
Entropy 2014, 16, 221-232; doi:10.3390/e16010221
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Malliavin Weight Sampling: A Practical Guide
Patrick B. Warren 1,* and Rosalind J. Allen 2,*

1 Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral, CH63 3JW, UK
2 Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy,

the University of Edinburgh, the Kings Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK

* Authors to whom correspondence should be addressed;
E-Mails: patrick.warren@unilever.com (P.B.W.); rallen2@ph.ed.ac.uk (R.J.A.);
Tel.: +44-151-641-3352 (P.B.W.); +44-131-651-7197 (R.J.A.).

Received: 25 September 2013; in revised form: 9 October 2013 / Accepted: 18 October 2013 /
Published: 27 December 2013

Abstract: Malliavin weight sampling (MWS) is a stochastic calculus technique for
computing the derivatives of averaged system properties with respect to parameters in
stochastic simulations, without perturbing the system’s dynamics. It applies to systems in
or out of equilibrium, in steady state or time-dependent situations, and has applications in
the calculation of response coefficients, parameter sensitivities and Jacobian matrices for
gradient-based parameter optimisation algorithms. The implementation of MWS has been
described in the specific contexts of kinetic Monte Carlo and Brownian dynamics simulation
algorithms. Here, we present a general theoretical framework for deriving the appropriate
MWS update rule for any stochastic simulation algorithm. We also provide pedagogical
information on its practical implementation.

Keywords: stochastic calculus; Brownian dynamics

1. Introduction

Malliavin weight sampling (MWS) is a method for computing derivatives of averaged system
properties with respect to parameters in stochastic simulations [1,2]. The method has been used in
quantitative financial modelling to obtain the “Greeks” (price sensitivities) [3]; and as the Girsanov
transform, in kinetic Monte Carlo simulations for systems biology [4]. Similar ideas have been used to
study fluctuation-dissipation relations in supercooled liquids [5]. However, MWS appears to be relatively

Entropy 2014, 16 222

unknown in the fields of soft matter, chemical and biological physics, perhaps because the theory is
relatively impenetrable for non-specialists, being couched in the language of abstract mathematics (e.g.,
martingales, Girsanov transform, Malliavin calculus, etc.); an exception in financial modelling is [6].

MWS works by introducing an auxiliary stochastic quantity, the Malliavin weight, for each parameter
of interest. The Malliavin weights are updated alongside the system’s usual (unperturbed) dynamics,
according to a set of rules. The derivative of any system function, A, with respect to a parameter of
interest is then given by the average of the product of A with the relevant Malliavin weight; or in other
words, by a weighted average of A, in which the weight function is given by the Malliavin weight.
Importantly, MWS works for non-equilibrium situations, such as time-dependent processes or driven
steady states. It thus complements existing methods based on equilibrium statistical mechanics, which
are widely used in soft matter and chemical physics.

MWS has so far been discussed only in the context of specific simulation algorithms. In this paper,
we present a pedagogical and generic approach to the construction of Malliavin weights, which can be
applied to any stochastic simulation scheme. We further describe its practical implementation in some
detail using as our example one dimensional Brownian motion in a force field.

2. The Construction of Malliavin Weights

The rules for the propagation of Malliavin weights have been derived for the kinetic Monte-Carlo
algorithm [4,7], for the Metropolis Monte-Carlo scheme [5] and for both underdamped and overdamped
Brownian dynamics [8]. Here, we present a generic theoretical framework, which encompasses these
algorithms and also allows extension to other stochastic simulation schemes.

We suppose that our system evolves in some state space, and a point in this state space is denoted
as S. Here, we assume that the state space is continuous, but our approach can easily be translated to
discrete or mixed discrete-continuous state spaces. Since the system is stochastic, its state at time t is
described by a probability distribution, P (S). In each simulation step, the state of the system changes
according to a propagator, W (S → S ′), which gives the probability that the system moves from point S
to point S ′ during an application of the update algorithm. The propagator has the property that:

P ′(S ′) =

∫
S

dS W (S → S ′)P (S) (1)

where P ′(S) is the probability distribution after the update step has been applied and the integral is over
the whole state space. We shall write this in a shorthand notation as:

P ′ =

∫
WP (2)

Integrating Equation (1) over S ′, we see that the propagator must obey
∫
S′ W (S → S ′) = 1. It is

important to note, however, that we do not assume the detailed balance condition Peq(S)W (S → S ′) =

Peq(S
′)W (S ′ → S) (for some equilibrium Peq(S)). Thus, our results apply to systems whose dynamical

rules do not obey detailed balance (such as chemical models of gene regulatory networks [9]), as well as
to systems out of steady state. We observe that the (finite) product:

W(S1, . . . , Sn) = W (S1 → S2)× · · · ×W (Sn−1 → Sn) (3)

Entropy 2014, 16 223

is proportional to the probability of occurrence of a trajectory of states, {S1, . . . , Sn}, and can be
interpreted as a trajectory weight.

Let us now consider the average of some quantity, A(S), over the state space, in shorthand:

〈A〉 =

∫
AP (4)

The quantity, A, might well be a complicated function of the state of the system: for example the extent
of crystalline order in a particle-based simulation, or a combination of the concentrations of various
chemical species in a simulation of a biochemical network. We suppose that we are interested in the
sensitivity of 〈A〉 to variations in some parameter of the simulation, which we denote as λ. This might
be one of the force field parameters (or the temperature) in a particle-based simulation or a rate constant
in a kinetic Monte Carlo simulation. We are interested in computing ∂〈A〉/∂λ. This quantity can be
written as:

∂〈A〉
∂λ

=

∫
AP Qλ (5)

where:
Qλ =

∂ lnP

∂λ
(6)

(using the fact that ∂ lnP/∂λ = (1/P)∂P/∂λ).
Let us now suppose that we track in our simulation not only the physical state of the system, but also

an auxiliary stochastic variable, which we term qλ. At each simulation step, qλ is updated according to a
rule that depends on the system state; this does not perturb the system’s dynamics, but merely acts as a
“readout”. By tracking qλ, we extend the state space, so that S becomes {S, qλ}. We can then define the
average 〈qλ〉S , which is an average of the value of qλ in the extended state space, with the constraint that
the original (physical) state space point is fixed at S (see further below).

Our aim is to define a set of rules for updating qλ, such that 〈qλ〉S = Qλ, i.e., such that the average
of the auxiliary variable, for a particular state space point, measures the derivative of the probability
distribution with respect to the parameter of interest, λ. If this is the case then, from Equation (5):

∂〈A〉
∂λ

= 〈Aqλ〉 (7)

The auxiliary variable, qλ, is the Malliavin weight corresponding to the parameter, λ.
How do we go about finding the correct updating rule? If the Malliavin weight exists, we should be

able to derive its updating rule from the system’s underlying stochastic equations of motion. We obtain
an important clue from differentiating Equation (1) with respect to λ. Extending the shorthand notation,
one finds:

P ′Q′λ =

∫
WP

(
Qλ +

∂ lnW

∂λ

)
(8)

This strongly suggests that the rule for updating the Malliavin weight should be:

q′λ = qλ +
∂ lnW

∂λ
(9)

In fact, this is correct. The proof is not difficult and, for the case of Brownian dynamics, can be
found in the supplementary material for [8]. It involves averaging Equation (9) in the extended state
space, {S, qλ}.

From a practical point of view, for each time step, we implement the following procedure:

Entropy 2014, 16 224

• propagate the system from its current state, S, to a new state, S ′, using the algorithm that
implements the stochastic equations of motion (Brownian, kinetic Monte-Carlo, etc.);

• with knowledge of S and S ′, and the propagator,W (S → S ′), calculate the change in the Malliavin
weight ∆qλ = ∂ lnW (S → S ′)/∂λ;

• update the Malliavin weight according to qλ → q′λ = qλ + ∆qλ.

At the start of the simulation, the Malliavin weight is usually initialised to qλ = 0.
Let us first suppose that our system is not in steady state. However, rather, the quantity, 〈A〉, in

which we are interested is changing in time, and likewise, ∂〈A(t)〉/∂λ is a time-dependent quantity. To
compute ∂〈A(t)〉/∂λ, we run N independent simulations, in each one tracking, as a function of time
A(t), qλ(t) and the product, A(t) qλ(t). The quantities, 〈A(t)〉 and ∂〈A(t)〉/∂λ, are then given by:

〈A(t)〉 ≈ 1

N

N∑
i=1

Ai(t),
∂〈A(t)〉
∂λ

≈ 1

N

N∑
i=1

Ai(t) qλ,i(t) (10)

where Ai(t) is the value of A(t) recorded in the ith simulation run (and likewise for qλ,i(t)). Error
estimates can be obtained from the variance among the replicate simulations.

If, instead, our system is in steady state, the procedure needs to be modified slightly. This is because
the variance in the values of qλ(t) across replicate simulations increases linearly in time (this point
is discussed further below). For long times, computation of ∂〈A〉/∂λ using Equation (10) therefore
incurs a large statistical error. Fortunately, this problem can easily be solved, by computing the
correlation function:

C(t, t′) = 〈A(t) [qλ(t)− qλ(t′)]〉 (11)

In steady state, C(t, t′) = C(t − t′), with the property that C(∆t) → ∂A/∂λ as ∆t → ∞. In a single
simulation run, we simply measure qλ(t) and A(t) at time intervals separated by ∆t (which is typically
multiple simulation steps). At each measurement, we compute A(t) [qλ(t) − qλ(t − ∆t)]. We then
average this latter quantity over the whole simulation run to obtain an estimate of ∂〈A〉/∂λ. For this
estimate to be accurate, we require that ∆t is long enough that C(∆t) has reached its plateau value; this
typically means that ∆t should be longer than the typical relaxation time of the system’s dynamics. The
correlation function approach is discussed in more detail in [7,8].

Returning to a more theoretical perspective, it is interesting to note that the rule for updating the
Malliavin weight, Equation (9), depends deterministically on S and S ′. This implies that the value of the
Malliavin weight at time t is completely determined by the trajectory of system states during the time
interval, 0→ t. In fact, it is easy to show that:

qλ =
∂ lnW
∂λ

(12)

where W is the trajectory weight defined in Equation (3). Similar expressions are given in [5,7]. Thus,
the Malliavin weight, qλ, is not fixed by the state point, S, but by the entire trajectory of states that have
led to state point S. Since many different trajectories can lead to S, many values of qλ are possible for
the same state point, S. The average 〈qλ(t)〉S is actually the expectation value of the Malliavin weight,
averaged over all trajectories that reach state point S at time t. This can be used to obtain an alternative
proof that 〈qλ〉S = ∂ lnP/∂λ. Suppose we sample N trajectories, of which NS end up at state point S

Entropy 2014, 16 225

(or a suitably defined vicinity thereof, in a continuous state space). We have P (S) = 〈NS〉/N . Then,
the Malliavin property implies ∂P/∂λ = 〈NS qλ〉/N , and hence, ∂ lnP/∂λ = 〈NS qλ〉/〈NS〉 = 〈qλ〉S .

3. Multiple Variables, Second Derivatives and the Algebra of Malliavin Weights

Up to now, we have assumed that the quantity, A, does not depend explicitly on the parameter, λ.
There may be cases, however, when A does have an explicit λ-dependence. In these cases, Equation (7)
should be replaced by:

∂〈A〉
∂λ

=
〈∂A
∂λ

〉
+ 〈Aqλ〉 (13)

If we set A to be a constant in this, we immediately obtain the general result that 〈qλ〉 = 0. Equation (13)
reveals a kind of ‘algebra’ for Malliavin weights: we see that the operations of taking an expectation
value and taking a derivative can be commuted, provided the Malliavin weight is introduced as
the commutator.

We can also extend our analysis further to allow us to compute higher derivatives with respect to
the parameters. These may be useful, for example, for increasing the efficiency of gradient-based
parameter optimisation algorithms. Taking the derivative of Equation (13) with respect to a second
parameter, µ, gives:

∂2〈A〉
∂λ∂µ

=
∂

∂µ

〈∂A
∂λ

〉
+
∂〈Aqλ〉
∂µ

=
〈 ∂2A

∂λ∂µ

〉
+
〈∂A
∂λ

qµ

〉
+
〈
A
∂qλ
∂µ

〉
+
〈∂A
∂µ

qλ

〉
+ 〈Aqλ qµ〉

= 〈A (qλµ + qλqµ)〉+
〈∂A
∂λ

qµ

〉
+
〈∂A
∂µ

qλ

〉
+
〈 ∂2A

∂λ∂µ

〉
(14)

where, in the second line, we iterate the commutation relation and, in the third line, we collect like terms
and introduce:

qλµ =
∂qλ
∂µ

(15)

In the case where A is independent of the parameters, this result simplifies to:

∂2〈A〉
∂λ∂µ

= 〈A (qλµ + qλqµ)〉 (16)

The quantity, qλµ, here is a new, second order Malliavin weight, which, from Equations (12)
and (15), satisfies:

qλµ =
∂2 lnW
∂λ∂µ

(17)

To compute second derivatives with respect to the parameters, we should therefore track these second
order Malliavin weights in our simulation, updating them alongside the existing Malliavin weights by
the rule:

q′λµ = qλµ +
∂2 lnW (S → S ′)

∂λ∂µ
(18)

Setting A as a constant in Equation (16), we also obtain the interesting result that 〈qλµ〉 = −〈qλqµ〉.

Entropy 2014, 16 226

Steady state problems can be approached by extending the correlation function method to second
order weights. Define, cf. Equation (11):

C(t, t′) = 〈A(t) {[qλµ(t) + qλ(t)qµ(t)]− [qλµ(t′) + qλ(t
′)qµ(t′)]}〉 (19)

As in the first order case, in steady state, we expect C(t, t′) = C(t − t′), with the property that
C(∆t)→ ∂2〈A〉/∂λ∂µ as ∆t→∞.

4. One-Dimensional Brownian Motion in a Force Field

We now demonstrate this machinery by way of a practical, but very simple, example, namely, one-
dimensional (overdamped) Brownian motion in a force field. In this case, the state space is specified
simply by the particle position, x, which evolves according to the Langevin equation:

dx

dt
= f(x) + η (20)

where f(x) is the force field and η is Gaussian white noise of amplitude 2T , where T is temperature.
Without loss of generality, we have chosen units, so that there is no prefactor multiplying the force field.
We discretise the Langevin equation to the following updating rule:

x′ = x+ f(x) δt+ ξ (21)

where δt is the time step and ξ is a Gaussian random variate with zero mean and variance 2T δt.
Corresponding to this updating rule is an explicit expression for the propagator:

W (x→ x′) =
1√

4πT δt
exp
(
−(x′ − x− f(x) δt)2

4T δt

)
(22)

This follows from the statistical distribution of ξ. Let us suppose that the parameter of interest, λ, enters
into the force field (the temperature, T , could also be chosen as a parameter). Making this assumption:

∂ lnW (x→ x′)

∂λ
=

(x′ − x− f δt)
2T

∂f

∂λ
(23)

We can simplify this result by noting that from Equation (21), x′− x− f δt = ξ. Making use of this, the
final updating rule for the Malliavin weight is:

q′λ = qλ +
ξ

2T

∂f

∂λ
(24)

where ξ is the exact same value that was used for updating the position in Equation (21). Because the
value of ξ is the same for the updates of position and of qλ, the change in qλ is completely determined
by the end points, x and x′. The derivative, ∂f/∂λ, should be evaluated at x, since that is the position at
which the force is computed in Equation (21). Since ξ in Equation (21) is a random variate uncorrelated
with x, averaging Equation (24) shows that 〈q′λ〉 = 〈qλ〉. As the initial condition is qλ = 0, this
means that 〈qλ〉 = 0, as predicted in the previous section. Equation (24) is essentially the same as that
derived in [8].

Entropy 2014, 16 227

If we differentiate Equation (23) with respect to a second parameter, µ, we get:

∂2 lnW (x→ x′)

∂λ∂µ
=

(x′ − x− f δt)
2T

∂2f

∂λ∂µ
− δt

2T

∂f

∂λ

∂f

∂µ
(25)

Hence, the updating rule for the second order Malliavin weight can be written as:

q′λµ = qλµ +
ξ

2T

∂2f

∂λ∂µ
− δt

2T

∂f

∂λ

∂f

∂µ
(26)

where, again, ξ is the exact same value as that used for updating the position in Equation (21). If we
average Equation (26) over replicate simulation runs, we find 〈q′λµ〉 = 〈qλµ〉−(δt/2T)(∂f/∂λ)(∂f/∂µ).
Hence, the mean value, 〈qλµ〉, drifts in time, unlike 〈qλ〉 or 〈qµ〉. However, one can show that the mean
value of the sum, 〈(qλµ + qλqµ)〉, is constant in time and equal to zero, as long as, initially, qλ = qµ = 0.

Now, let us consider the simplest case of a particle in a linear force field, f = −κx+h (also discussed
in [8]). This corresponds to a harmonic trap with the potential U = 1

2
κx2 − hx. We let the particle start

from x0 at t = 0 and track its time-dependent relaxation to the steady state. We shall set T = 1 for
simplicity. The Langevin equation can be solved exactly for this case, and the mean position evolves
according to:

〈x(t)〉 = x0e
−κt +

h

κ
(1− e−κt) (27)

We suppose that we are interested in derivatives with respect to both h and κ, for a “baseline” parameter
set in which κ is finite, but h = 0. Taking derivatives of Equation (27) and setting h = 0, we find:

∂〈x(t)〉
∂h

=
1− e−κt

κ
,

∂〈x〉(t)
∂κ

= −x0te−κt ,
∂2〈x(t)〉
∂h∂κ

=
te−κt

κ
− 1− e−κt

κ2
(28)

We now show how to compute these derivatives using Malliavin weight sampling. Applying the
definitions in Equations (24) and (26), the Malliavin weight increments are:

q′h = qh +
ξ

2
, q′κ = qκ −

x ξ

2
, q′hκ = qhκ +

x δt

2
(29)

and the position update itself is:
x′ = x− κx δt+ ξ (30)

We track these Malliavin weights in our simulation and use them to calculate derivatives according to:

∂〈x(t)〉
∂h

= 〈x(t)qh(t)〉 ,
∂〈x(t)〉
∂κ

= 〈x(t)qκ(t)〉 ,
∂2〈x(t)〉
∂h∂κ

= 〈x(t)(qhκ(t) + qh(t)qκ(t))〉 (31)

Equations (29)–(31) have been coded up as a MATLAB script, described in Section 5. A typical result
generated by running this script is shown in Figure 1. Equations (29) and (30) are iterated with δt = 0.01

up to t = 5, for a trap strength κ = 2 and initial position x0 = 1. The weighted averages in Equation (31)
are evaluated as a function of time, forN = 105 samples, as in Equation (10). These results are shown as
the solid lines in Figure 1. The dashed lines are theoretical predictions for the time dependent derivatives
from Equation (28). As can be seen, the agreement between the time-dependent derivatives and the
Malliavin weight averages is very good.

Entropy 2014, 16 228

Figure 1. Time-dependent derivatives, ∂〈x〉/∂h (top curve, blue), ∂〈x〉/∂κ (middle curve,
green) and ∂2〈x〉/∂h∂κ (bottom curve, red). Solid lines (slightly noisy) are the Malliavin
weight averages as indicated in the Figure, generated by running the MATLAB script
described in Section 5. Dashed lines are theoretical predictions from Equation (28).

0 1 2 3 4 5-0.4

-0.2

0.0

0.2

0.4

0.6

As discussed briefly above, in this procedure, the sampling error in the computation of ∂〈A(t)〉/∂λ
is expected to grow with time. Figure 2 shows the mean square Malliavin weight as a function of time
for the same problem. For the first order weights, qh and qκ, the growth rate is typically linear in time.
Indeed, from Equation (29), one can prove that in the limit δt→ 0 (see Section 5):

d〈q2h〉
dt

=
1

2
,

d〈q2κ〉
dt

=
〈x2〉

2
(32)

Thus, qh behaves exactly as a random walk, as should be obvious from the updating rule. The
other weight, qκ, also ultimately behaves as a random walk, since 〈x2〉 = 1/κ in steady state (from
equipartition). Figure 2 also shows that the second order weight, qhκ, grows superdiffusively; one
can show that, eventually, 〈(qhκ + qhqκ)

2〉 ∼ t2, although the transient behaviour is complicated. Full
expressions are given in Section 5. This suggests that computation of second order derivatives is likely to
suffer more severely from statistical sampling problems than the computation of first order derivatives.

Figure 2. Growth of mean square Malliavin weights with time. The solid lines are from
simulations and the dashed lines are from Equation (35) in the Appendix. Parameters are as
for Figure 1.

0 1 2 3 4 50

2

4

6

Entropy 2014, 16 229

5. Conclusions

In this paper, we have provided an outline of the generic use of Malliavin weights for sampling
derivatives in stochastic simulations, with an emphasis on practical aspects. The usefulness of MWS
for a particular simulation scheme hinges on the simplicity, or otherwise, of constructing the propagator,
W (S → S ′), which fixes the updating rule for the Malliavin weights according to Equation (9). The
propagator is determined by the algorithm used to implement the stochastic equations of motion; MWS
may be easier to implement for some algorithms than for others. We note, however, that there is often
some freedom of choice about the algorithm, such as the choice of a stochastic thermostat in molecular
dynamics, or the order in which update steps are implemented. In these cases, a suitable choice may
simplify the construction of the propagator and facilitate the use of Malliavin weights.

Acknowledgments

Rosalind J. Allen is supported by a Royal Society University Research Fellowship.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Bell, D.R. The Malliavin Calculus; Dover: Mineola, NY, USA, 2006.
2. Nualart, D. The Malliavin Calculus and Related Topics; Springer: New York, NY, USA, 2006.
3. Fournié, E.; Lasry, J.M.; Lebuchoux, J.; Lions, P.L.; Touzi, N. Applications of Malliavin calculus

to Monte Carlo methods in finance. Financ. Stoch. 1999, 3, 391–412.
4. Plyasunov, A.; Arkin, A.P. Efficient stochastic sensitivity analysis of discrete event systems.

J. Comput. Phys. 2007, 221, 724–738.
5. Berthier, L. Efficient measurement of linear susceptibilities in molecular simulations: Application

to aging supercooled liquids. Phys. Rev. Lett. 2007, 98, 220601.
6. Chen, N.; Glasserman, P. Malliavin Greeks without Malliavin calculus. Stoch. Proc. Appl. 2007,

117, 1689–1723.
7. Warren, P.B.; Allen, R.J. Steady-state parameter sensitivity in stochastic modeling via trajectory

reweighting. J. Chem. Phys. 2012, 136, 104106.
8. Warren, P.B.; Allen, R.J. Malliavin weight sampling for sensitivity coefficients in Brownian

dynamics simulations. Phys. Rev. Lett. 2012, 109, 250601.
9. Warren, P.B.; ten Wolde, P.R. Chemical models of genetic toggle switches. J. Phys. Chem. B 2005,

109, 6812–6823.

Entropy 2014, 16 230

Appendix

MATLAB Script

The MATLAB script in Listing 1 was used to generate the results shown in Figure 1. It implements
Equations (29)–(31) above, making extensive use of the compact MATLAB syntax for array operations,
for instance, invoking ‘.*’ for element-by-element multiplication of arrays.

Listing 1. MATLAB script used to generate Figure 1.

1 c l e a r a l l
2 randn (' s eed ' , 1 2 3 4 5) ;
3 kappa = 2 ; x0 = 1 ; t e n d = 5 ; d t = 0 . 0 1 ; nsamp = 1 0 ˆ 5 ;
4 n p t = round (t e n d / d t) + 1 ;
5 t = (0 : npt −1) ' * d t ;
6 x = z e r o s (npt , 1) ; x i = z e r o s (npt , 1) ;
7 qh = z e r o s (npt , 1) ; qk = z e r o s (npt , 1) ; qhk = z e r o s (npt , 1) ;
8 x av = z e r o s (npt , 1) ; xqh av = z e r o s (npt , 1) ;
9 xqk av = z e r o s (npt , 1) ; xqhk av = z e r o s (npt , 1) ;

10 f o r samp = 1 : nsamp
11 x (1) = x0 ; qh (1) = 0 ; qk (1) = 0 ; qhk (1) = 0 ;
12 x i = randn (npt , 1) * s q r t (2* d t) ;
13 f o r i = 1 : npt−1
14 x (i +1) = x (i) − kappa *x (i)* d t + x i (i) ;
15 qh (i +1) = qh (i) + 0 . 5 * x i (i) ;
16 qk (i +1) = qk (i) − 0 . 5 * x (i)* x i (i) ;
17 qhk (i +1) = qhk (i) + 0 . 5 * x (i)* d t ;
18 end
19 x av = x av + x ;
20 xqh av = xqh av + x . * qh ;
21 xqk av = xqk av + x . * qk ;
22 xqhk av = xqhk av + x . * (qhk + qh . * qk) ;
23 end
24 x av = x av / nsamp ; xqh av = xqh av / nsamp ;
25 xqk av = xqk av / nsamp ; xqhk av = xqhk av / nsamp ;
26 hold on
27 p l o t (t , x av , ' k ') ; p l o t (t , xqh av , ' b ') ;
28 p l o t (t , xqk av , ' g ') ; p l o t (t , xqhk av , ' r ') ;
29 p l o t (t , x0*exp(−kappa * t) , ' k−− ')
30 p l o t (t , (1−exp(−kappa * t)) / kappa , ' b−− ')
31 p l o t (t , −x0* t . * exp(−kappa * t) , ' g−− ')
32 p l o t (t , t . * exp(−kappa * t) / kappa−(1−exp(−kappa * t)) / (kappa ˆ 2) , ' r−− ')
33 r e s u l t = [t x av xqh av xqk av xqhk av] ;
34 save (' bd1d . d a t ' , '− a s c i i ' , ' r e s u l t ') ;

Entropy 2014, 16 231

Here is a brief explanation of the script. Lines 1–3 initialise the problem and the parameter values.
Lines 4 and 5 calculate the number of points in a trajectory and initialise a vector containing the time
coordinate of each point. Lines 6–9 set aside storage for the actual trajectory, Malliavin weights and
cumulative statistics. Lines 10–23 implement a pair of nested loops, which are the kernel of the
simulation. Within the outer (trajectory sampling) loop, Line 11 initialises the particle position and
Malliavin weights, Line 12 precomputes a vector of random displacements (Gaussian random variates)
and Lines 13–18 generate the actual trajectory. Within the inner (trajectory generating loop), Lines 14–17
are a direct implementation of Equations (29) and (30). After each individual trajectory has been
generated, the cumulative sampling step implied by Equation (31) is done in Lines 19–22; after all the
trajectories have been generated, these quantities are normalised in Lines 24 and 25. Finally, Lines 26–32
generate a plot similar to Figure 1 (albeit with the addition of 〈x〉), and Lines 33 and 34 show how the
data can be exported in tabular format for replotting using an external package.

Listing 1 is complete and self-contained. It will run in either MATLAB or Octave. One minor
comment is perhaps in order. The choice was made to precompute a vector of Gaussian random variates,
which are used as random displacements to generate the trajectory and update the Malliavin weights. One
could equally well generate random displacements on-the-fly, in the inner loop. For this one-dimensional
problem, storage is not an issue, and it seems more elegant and efficient to exploit the vectorisation
capabilities of MATLAB. For a more realistic three-dimensional problem, with many particles (and a
different programming language), it is obviously preferable to use an on-the-fly approach.

Selected Analytic Results

Here, we present analytic results for the growth in time of the mean square Malliavin weights. We
can express the rate of growth of the mean of a generic function, f(x, qh, qκ, qhκ), as:

d〈f〉
dt

= lim
δt→0

〈f(x′, q′h, q
′
κ, q
′
hκ)− f(x, qh, qκ, qhκ)〉

δt
(33)

where, on the right-hand side (RHS), the values of x′, q′h, q′κ and qhκ are substituted from the updating
rules in Equations (29) and (30). In calculating the RHS average, we note that the distribution of ξ is
a Gaussian independent of the position and Malliavin weights, and thus, one can substitute 〈ξ〉 = 0,
〈ξ2〉 = 2 δt, 〈ξ3〉 = 0, 〈ξ4〉 = 12 δt2, etc.. Proceeding in this way, with judicious choices for f , one can
obtain the following set of coupled ordinary differential equations (ODEs):

d〈q2h〉
dt

=
1

2
,

d〈q2κ〉
dt

=
〈x2〉

2
,

d〈x2〉
dt

+ 2κ〈x2〉 = 2 ,
d〈xqh〉
dt

+ κ〈xqh〉 = 1

d〈x2q2h〉
dt

+ 2κ〈x2q2h〉 = 2〈q2h〉+ 4〈xqh〉+
〈x2〉

2
,

d〈xqhqκ〉
dt

+ κ〈xqhqκ〉 = −〈xqh〉 −
〈x2〉

2

d〈(qhκ + qhqκ)
2〉

dt
=
〈q2κ〉

2
− 〈xqhqκ〉+

〈x2q2h〉
2

(
=
〈(qκ − xqh)2〉

2

)
(34)

Entropy 2014, 16 232

Some of these have already been encountered in the main text. The last one is for the desired mean
square second order weight. The ODEs can be solved with the initial conditions that at t = 0, all
averages involving Malliavin weights vanish, but 〈x2〉 = x20. The results include inter alia

〈q2h〉 =
t

2
, 〈q2κ〉 =

t

2κ
+

(κx20 − 1)(1− e−2κt)
4κ2

〈(qhκ + qhqκ)
2〉 =

2κ2t2 + (19 + κx20)κt+ 2κx20 − 34

8κ3
+

2κt+ 10− κx20
2κ3

e−κt

+
(1− κx20)κt+ 2κx20 − 6

8κ3
e−2κt (35)

These are shown as the dashed lines in Figure 2. The leading behaviour of the last as t→∞ is:

〈(qhκ + qhqκ)
2〉 =

t2

4κ
+ subdominant terms (36)

however, the approach to the pure asymptotic limit is slow.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	The Construction of Malliavin Weights
	Multiple Variables, Second Derivatives and the Algebra of Malliavin Weights
	One-Dimensional Brownian Motion in a Force Field
	Conclusions
	Acknowledgments
	Conflicts of Interest
	Appendix
	MATLAB Script
	Selected Analytic Results

