we must recall that some of ߜ௜, ݅ ൌ 0, 1, … ,݉ െ 1 may be known from Equation (15)) which can be 

easy solved using symbolic computation software such as MAPLE 13  or MATHEMATICA 7.0 .  

In fact, if we substitute these values of prescribed parameters in the obtained solution form of  

Equation (19) (and simply in Equation (29)), then discretized form of the ሺ݇, ݈ሻ-truncated series 

approximation of ݑሺݎሻ of Equations (11) and (12) (and simply ሺ1,1ሻ-truncated series approximation of 

 .ሻ as given by Equation (26)) will be obtainedݎሺݑ

5. Applications and Numerical Discussions 

The application problems are carried out using the proposed RPS method, which is one of the 

modern analytical techniques because of its iterative nature; it can handle any kind of boundary 

conditions and other constraints. The RPS method doesn’t have mathematical requirements about the 

multiple solutions of fractional BVPs to be solved; the RPS method is also very effective in identifying 

global predicted solutions, and provides a great flexibility in choosing the initial guess approximations. 

However, in order to verify the computational efficiency of the designed RPS method, two nonlinear 

models are performed, one of them arises in mixed convection flows and the other one arises in heat 

transfer, which both admit multiple solutions. In the process of computation, all the symbolic and 

numerical computations were performed by using the MATHEMATICA 7.0 software package. 

Throughout this section, we will try to give the results of the two applications; however, in some 

cases we will switch between the results obtained for the applications in order not to increase the 

length of the paper without the loss of generality for the remaining application and results. However, 

by easy calculations we can collect further results and discussion for the desire application. 

Application 5.1: The aim of this application is to apply the RPS method to analyze a kind of model in 

mixed convection flows namely, combined forced and free flow in the fully developed region of a 

vertical channel with isothermal walls kept at the same temperature. In this model, the fluid properties 

are assumed to be constant and the viscous dissipation effect is taken into account. The set of 

governing balance equations for the velocity field is reduced to the following [45,46]: 
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଴ܦ
ఈݑሺݕሻ ൌ

Ψ
16

ቆ
ሻݕሺݑ݀

ݕ݀
ቇ
ଶ

, 3 ൏ ߙ ൑ 4, 0 ൑ ݕ ൑ 1 (30)

subject to boundary conditions: 

ᇱሺ0ሻݑ ൌ ᇱᇱᇱሺ0ሻݑ ൌ ሺ1ሻݑ ൌ 0,නݑሺݕሻ

ଵ

଴

ݕ݀ ൌ 1 (31)

where ݑ and ݕ are dimensionless velocity and transversal coordinate, respectively, and also ݑ ൌ ௎

௎೘
, 

ݕ ൌ ௒

௅
݁ܩ , ൌ ସ௅௚ఉ

௖೛
ݎܲ , ൌ

ఓ௖೛
௞

, ܴ݁ ൌ ସ௅௎೘
௩

, and Ψ ൌ GePrRe in which ܷ,ܷ௠, ܻ, ,ܮ ݃, ,ߚ ܿ௣, ,ߤ ݇, ,ݒ Ge, Pr, 

and Re are mean ݔ-component of the fluid velocity, fluid velocity, channel half-width, acceleration 

due to gravity, coefficient of thermal expansion, specific heat at constant pressure, dynamic viscosity, 

thermal conductivity, kinematic viscosity, Gebhart number, Prandtl number, and Reynolds  

number, respectively.	
Next, we will show how one can find out the existence of multiple solutions for Equations (30) and (31) 

in aforesaid range for 	0 ൑ ݕ ൑ 1. To do so, we consider firstly Equations (30) and (31) and suppose 

that ݑሺ0ሻ ൌ ᇱᇱሺ0ሻݑ ଴ andߜ ൌ  :ଶ. So, Equations (30) and (31) can be modified into the following formߜ

଴ܦ
ఈݑሺݕሻ ൌ

Ψ
16

ቆ
ሻݕሺݑ݀
ݕ݀

ቇ
ଶ

, 3 ൏ ߙ ൑ 4, 0 ൑ ݕ ൑ 1 (32)

subject to the split conditions: 

ሺ0ሻݑ ൌ ,଴ߜ ᇱሺ0ሻݑ ൌ 0, ᇱᇱሺ0ሻݑ ൌ ,ଶߜ ᇱᇱᇱሺ0ሻݑ ൌ 0 (33)

where ݑሺ1ሻ ൌ 0  is the additional forcing condition and ׬ ሻݕሺݑ
ଵ
଴ ݕ݀ ൌ 1  is the additional  

constraint condition. 

Now, we apply the RPS method on Equations (32) and (33), where prescribed parameters ߜ଴ and ߜଶ 

which are played an important and fundamental role to realize about multiplicity of solutions, will be 

obtained later by substituting the additional forcing condition and the additional constraint condition in 

resulting expansion formula that approximate Equations (32) and (33). 

According to Equation (18), we assume that the series solution of Equations (32) and (33) can be 

written as: 

ሻݕሺݑ ൌ෍
௝ߜ
݆!
௝ݕ

ଷ

௝ୀ଴

൅෍෍ܿ௜௝ݕ௝ା௜ఈ
ଷ

௝ୀ଴

ஶ

௜ୀଵ

 (34)

where ߜଵ ൌ ᇱሺ0ሻݑ ൌ 0 and ߜଷ ൌ ᇱᇱᇱሺ0ሻݑ ൌ 0 which are hold from the conditions of Equation (33). 

Therefore, the initial guess approximation can be constructing as ݑ଴,଴ሺݕሻ ൌ ଴ߜ ൅
ఋమ
ଶ
ଶݕ . Next, 

according to Equations (19) and (20) the ሺ݇, ݈ሻ -truncated series approximation of ݑሺݕሻ  and the  

ሺ݇, ݈ሻ-residual function of Equation (32) can be defined and thus constructed, respectively, as: 

Resሺ௞,௟ሻሺݕሻ ൌ ଴ܦ
ఈݑ௞,௟ሺݕሻ െ

Ψ
16

ቆ
ሻݕ௞,௟ሺݑ݀

ݕ݀
ቇ
ଶ

(35)
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ሻݕ௞,௟ሺݑ ൌ ଴ߜ ൅
ଶߜ
2
ଶݕ ൅෍෍ܿ௜௝ݕ௝ା௜ఈ

௟

௝ୀ଴

௞

௜ୀଵ

(36)

However, to determine the value of coefficient ܿଵ଴, we find out (1,0)-truncated series approximation 

of ݑሺݕሻ as ݑଵ,଴ሺݕሻ ൌ ଴ߜ ൅
ஔమ
ଶ
ଶݕ ൅ ܿଵ଴ݕఈ and (1,0)-residual function as Resሺଵ,଴ሻሺݕሻ ൌ ܿଵ,଴߁ሺߙ ൅ 1ሻ െ

ஏ

ଵ଺
ሺߜଶݕ ൅ ఈିଵሻଶݕଵ଴ܿߙ . On the other aspect as well, by using Equation (21) for ሺ݅, ݆ሻ ൌ ሺ1,0ሻ and 

substituting ݕ ൌ 0, we obtain ܿଵ଴ ൌ 0. 

Similarly, to find the value of coefficient ܿଵଵ, we evaluate ሺ1,1ሻ-truncated series approximation of 

ሻݕଵ,ଵሺݑ ሻ asݕሺݑ ൌ ଴ߜ ൅
ఋమ
ଶ
ଶݕ ൅ ܿଵଵݕଵାఈ  and ሺ1,1ሻ-residual function as Resሺଵ,ଵሻሺݕሻ ൌ ܿଵ,ଵ߁ሺߙ ൅ 2ሻݕ 

െ 
ஏ

ଵ଺
ሺߜଶݕ ൅ ሺ1 ൅ ,ఈሻଶ. Thus, for ሺ݅ݕሻܿଵଵߙ ݆ሻ ൌ ሺ1,1ሻ, we conclude that ܦ଴Resሺଵ,ଵሻሺݕሻ ൌ ܿଵଵ߁ሺߙ ൅ 2ሻ 

െ 
ஏ

଼
ሺߜଶ ൅ ሺ1ߙ ൅ ݕଶߜఈିଵሻሺݕሻܿଵଵߙ ൅ ሺ1 ൅ ݕ ఈሻ, while the substitution ofݕሻܿଵଵߙ ൌ 0 leads to ܿଵଵ ൌ 0. 

To evaluate the value of coefficient ܿଵଶ , we need to write ݑଵ,ଶሺݕሻ ൌ ଴ߜ ൅
ఋమ
ଶ
ଶݕ ൅ ܿଵଶݕଶାఈ  and 

Resሺଵ,ଶሻሺݕሻ ൌ ܿଵଶ
௰ሺఈାଷሻ

ଶ
ଶݕ െ ஏ

ଵ଺
ሺߜଶݕ ൅ ܿଵଶሺ2 ൅ ଵାఈሻଶݕሻߙ . However, by considering the fact that 

଴ܦ
ଶResሺଵ,ଶሻሺ0ሻ ൌ 0, we can easily find ܿଵଶ ൌ

ஏఋమ
మ

଼௰ሺଷାఈሻ
. Similarly, the continuation in the same manner 

will leads also to ܿଵଷ ൌ 0. According to the initial guess approximation and the form of terms in 
Equation (32) taking into account the form of Equations (35) and (36), we can conclude that ܿ௜௝ ൌ 0 

for ݆ ൌ 0,1,3. Therefore, according to Equation (34) the FPS solution of Equations (32) and (33) can 

be written in the form of the following expansion: 

ሻݕሺݑ ൌ ଴ߜ ൅
ଶߜ
2
ଶݕ ൅

Ψߜଶ
ଶ

ሺ3߁8 ൅ ሻߙ
ଶାఈݕ ൅෍ܿ௜ଶݕଶା௜ఈ

ஶ

௜ୀଶ

 (37)

and hence the ሺ݇, 2ሻ-truncated series approximation of ݑሺݕሻ can reformulated as: 

ሻݕ௞,ଶሺݑ ൌ ଴ߜ ൅
ଶߜ
2
ଶݕ ൅

Ψߜଶ
ଶ

ሺ3߁8 ൅ ሻߙ
ଶାఈݕ ൅෍ܿ௜ଶݕଶା௜ఈ

௞

௜ୀଶ

 (38)

Again, to determine the value of coefficient ܿଶଶ, we need solve the equation ܦ଴
ఈܦ଴

ଶResሺଶ,ଶሻሺ0ሻ ൌ 0 

which gives ܿଶଶ ൌ
ሺଶାఈሻஏమఋమ

య

଺ସ௰ሺଷାଶఈሻ
. Similarly, we have ܿଷଶ ൌ ሺ2 ൅ ଶߜሻΨଷߙ

ସሺ4߁ሺ3 ൅ ሻଶߙ ൅ ሺ3߁ߙ4 ൅ ሻଶߙ ൅

ሺ3߁2 ൅ ሻߙ2 ൅ ሺ3߁ߙ ൅ ሺ3߁ሻሻ/1024ߙ2 ൅ ሺ3߁ሻଶߙ ൅ ሻߙ3 , and so on. Consequently, based on the 

structure of Equation (38) the ሺ3,2ሻ-truncated series approximation of ݑሺݕሻ generated from the RPS 

method can be written as: 

ሻݕଷ,ଶሺݑ

ൌ ଴ߜ ൅
ଶߜ
2
ଶݕ ൅

Ψߜଶ
ଶ

ሺ3߁8 ൅ ሻߙ
ଶାఈݕ ൅

ሺ2 ൅ ଶߜሻΨଶߙ
ଷ

ሺ3߁64 ൅ ሻߙ2
ଶାଶఈݕ

൅
ሺ2 ൅ ଶߜሻΨଷߙ

ସ൫4߁ሺ3 ൅ ሻଶߙ ൅ ሺ3߁ߙ4 ൅ ሻଶߙ ൅ ሺ3߁2 ൅ ሻߙ2 ൅ ሺ3߁ߙ ൅ ሻ൯ߙ2
ሺ3߁1024 ൅ ሺ3߁ሻଶߙ ൅ ሻߙ3

 ଶାଷఈݕ

(39)

It is clear that, Equation (39) contain two unknown certain parameters which are ߜ଴ and ߜଶ. To 

determine their introductory values substituting the forcing condition ݑሺ1ሻ ൌ 0  and the constraint 

condition ׬ ሻݕሺݑ
ଵ
଴ ݕ݀ ൌ 1, and finally selecting some numerical values of Ψ. 
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Now, to be specific, we consider two cases according to Equation (39) which consist of Ψ ൌ െ20 

and Ψ ൌ 20. On the other hand, we generate and obtain the ሺ17,2ሻ-truncated series approximation of 

 ଶ have been calculated and listedߜ ଴ andߜ ሻ using the same procedure. However, various values ofݕሺݑ

in Tables 1 and 2 when ߙ ൌ 3.9 and when ߙ ൌ 4, respectively. For simplicity and not to conflict, we 
will let ݑ௞,௟

ଵ ሺݕሻ to denote the first approximate solution of ݑሺݕሻ  and ݑ௞,௟
ଶ ሺݕሻ  to denote the second 

approximate solution of ݑሺݕሻ. 
Consequently, we conclude that the RPS method furnishes multiple solutions for Equations (30) 

and (31). It is worth mentioning here that when ߙ ൌ 3.9, Table 1 indicates the existence of two 

solutions at Ψ ൌ െ20, so that, ݑሺ0ሻ ൌ ᇱᇱሺ0ሻݑ ,1.489853467004 ൌ െ2.908126478404 for the first 

branch solution and ݑሺ0ሻ ൌ െ13.71508112423, ݑᇱᇱሺ0ሻ ൌ 148.3654474295 for the second branch 

solution. In fact, these results answer the question how many solutions the nonlinear BVP in  

Equations (30) and (31) admits? The same procedure has been done at the case Ψ ൌ 20. As we see 

from Table 1, there exist multiple solutions namely ݑሺ0ሻ ൌ 1.511205551820, ᇱᇱሺ0ሻݑ  ൌ  

െ3.101976104073  for the first branch solution and ݑሺ0ሻ ൌ 15.29266790865, ᇱᇱሺ0ሻݑ  ൌ 

െ139.7646425135 for the second branch solution. Similar conclusion can be achieved when ߙ ൌ 4 

as shown in Table 2. 

Table 1. The approximate numerical values of ߜ଴
௞  and ߜଶ

௞ , ݇ ൌ 1,2  at Ψ ൌ െ20  and 
Ψ ൌ 20 when ߙ ൌ 3.9 for ݑଵ଻,ଶሺݕሻ. 

શ ࢾ૙
૚ ൌ ૚ૠ,૛࢛

૚ ሺ૙,શሻ ࢾ૛
૚ ൌ ൫࢛૚ૠ,૛

૚ ൯
ᇱᇱ
ሺ૙,શሻ ࢾ૙

૛ ൌ ૚ૠ,૛࢛
૛ ሺ૙,શሻ ࢾ૛

૛ ൌ ൫࢛૚ૠ,૛
૛ ൯

ᇱᇱ
ሺ૙,શሻ 

െ20 1.489853467004 െ2.908126478404 െ13.71508112423 148.3654474295 
20 1.511205551820 െ3.101976104073 15.29266790865 െ139.7646425135 

Table 2. The approximate numerical values of ߜ଴
௞  and ߜଶ

௞ , ݇ ൌ 1,2  at Ψ ൌ െ20  and 
Ψ ൌ 20 when ߙ ൌ 4 for ݑଵ଻,ଶሺݕሻ. 

શ ࢾ૙
૚ ൌ ૚ૠ,૛࢛

૚ ሺ૙,શሻ ࢾ૛
૚ ൌ ൫࢛૚ૠ,૛

૚ ൯
ᇱᇱ
ሺ૙,શሻ ࢾ૙

૛ ൌ ૚ૠ,૛࢛
૛ ሺ૙,શሻ ࢾ૛

૛ ൌ ൫࢛૚ૠ,૛
૛ ൯

ᇱᇱ
ሺ૙,શሻ 

െ20 1.491429027619 െ2.923003985191 െ16.24366439412 170.0391846202 
20 1.509327190185 െ3.084107676423 17.81653001586 െ161.7258228610 

The RPS technique has an advantage that it is possible to pick any point in the interval of 

integration and as well the approximate multiple solutions and all their fractional derivatives will be 

applicable. In other words, continuous approximate solutions can be obtained. Our next goal, is to 

show the mathematical behavior of the obtained multiple solutions geometrically. To do so, we plot 

the first and the second solutions obtained from the ሺ17,2ሻ-truncated series approximation of ݑሺݕሻ at 

Ψ ൌ െ20 and Ψ ൌ 20 when	ߙ ൌ 3.9 in Figure 1, while in Figure 2 we depict the first and the second 

approximate solutions at the same values when ߙ ൌ 4. 

The effective calculations of the two approximate branches solutions for Equations (30) and (31) 

with respect to some certain specific values of Ψ on ݑሺ0ሻ and ݑᇱᇱሺ0ሻ is explored next in which the 

obtained results are generated from the ሺ17,2ሻ-truncated series approximation of ݑሺݕሻ. Table 3 gives 

the effect of the numeric value of Ψ when ߙ ൌ 3.9, while Table 4 gives the effect of the numeric value 

of Ψ when ߙ ൌ 4. The numeric value of Ψ lie within the range ሾെ80,80ሿ in step of 20. It is to be noted 
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that, when the values of Ψ increasing gradually within mentioned range, the value of ݑᇱᇱሺ0ሻ decreasing 

as well as the value of ݑሺ0ሻ increasing for both branch solutions and for both order of derivatives. 

We mention here that, the case of Ψ ൌ 0 correspond either to a very small viscous dissipation 

heating or to negligible buoyancy effects. However, Equations (30) and (31) are easily solved and 

admit the unique solution ݑሺݕሻ ൌ ଷ

ଶ
ሺ1 െ ߙ ଶሻ for bothݕ ൌ 3.9 and ߙ ൌ 4. On the other direction, from 

the last tables, it can be seen that our results of the RPS method agree best with method of [34] when 

ߙ ൌ 3.9 and method of [35] when ߙ ൌ 4.  

Figure 1. Multiple solutions of Equations (30) and (31) when ߙ ൌ ଵ଻,ଶݑ :3.9
ଵ ሺݕሻ: red color, 

ଵ଻,ଶݑ
ଶ ሺݕሻ: blue color at (a) Ψ ൌ െ20 and (b) Ψ ൌ 20. 

 
(a) (b) 

Figure 2. Multiple solutions of Equations (30) and (31) when ߙ ൌ ଵ଻,ଶݑ :4
ଵ ሺݕሻ: red color, 

ଵ଻,ଶݑ
ଶ ሺݕሻ: blue color at (a) Ψ ൌ െ20 and (b) Ψ ൌ 20. 

 
(a) (b) 

Table 3. The effect values of Ψ on ߜ଴
௞ and ߜଶ

௞, ݇ ൌ 1, 2 for the first and the second branch 

solutions when ߙ ൌ 3.9. 

Ψ ࢾ૙
૚ ൌ ૚ૠ,૛࢛

૚ ሺ૙,શሻ ࢾ૛
૚ ൌ ൫࢛૚ૠ,૛

૚ ൯
ᇱᇱ
ሺ૙,શሻ ૙ࢾ

૛ ൌ ૚ૠ,૛࢛
૛ ሺ૙,શሻ ࢾ૛

૛ ൌ ൫࢛૚ૠ,૛
૛ ൯

ᇱᇱ
ሺ૙,શሻ

െ80 1.464188372395 െ2.677900574103 െ2.804122381089 39.98989706426 
െ60 1.472069208045 െ2.748246621431 െ4.021367259783 52.08059778256 
െ40 1.480588602154 െ2.824645834495 െ6.448785247872 76.19140323508 
െ20 1.489853467004 െ2.908126478404 െ13.71508112423 148.3654474295 
0 1.5 െ3 1.5 െ3 
20 1.511205551820 െ3.101976104073 15.29266790865 െ139.7646425135 
40 1.523707257512 െ3.216343513749 8.023126702632 െ67.55959331340 
60 1.537832713039 െ3.346267779136 5.590088525362 െ43.39506854926 
80 1.554053587089 െ3.496312065964 4.364483870436 െ31.22440353861 
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Table 4. The effect values of Ψ on ߜ଴
௞ and ߜଶ

௞, ݇ ൌ 1,2 for the first and the second branch 

solutions when ߙ ൌ 4. 

Ψ ࢾ૙
૚ ൌ ૚ૠ,૛࢛

૚ ሺ૙,શሻ ࢾ૛
૚ ൌ ൫࢛૚ૠ,૛

૚ ൯
ᇱᇱ
ሺ૙,શሻ ࢾ૙

૛ ൌ ૚ૠ,૛࢛
૛ ሺ૙,શሻ ࢾ૛

૛ ൌ ൫࢛૚ૠ,૛
૛ ൯

ᇱᇱ
ሺ૙,શሻ 

െ80 1.469261663095 െ2.725277968954 െ3.442692067043 45.35348443763 
െ60 1.476139016516 െ2.786393212425 െ4.869349036038 59.24934656620 
െ40  1.483504520962 െ2.852078148878 െ7.716406012298 86.98041469093 
െ20  1.491429027619 െ2.923003985191 െ16.24366439412 170.0391846202 
0  1.5 െ3 1.5 െ3 
20  1.509327190185 െ3.084107676423 17.81653001586 െ161.7258228610 
40  1.519550991842 െ3.176660397839 9.286966701002 െ78.64533628503 
60  1.530855160142 െ3.279404862063 6.435961661508 െ50.87705915606 
80  1.543486995118 െ3.394693823078 5.003537046217 െ36.92681430877 

To measure the accuracy and the efficiency of the proposed RPS method for predicting and finding 

the multiple solutions for Equations (30) and (31), we report the residual error function at Ψ ൌ െ20 

and Ψ ൌ 20 when ߙ ൌ 3.9 and when ߙ ൌ 4 in Tables 5 and 6, respectively, in which the obtained 

results are generated from the ሺ17,2ሻ-truncated series approximation of ݑሺݕሻ . The residual error 

function is defined using Equation (35) in which the grid points are building as ݕ௜ ൌ
ଵ

ଵ଴
݅ ,  

݅ ൌ 0, 1, 2, … , 10. For simplicity and not to conflict, we will let Resሺ௞,௟ሻ
ଵ ሺݕሻ	to denote the residual error 

function of the first approximate solution ݑ௞,௟
ଵ ሺݕሻ of ݑሺݕሻ and Resሺ௞,௟ሻ

ଶ ሺݕሻ to denote the residual error 

function of the second approximate solution ݑ௞,௟
ଶ ሺݕሻ of ݑሺݕሻ. 

In fact, the residual errors measure the extent of agreement between the ሺ17,2ሻth-order approximate 

RPS solutions and unknowns closed form solutions which are inapplicable in general for such 

nonlinear equations. However, from the tables, it can be seen that the RPS technique provides us with 

the accurate approximate solutions and explicates the rapid convergence in approximating the multiple 

solutions for Equations (30) and (31). 

Table 5. The values of absolute residual error function Resሺଵ଻,ଶሻ
୩ ሺݕሻ, ݇ ൌ 1,2 at Ψ ൌ െ20 

and Ψ ൌ 20 of ݑଵ଻,ଶሺݕሻ when ߙ ൌ 3.9. 

ሺ૚ૠ,૛ሻܛ܍܀ห ࢏࢟
૚ ሺ࢟,શ ൌ െ૛૙ሻห หܛ܍܀ሺ૚ૠ,૛ሻ

૚ ሺ࢟,શ ൌ ૛૙ሻห หܛ܍܀ሺ࢒,࢑ሻ
૛ ሺ࢟,શ ൌ െ૛૙ሻห หܛ܍܀ሺ࢒,࢑ሻ

૛ ሺ࢟,શ ൌ ૛૙ሻห 

0 0 0 0 0 

0.1 1.94289029 ൈ 10ିଵ଺ 1.94288750 ൈ 10ିଵ଺ 3.97866979 ൈ 10ିଵଷ 3.69518622 ൈ 10ିଵଷ 

0.2 6.66133776 ൈ 10ିଵ଺ 6.66117073 ൈ 10ିଵ଺ 1.36177362 ൈ 10ିଵଶ 1.25252855 ൈ 10ିଵଶ 

0.3 1.22124324 ൈ 10ିଵହ 1.33208244 ൈ 10ିଵହ 2.23471544 ൈ 10ିଵଶ 2.28611754 ൈ 10ିଵଶ 

0.4 2.22041113 ൈ 10ିଵହ 1.99736092 ൈ 10ିଵହ 4.17791163 ൈ 10ିଵଶ 3.58225102 ൈ 10ିଵଶ 

0.5 2.66422469 ൈ 10ିଵହ 2.66042643 ൈ 10ିଵହ 8.58345468 ൈ 10ିଵଶ 6.93024293 ൈ 10ିଵଶ 

0.6 3.99495362 ൈ 10ିଵହ 3.53947330 ൈ 10ିଵହ 5.43711567 ൈ 10ିଵ଴ 3.45019238 ൈ 10ିଵ଴ 

0.7  4.43255151 ൈ 10ିଵହ 3.51500060 ൈ 10ିଵହ 1.66806846 ൈ 10ି଻ 4.67722166 ൈ 10ି଼ 

0.8  6.18659833 ൈ 10ିଵହ 5.22990386 ൈ 10ିଵହ 1.60051841 ൈ 10ିଷ 5.20245588 ൈ 10ିସ 

0.9  5.23312894 ൈ 10ିଵହ 5.08335790 ൈ 10ିଵହ 4.48714378 1.46607132 

1  6.84470511 ൈ 10ିଵହ 6.53165847 ൈ 10ିଵହ 5252.11818 1725.28045 
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Table 6. The values of absolute residual error function Resሺଵ଻,ଶሻ
୩ ሺݕሻ, ݇ ൌ 1,2 at Ψ ൌ െ20 

and Ψ ൌ 20 of ݑଵ଻,ଶሺݕሻ when ߙ ൌ 4. 

ሺ૚ૠ,૛ሻܛ܍܀ห ࢏࢟
૚ ሺ࢟,શ ൌ െ૛૙ሻห หܛ܍܀ሺ૚ૠ,૛ሻ

૚ ሺ࢟,શ ൌ ૛૙ሻห หܛ܍܀ሺ࢒,࢑ሻ
૛ ሺ࢟,શ ൌ െ૛૙ሻห หܛ܍܀ሺ࢒,࢑ሻ

૛ ሺ࢟,શ ൌ ૛૙ሻห 

0 0 0 0 0 

0.1 1.77635684 ൈ 10ିଵ଻ 2.22041829 ൈ 10ିଶଶ 2.91038305 ൈ 10ିଵ଻ 2.32842284 ൈ 10ିଶସ 

0.2 7.10542750 ൈ 10ିଵ଻ 1.42080125 ൈ 10ିଶ଴ 1.86264518 ൈ 10ିଵହ 3.81774414 ൈ 10ିଶ଴ 

0.3 1.59872197 ൈ 10ିଵ଺ 1.61706602 ൈ 10ିଵଽ 2.12167382 ൈ 10ିଵସ 1.11809539 ൈ 10ିଵ଻ 

0.4 2.84218548 ൈ 10ିଵ଺ 9.06583155 ൈ 10ିଵଽ 1.19217704 ൈ 10ିଵଷ 6.32795333 ൈ 10ିଵ଺ 

0.5 4.44102736 ൈ 10ିଵ଺ 3.44231543 ൈ 10ିଵ଼ 4.55249634 ൈ 10ିଵଷ 1.46277017 ൈ 10ିଵସ 

0.6 6.39572035 ൈ 10ିଵ଺ 1.01915459 ൈ 10ିଵ଻ 1.73037412 ൈ 10ିଵଶ 3.31077250 ൈ 10ିଵଷ 

0.7  8.70803912 ൈ 10ିଵ଺ 2.53363580 ൈ 10ିଵ଻ 1.65276878 ൈ 10ି଼ 6.40960986 ൈ 10ିଽ 

0.8  1.13833300 ൈ 10ିଵହ 5.52083544 ൈ 10ିଵ଻ 1.76440709 ൈ 10ିସ 6.86317136 ൈ 10ିହ 

0.9  1.44358770 ൈ 10ିଵହ 1.08226613 ൈ 10ିଵ଺ 0.61053707 0.23838980 

1  1.78979417 ൈ 10ିଵହ 1.93855241 ൈ 10ିଵ଺ 863.820084 338.753375 

In Tables 7 and 8 we tabulate the values of the approximate multiple solutions at the final grid node 

ݕ ൌ 1 that generated from the ሺ17,2ሻ-truncated series approximation of ݑሺݕሻ at Ψ ൌ 20 and Ψ ൌ െ20 

when ߙ ൌ 3.9 and when ߙ ൌ 4. In fact, we do this to facilitate the calculations in order to show the 

validity and accuracy of the proposed RPS method in predicting and finding the multiple approximate 
solutions. In these tables, we can find that the values of ݑଵ଻,ଶ

௞ ሺ1ሻ, ݇ ൌ 1, 2 agree nicely and completely 

the forcing condition ݑሺ1ሻ ൌ 0 and the constraint condition ׬ ଵ଻,ଶݑ
௞ ሺݕሻ

ଵ
଴ , ݇ ൌ 1, 2. 

Table 7. The approximate value of forcing condition ݑଵ଻,ଶ
௞ ሺ1ሻ and constraint condition 

׬ ଵ଻,ଶݑ
௞ ሺݕሻ

ଵ
଴ ݇ ,ݕ݀ ൌ 1,2 at Ψ ൌ െ20 and Ψ ൌ 20 when ߙ ൌ 3.9. 

Ψ    ૚ૠ,૛࢛
૚ ሺ૚ሻ    ૚ૠ,૛࢛

૛ ሺ૚ሻ    ׬ ૚ૠ,૛࢛
૚ ሺ࢟ሻ

૚
૙      ׬ ૚ૠ,૛࢛

૛ ሺ࢟ሻ
૚
૙   

െ20    െ1.10976051 ൈ 10ିଵ଻    1.63202785 ൈ 10ିଵସ    1    1 
20	   2.79718628 ൈ 10ିଵ଺    െ1.33504319 ൈ 10ିଵସ    1    1 

Table 8. The approximate value of forcing condition ݑଵ଻,ଶ
௞ ሺ1ሻ and constraint condition 

׬ ଵ଻,ଶݑ
௞ ሺݕሻ

ଵ
଴ ݇ ,ݕ݀ ൌ 1,2 at Ψ ൌ െ20 and Ψ ൌ 20 when ߙ ൌ 4. 

Ψ    ૚ૠ,૛࢛
૚ ሺ૚ሻ    ૚ૠ,૛࢛

૛ ሺ૚ሻ    ׬ ૚ૠ,૛࢛
૚ ሺ࢟ሻ

૚
૙      ׬ ૚ૠ,૛࢛

૛ ሺ࢟ሻ
૚
૙   

െ20    െ7.85277215 ൈ 10ିଵ଻    1.67921232 ൈ 10ିଵହ    1    1 
20	   1.77440778 ൈ 10ିଵ଻    3.02535774 ൈ 10ିଵହ    1    1 

In order to study the behavior of multiple approximate solutions in a better view, we plot the 

normalized of the two branch approximate solutions of Equations (30) and (31) with respect to 
ଵ଻,ଶݑ
௞ ሺ0ሻ, ݇ ൌ 1,2 at some specific values of Ψ and ߙ in which the obtained results are generated from 

the ሺ17,2ሻ-truncated series approximation of ݑሺݕሻ. However, Figure 3 shows the normalized function 
௨భళ,మ
ೖ ሺ௬ሻ

௨భళ,మ
ೖ ሺ଴ሻ

, ݇ ൌ 1,2  at Ψ ൌ െ20  and Ψ ൌ 20  when ߙ ൌ 3.9 , while Figure 4 shows the normalized 

function 
௨భళ,మ
ೖ ሺ௬ሻ

௨భళ,మ
ೖ ሺ଴ሻ

, ݇ ൌ 1,2 at Ψ ൌ െ20 and Ψ ൌ 20 when ߙ ൌ 4. In these figures, we can see the almost 

similarity in the behavior of the two branches approximate solutions at the two mentioned specific 

value of Ψ when ߙ ൌ 3.9 and when ߙ ൌ 4. 
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Figure 3. Multiple solutions of Equations (30) and (31) via dimensionless transversal 

coordinate ݕ  when ߙ ൌ 3.9 : 
௨భళ,మ
భ ሺ௬ሻ

௨భళ,మ
భ ሺ଴ሻ

: red color, 
௨భళ,మ
మ ሺ௬ሻ

௨భళ,మ
మ ሺ଴ሻ

: blue color at (a) Ψ ൌ െ20  and  

(b) Ψ ൌ 20. 

 
(a) (b) 

Figure 4. Multiple solutions of Equations (30) and (31) via dimensionless transversal 

coordinate ݕ  when ߙ ൌ 4 : 
௨భళ,మ
భ ሺ௬ሻ

௨భళ,మ
భ ሺ଴ሻ

: red color, 
௨భళ,మ
మ ሺ௬ሻ

௨భళ,మ
మ ሺ଴ሻ

: blue color at (a) Ψ ൌ െ20  and  

(b) Ψ ൌ 20. 

 
(a) (b) 

Application 5.2: Fins are extensively used to enhance the heat transfer between a solid surface and its 

convective, radiative, or convective radiative surface. Finned surfaces are widely used, for instance, for 

cooling electric transformers, the cylinders of aircraft engines, and other heat transfer equipment. The 

temperature distribution of a straight rectangular fin with a power-law temperature dependent surface 

heat flux can be determined by the solutions of a one-dimensional steady state heat conduction 

equation which, in dimensionless form, is given as follows [47,48]: 

଴ܦ
ఈߠሺݔሻߠଷሺݔሻ ൌ

ସ

ଶହ
, 1 ൏ ߙ ൑ 2, 0 ൑ ݔ ൑ 1 (40)

subject to the boundary conditions: 

ᇱሺ0ሻߠ ൌ 0, ሺ1ሻߠ ൌ 1 (41)

The prediction and construction of multiple solutions for BVPs of fractional order is the fundamental 

target of this paper. Next, we will show in brief steps and calculations how we can predict and find out 

existence of multiple solutions for Equations (40) and (41). To do so, we consider firstly, Equations (40) 

and (41) and suppose that ߠሺ0ሻ ൌ  ଴. So, a new discretized form of Equations (40) and (41) can be obtainedߜ

as follows: 
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଴ܦ
ఈߠሺݔሻߠଷሺݔሻ ൌ

4
25

, 1 ൏ ߙ ൑ 2, 0 ൑ ݔ ൑ 1 (42)

subject to the split conditions: 

ሺ0ሻߠ ൌ ,଴ߜ ᇱሺ0ሻߠ ൌ 0 (43)

where ߠሺ1ሻ ൌ 1 is the additional forcing condition. Here, ߜ଴ denotes temperature of the fin tip and will 

be determined later by the rule of multiplicity of solutions from the process of computations thought 

the RPS technique. 

Similar to the previous procedure and discussions that used in Application 5.1, the FPS solution and 

the residual function for Equations (42) and (43) will take, respectively, the following form: 

ሻݔሺߠ ൌ ଴ߜ ൅෍෍ܿ௜௝ݔ௝ା௜ఈ
ଵ

௝ୀ଴

ஶ

௜ୀଵ

(44)

Resሺݔሻ ൌ ଴ܦ
ఈߠሺݔሻߠଷሺݔሻ െ

4
25

 (45)

while the ሺ݇, ݈ሻ-truncated series approximation of ߠሺݔሻ and the ሺ݇, ݈ሻ-resudial function that are derived 

from Equations (44) and (45) can be formulated, respectively, in form of: 

ሻݔ௞,௟ሺߠ ൌ ଴ߜ ൅෍෍ܿ௜௝ݔ௝ା௜ఈ
௟

௝ୀ଴

௞

௜ୀଵ

 (46)

Resሺ௞,௟ሻሺݔሻ ൌ ଴ܦ
ఈߠ௞,௟ሺݔሻߠ௞,௟

ଷ ሺݔሻ െ
4
25

 (47)

It is to be noted that the ሺ1,0ሻ-truncated series solution of Equations (42) and (43) is ߠଵ଴ሺݔሻ ൌ ଴ߜ ൅
ܿଵ଴ݔఈ  and the ሺ1,0ሻ-residual function is Resሺଵ,଴ሻሺݔሻ ൌ ܿଵ଴߁ሺߙ ൅ 1ሻሺߜ଴ ൅ ܿଵ଴ݔఈሻଷ െ

ସ

ଶହ
. Thus, using 

Equation (21) for ሺ݅, ݆ሻ ൌ ሺ1,0ሻ, we get ܿଵ଴ ൌ
ସ

ଶହఋబ
య௰ሺఈାଵሻ

. Similarly, the ሺ1,1ሻ-truncated series solution 

is ߠଵ,ଵሺݔሻ ൌ ଴ߜ ൅
ସ

ଶହఋబ
య௰ሺఈାଵሻ

ఈݔ ൅ ܿଵଵݔଵାఈ and the ሺ1,1ሻ-residual function is: 

Resሺଵ,ଵሻሺݔሻ ൌ ቆ
12ܿଵଵ
଴ߜ25

൅
12ܿଵଵ߁ሺ2 ൅ ሻߙ

ሺ1߁଴ߜ25 ൅ ሻߙ
ቇ ଵାఈݔ ൅ ቆ

12ܿଵଵ
ଶ

଴ߜ25
ଶ ൅

24ܿଵଵ
ଶ ሺ2߁ ൅ ሻߙ

଴ߜ25
ଶ߁ሺ1 ൅ ሻߙ

ቇ  ଶାଶఈݔ

																											൅ ቆ
4ܿଵଵ

ଷ

଴ߜ25
ଷ ൅

12ܿଵଵ
ଷ ሺ2߁ ൅ ሻߙ

଴ߜ25
ଷ߁ሺ1 ൅ ሻߙ

ቇ ଷାଷఈݔ ൅
256

଴ߜ390625
ଵଶ߁ሺ1 ൅ ሻଷߙ

ଷఈݔ

൅
192

଴ߜ15625
ሺ1߁଼ ൅ ሻଶߙ

ଶఈݔ

൅ ቆ
192ܿଵଵ

଴ߜ15625
ଽ߁ሺ1 ൅ ሻଶߙ

൅
64ܿଵଵ߁ሺ2 ൅ ሻߙ

଴ߜ15625
ଽ߁ሺ1 ൅ ሻଷߙ

ቇ ଵାଷఈݔ

൅
48

଴ߜ625
ସ߁ሺ1 ൅ ሻߙ

ఈݔ ൅ ቆ
96ܿଵଵ

଴ߜ625
ହ߁ሺ1 ൅ ሻߙ

൅
48ܿଵଵ߁ሺ2 ൅ ሻߙ

଴ߜ625
ହ߁ሺ1 ൅ ሻଶߙ

ቇ ଵାଶఈݔ

൅ ቆ
48ܿଵଵ

ଶ

଴ߜ625
଺߁ሺ1 ൅ ሻߙ

൅
48ܿଵଵ

ଶ ሺ2߁ ൅ ሻߙ

଴ߜ625
଺߁ሺ1 ൅ ሻଶߙ

ቇ ଶାଷఈݔ ൅ ଴ߜ
ଷܿଵଵ߁ሺ2 ൅ ݔሻߙ

൅ ଴ߜ3
ଶܿଵଵ

ଶ ሺ2߁ ൅ ଶାఈݔሻߙ ൅ ଴ܿଵଵߜ3
ଷ ሺ2߁ ൅ ଷାଶఈݔሻߙ ൅ ܿଵଵ

ସ ሺ2߁ ൅  ସାଷఈݔሻߙ

(48)

More precisely, according to Equation (21) the solution of equation ܦ଴Resሺଵ,ଵሻሺ0ሻ ൌ 0 will gives 

ܿଵଵ ൌ 0. Thus, based on the initial guess approximation and the form of terms of Equation (42) taking 
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into account the form of Equations (46) and (47), it easy to see that ܿ௜ଵ ൌ 0, ݅ ൌ 1, 2, 3, …. Therefore, 

according to Equation (44) a new discretized form of FPS solution for Equations (42) and (43) can be 

obtained and expressed as: 

ሻݔሺߠ ൌ ଴ߜ ൅෍ܿ௜଴ݔ௜ఈ
ஶ

௜ୀଵ

 (49)

and hence the ሺ݇, 0ሻ-truncated series approximation of ߠሺݔሻ can formulated as: 

ሻݔ௞,଴ሺߠ ൌ ଴ߜ ൅
4

଴ߜ25
ଷ߁ሺߙ ൅ 1ሻ

ఈݔ ൅෍ܿ௜଴ݔ௜ఈ
௞

௜ୀଶ

 (50)

In the shape of shapes by continuing in this procedure and using Equations (46) and (47) taking into 

account Equation (21), we can easily obtained that ܿଶ଴ ൌ െ ସ଼

଺ଶହఋళ௰ሺଵାଶఈሻ
, ܿଷ଴ ൌ

ଵଽଶሺଷ௰ሺଵାఈሻమାଶ௰ሺଵାଶఈሻሻ

ଵହ଺ଶହఋబ
భభ௰ሺଵାఈሻమ௰ሺଵାଷఈሻ

, 

and so on. Consequently, based on Equation (50) the ሺ3,0ሻ-truncated series approximation of ߠሺݔሻ 
generated from the RPS method can be written as: 

ሻݔଷ,଴ሺߠ ൌ ଴ߜ ൅
4

଴ߜ25
ଷ߁ሺ1 ൅ ሻߙ

ఈݔ െ
48

଴ߜ625
଻߁ሺ1 ൅ ሻߙ2

ଶఈݔ

൅
192൫3߁ሺ1 ൅ ሻଶߙ ൅ ሺ1߁2 ൅ ሻ൯ߙ2
଴ߜ15625

ଵଵ߁ሺ1 ൅ ሺ1߁ሻଶߙ ൅ ሻߙ3
 ଷఈݔ

(51)

It is clear that, all the terms in Equation (51) contain an unknown certain parameter ߜ଴ and to 

determine its introductory values we must substitute the boundary condition ߠሺ1ሻ ൌ1 back into 

Equation (51) to obtain a nonlinear algebraic equation in one variable, which can be easy solved using 

symbolic computation software. But on the other aspect as well, if we generate and obtain  

ሺ300,0ሻ-truncated series approximation of ߠሺݔሻ by using the same procedure discussed, then two 

various values of ߜ଴ have been calculated and listed in Table 9 when ߙ ൌ 1.9 and when ߙ ൌ 2. 

Table 9. The approximate numerical values of ߜ଴
௞, ݇ ൌ 1,2 when ߙ ൌ 1.9 and when ߙ ൌ 2 

for ߠଷ଴଴,଴ሺݔሻ. 

૙ࢾ
૚ ൌ ૜૙૙,૙ࣂ

૚ ሺ૙, ࢻ ൌ ૚. ૢሻ ࢾ૙
૛ ൌ ૜૙૙,૙ࣂ

૛ ሺ૙, ࢻ ൌ ૚. ૢሻ ࢾ૙
૚ ൌ ૜૙૙,૙ࣂ

૚ ሺ૙, ࢻ ൌ ૛ሻ ࢾ૙
૛ ൌ ૜૙૙,૙ࣂ

૛ ሺ૙, ࢻ ൌ ૛ሻ 
0.881044762595 0.459213895856 0.894427190911 0.447213595446

It is clear from the table that two ߜ-plateaus can be identified and consequently we conclude that 

the RPS method furnishes multiple solutions to Equations (40) and (41). It is worth mentioning here 

that Equation (46) (and simply Equation (51)) indicates existence of two solutions. On the  

other hand, the existence of a unique or multiple solutions in terms of Equation (46) (and simply 

Equation (51)) for the original BVP which is covered by Equations (40) and (41) depends on the fact 

that whether the forcing condition ߠሺ1ሻ ൌ 1  admits a unique or multiple values for the formally 

introduced prescribed parameters ߜ଴. 

Finally, in Figure 5 we plot the first and the second approximate multiple solutions of  

Equations (40) and (41) that obtained from the ሺ300,0ሻ -truncated series approximation of ߠሺݔሻ 
when ߙ	 ൌ 1.9  and when ߙ ൌ 2 . In fact, we do this for the same reasons that mentioned in the 

Application 5.1, where the same conclusion can be obtained too. On the other direction, as in the 
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previous application, we can see that the sketch of the two branches approximate RPS solutions that 

the problem admitted are agree best and nicely with method of [34] when ߙ ൌ 1.9 and method of [35] 

ߙ ൌ 2.  

Figure 5. Multiple solutions of Equations (30) and (31): ߠଷ଴଴,଴
ଵ ሺݔሻ: red color, ߠଷ଴଴,଴

ଶ ሺݔሻ: 

blue color when (a) ߙ ൌ 1.9 and (b) ߙ ൌ 2. 

 
(a) (b) 

6. Conclusions 

It is very important not to lose any solution of nonlinear FDEs with boundary conditions in 

engineering and physical sciences. In this regard, the present paper has introduced a new methodology 

namely the RPS method to prevent this, so that the presented method is not only able to predict the 

existence of multiple solutions, but also to calculate all branches of solutions effectively at the same 

time by using an appropriate initial guess approximation. We also noted that the RPS solutions were 

computed via a simple algorithm without any need for perturbation techniques, special 

transformations, or discretization. The validity of this method has been checked by two nonlinear 

models, one of them arises in mixed convection flows and the other one arises in heat transfer, which 

both admit multiple or dual solutions. 
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