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Abstract: This paper investigates the applicability of thermodynamic concepts and
principles to competitive systems. We show that Tsallis entropies are suitable for the
characterisation of systems with transitive competition when mutations deviate from Gibbs
mutations. Different types of equilibria in competitive systems are considered and analysed.
As competition rules become more and more intransitive, thermodynamic analogies are
eroded, and the behaviour of the system can become complex. This work analyses the
phenomenon of punctuated evolution in the context of the competitive risk/benefit dilemma.
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1. Introduction

The question of whether systems involving competition can be characterised by quantities resembling
conventional thermodynamic parameters does not have a simple unambiguous answer. This problem was
investigated in [1], and it was found that such a characterisation is possible under conditions of transitive
competition, but as the system becomes more and more intransitive, the thermodynamic analogy
weakens. The similarity with conventional thermodynamic principles is strongest when mutations
present in the system belong to the class of Gibbs mutations. While deploying the conventional
logarithmic definition of entropy, the analysis of [1] misses an important point: when mutations deviate
from the Gibbs mutations, the family of Tsallis entropies [2] represents a very convenient choice of
entropy to treat these cases. This omission is rectified in the present work. We also note that Tsallis
entropy has been recently used in the modelling of biological replications [3].

Thermodynamics is strongly linked to the concept of equilibrium. Competitive systems allow
the introduction of different types of equilibrium, possessing different degrees of similarity with the
concept of equilibrium in conventional thermodynamics. The current work discusses possible cases of
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competitive equilibria and performs a detailed analysis based on the Tsallis entropy of the equilibrium
through a point of contact, which is more similar to conventional thermodynamics than the other cases.

From the thermodynamic perspective, the present work is only an example of using Tsallis entropy.
We do not attempt to draw any general thermodynamic conclusions, and the use of non-extensive entropy
in other applications may well be different from our treatment of equilibria in completive systems. The
problem of general consistency between physical equilibrium conditions and definitions of non-extensive
entropies has been analysed by Abe [4,5]. Non-extensive statistical mechanics has been reviewed by
Tsallis [2], while non-extensive entropies associated with this mechanics are discussed in [2–7] and
many other publications.

The last section deals with intransitive cases when the thermodynamic analogy weakens, and the
possibility of using entropy as a quantity that always tends to increase in time or remain constant is
not assured. This section analyses the risk/benefit dilemma represented by a competitive system, whose
evolution can be transitive or intransitive, depending on the choice of the system parameters. In the
intransitive case, the evolution of the system appears to be punctuated by sudden collapses and becomes
cyclic. This punctuated evolution is similar to the concept of punctuated equilibrium in evolutionary
biology [8], although in the context of thermodynamics, the latter term might be misleading, as the
system is not in equilibrium and keeps evolving between the punctuations.

2. Competitive Systems

Competitive systems involve the process of competition in its most generic form. The elements of
competitive systems compete with each other according to preset rules. The rules define the winners and
losers for each competition round based on properties of the elements, denoted here by y. The properties
of the losers are lost while the winners utilise the resource vacated by the losers and duplicate their
properties. The process of duplication is not perfect and involves random mutations, which are mostly
detrimental for the competitiveness of the elements. The expression, A≺B, (or, equivalently, yA ≺ yB)
indicates that element B with properties yB is the winner in competition with element A with properties
yA. If two elements have equivalent strength yA ' yB, the winner is to be determined at random. In
computer simulations, the elements are also called Pope particles, and the exchange of properties is
called mixing by analogy, with the conventions adopted in particle simulations of reacting flows. Two
forms of mixing—conservative and competitive—can be distinguished. The former is predominantly
used in the flow simulations, while the latter is associated with competitive systems. The rest of this
section introduces the basic terms used in the characterisation of competitive systems; further details can
be found in [1,9].

The competition rules are divided into two major categories: transitive and intransitive. In transitive
competitions, the superiority of B over A and C over B inevitably demands the superiority of C over A,
that is:

yA � yB � yC =⇒ yA � yC (1)

As illustrated in Figure 1a, transitive competitions enable the introduction of an absolute ranking,
r(y), which is a numerical function that determines superior (stronger) and inferior (weaker) elements:

yA � yB ⇐⇒ r(yA) ≤ r(yB) (2)
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The competitive transformations can be interpreted as reactions between the particles:

A + B −→ B′ + B, A ≺ B (3)

where B′ is different from B, due to mutations. B is the winner in competition with A, and thus, B is
entitled to occupy the resource (i.e., particle) previously occupied by A. The properties of A are lost,
and the properties of B are copied across into A. (Conservative properties, which are not considered
here, would be transferred in the opposite direction from the loser to the winner.) The copying process
is not perfect, due to mutations, which are random alterations of properties of B during copying. If
mutations are not present, then B′ = B. Unlike random walks, mutations have a strong preference for
the negative directions: it is likely (in the case of non-positive mutations, it is certain) that B′ �B. If
rare positive mutations, B′ �B, are present, the distribution of particles may escalate towards higher
ranks when the leading particle (i.e., the particle with the maximal absolute ranking in the group) is
occasionally overtaken by a new leader. One of the main results of [1] is linking absolute ranking to the
entropy potential sy = sy(r) and, under some restrictions (e.g., Gibbs mutations), proving the associated
competitive H-theorem.

Figure 1. Examples of systems with (a) transitive and (b) intransitive competitions.
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The competition rules, however, are not necessarily transitive, and the competition is deemed
intransitive when at least one intransitive triplet:

yA � yB � yC ≺ yA (4)

exists (see Figure 1b). Although intransitive competitions do not generally permit absolute ranking of
elements, they can be characterised by a co-ranking function:

yA � yB ⇐⇒ ρ(yA,yB) ≤ 0 (5)
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which, by definition, should be antisymmetric ρ(yA,yB) = −ρ(yB,yA). In the case of transitive
competitions, the co-ranking function can be expressed in terms of absolute ranking by:

ρ(yA,yB) = r(yA)− r(yB) (6)

In addition to ρ(yA,yB), it is useful to define sharp co-ranking:

R(yA,yB) = sign (R(yA,yB)) =


−1 if yA ≺,yB

0 if yA ' yB

+1 if yA � yB

(7)

In the case of two-particle mixing, the evolution of the system is determined by the sharp co-ranking,
R. The graded co-ranking can be useful in establishing relative ranks within each mixing group, when
mixing of multiple particles is considered.

The distributions of elements in the property space is characterised by the particle distribution function
ϕ(y) = nf(y), where n is the total number of particles and f(y), which can be interpreted as the
probability distribution function (pdf), satisfies the normalisation condition:∫

∞

f(y)dy = 1 (8)

When a competitive system is divided into K subsystems I = 1, 2, ..., K, and each subsystem, I , has
the bI-th fraction of the particles, we may characterise each of these subsystems by its own normalised
distribution φI(y); that is:

f(y) =
K∑
I=1

bIφI(y), ϕ(y) = nf(y) =
K∑
I=1

ϕI(y) (9)

ϕI(y) = nIφI(y), bI =
nI
n
,

∫
DI

φI(y)dy = 1 (10)

The subsystems can be distinguished by having different domains DI or by other means. When
subsystems are distinguished, it is useful to define the co-ranking of the distributions:

R̄([φI ], [φJ ]) =

∫ ∫
∞

R(y,y′)φI(y)φJ(y′)dydy′ (11)

which indicate the relative strength of subsystem distributions with respect to each other. We can say
“the subsystem, I , is stronger than the subsystem J” and write [φI ] � [φJ ] when R̄([φI ], [φJ ]) > 0.
Note that the subsystem co-ranking is antisymmetric R̄([φI ], [φJ ]) = −R̄([φJ ], [φI ]) and self-neutral
R̄([φI ], [φI ]) = 0.

Examples of systems using competitive mixing can be found in [1,9–11]



Entropy 2014, 16 5

3. Competition and q-Exponential Distributions

We consider transitive competition with elements possessing a scalar property y, which is selected to
be aligned with ranking (that is r(y) is a monotonically increasing function, and the absolute ranking is
effectively specified by y). Hence, for any two elements, A and B:

A � B ⇐⇒ yA ≤ yB (12)

The problem is deemed to be uniform with respect to shifts along y. Assuming that mutations, which
are originated at point y′ and distributed with the probability density function, fm(y, y′), are uniform
fm(y, y′) = fm(y − y′), general competitive evolution equation [1] takes a more simple form given by:

∂f(y)

∂t
=

∫ 0

y

fm(y − y′)F (y′)f(y′)dy′ − (1− F (y)) f(y) (13)

The competitive evolution equation specifies a balance between mutations, given by the first term on the
right-hand side of this equation, and the losses due to competition are given by the second term. The
function, F , is the cdf (cumulative distribution function) of the pdf, f :

F (y) =

∫ y

−∞
f(y′)dy′ (14)

If mutations are non-positive, then:
fm(y) ≥ 0 if y ≤ 0

fm(y) = 0 if y > 0
(15)

Equation (13) can be integrated to yield:

∂F (y)

∂t
=

1

2

∫ 0

−∞
Fm(y − y′)∂F

2(y′)

∂y′
dy′ − F (y) +

F 2(y)

2

=
Fm(y) + F 2(y)

2
− F (y) +

1

2

∫ 0

y

fm(y − y′)F 2(y′)dy′ (16)

where Fm is the cdf that corresponds to pdf fm.
The Gibbs mutations [1] correspond to q = 1, implying that the distribution, fm(y), is based, in this

case, on the conventional exponent:

fm(y) = exp(y)H (−y) (17)

where:

H(y) =

{
1 if y ≥ 0

0 if y < 0
(18)

is the Heaviside function. Note that there is no loss of generality in setting α = 1 in fm ∼ exp(αy),
since the variable, y, can always be rescaled to eliminate α. In the case of Gibbs mutations, the pdf, f ,
is given by:

f(y, y∗) = exp(y − y∗)H(y∗ − y) (19)

where y∗ is the position of leading particle.
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In this work, we are interested in the case when the pdf, f , can be approximated by the
q-exponential distribution:

f(y, y∗) = fq(y − y∗) = expq

(
y − y∗

2− q

)
H(y∗ − y) (20)

where:
eyq = expq(y) = (1 + (1− q) y)

1
1−q

is the so called q-exponent and:

lnq(y) =
y1−q − 1

1− q
is the corresponding q-logarithm. If q → 1, then the q-functions approach the conventional exp(y) and
ln(y). The cdf, corresponding to pdf (20), is given by:

F (y, y∗) = FQ(y − y∗) =

{
expQ(y − y∗) if y ≤ y∗

1 if y > y∗
(21)

where Q = 1/(2− q). Distribution (20) solves governing Equation (13) with an asymptotic precision of
O((1− q)2), provided the mutations are distributed according to:

fm(y) =
(
(3− 2q) eyq − 2 (1− q) e2yq

)
H(−y) (22)

Fm(y) =

{ (
(2−Q) e

y/Q
Q − (1−Q) e

2y/Q
Q

)
if y ≤ 0

1 if y ≥ 0
(23)

Figure 2 illustrates that, as expected, the cdf of simulated distributions are very close to the
corresponding q-exponents when q is close to unity. The q-exponential functions can also serve as
very good approximations for distribution in competitive systems for a wide range of q. Consider the
q-exponential distribution of mutations:

fm(y) = expq′

(
y

2− q′

)
H(−y) (24)

with the cdf, Fm(y), which is given by a q-exponential functions similar to (21) with Q′ = 1/(2 − q′)
The approximate solutions shown in Figure 2 correspond to q-exponential (20) with:

q =
2 + q′

4− q′
, Q− 1 =

2

3
(Q′ − 1) (25)

The cdf shapes presented in Figure 2 indicate that, although q-exponential distributions are not
necessarily exact for competitive systems, they are reasonably accurate and correspond very well to
the physical nature of the problem when mutations deviate from Gibbs mutations. In the competitive
system illustrated in Figure 3, every location is taxed, due to competition with superior elements, and,
at the same time, is supplied by mutations originating from superior elements. For Gibbs mutations,
the competitive system schematically depicted in Figure 3 is in the state of detailed balance: every
location is taxed and supplied at the same rate by any given superior. In simple systems with constant
a priori phase space A(y), the Gibbs mutations are distributed exponentially (q = 1). When mutations
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deviate from Gibbs mutations, the overall rates of taxing and supplying must negate each other under
steady conditions, but there is no detailed balance in relations with different groups of superiors. For
long-tailed (superexponential) distributions with q > 1, weak particles are supplied more by the leaders
and are taxed more by immediate superiors. For short-tailed (superexponential) distributions with q < 1,
weak particles are supplied more by the immediate superiors and are taxed more by the leaders.

Figure 2. Simulated long- and short-tailed distributions in comparison with
q-exponents: solid curves, simulated for mutations I; dased curves, simulated for
mutations II; solid curves with dots, q-exponents. The cdf are plotted for the values of
Q = {0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4}; the curves are numbered from the bottom to the
top. The circles mark the line corresponding to Q = 1.
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Competitive systems are aimed at studying generic properties of systems with competition and
mutations. Although we do not specifically intend to model distributions of biological mutations,
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these distributions are still of some interest here as real–world examples of complex competitive
systems. Ohta [12] considered near-neutral genetic mutations and suggested that these mutations
have exponential distributions. Modern works tend to use the Kimura distribution [13], which has
a complicated mathematical form, deviates from pure exponents and, theoretically, corresponds to a
genetic drift of neutral mutations. It seems that the reported distributions of genetic mutations tend to
be slightly subexponential. Figure 4 illustrates that the experimental distribution of mutation A3243G
of mitochondrial DNA in humans [13] is well approximated by q-exponential cdf with Q = 0.8. Since
these mutations are known to be deleterious [14], they are shown as negative in the figure (in agreement
with the notations adopted in the rest of the present work).

Figure 4. The cumulative distribution function (cdf) of the experimental [13] distribution of
the A3243G mtDNA mutation (solid line) compared to the q-exponential cdf, expQ (ky/Q),
with Q = 0.8 and k/Q = 6 (dashed line). Since these mutations are deleterious, their extent
is shown as negative.
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4. Tsallis Entropy in Competitive Systems

Free Tsallis entropy in competitive systems is defined by:

S([f ]) =

∫
∞

(
f̃(y) lnq

(
1

f̃(y)

)
+ f̃(y)γsy(y)

)
A(y)dy (26)

with two likely choices of the exponent, γ, given by γ = 1 and γ = q. Here, we denote
f̃(y) = f(y)/A(y). The first term in the integral is the configurational entropy, which represents the
randomising influence of mutations, while the second term involves the entropy potential, sy(y), which
reflects the influence of competition (i.e., sy increases with r, reflecting higher likelihood of survival of
more competitive elements). The term, f̃(y)γsy(y), in Equation (26), which can be called the escort
term, reflects nature’s preference for elements with higher rankings (for example, in biological systems,
ranking reflects fitness). Due to presence of the potential sy(y), the competitive entropy defined by
Equation (26) is analogous to free entropy of conventional thermodynamics, which is proportional to free
energy (Gibbs or Helmholtz) taken with the negative sign. The distribution and entropy that correspond
to sy = 0 (i.e., not affected by competition) can be termed “a priori” bearing some resemblance to prior
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probabilities in Bayesian inference. The definition of entropy in Equation (26) is of the Boltzmann type,
i.e., implying the validity of the Stosszahlansatz (stochastic independence of particles from each other).
Variation of the distribution function results in:

χy =
δS

δf(y)
=

1

A(y)

δS

δf̃(y)
= lnq

(
1

cqf̃(y)

)
+ γf̃(y)γ−1sy(y) (27)

where:
cq = q

1
q−1 → e as q → 1 (28)

and χy can be interpreted as the competitive potential of state y. Maximisation of S constrained by
the normalisation:

Zf ([f ]) =

∫
∞
f̃(y)A(y)dy = 1 (29)

and by the location of the leading element, that is:

f(y) = 0 for any y � y∗ (30)

results in the following condition:
δS

δf̃(y)
+ λ

δZf

δf̃(y)
= 0 (31)

where λ is the Lagrange multiplier, implying that the local competitive potential:

χy =
1

A(y)

δS

δf̃(y)
= − λ

A(y)

δZf

δf̃(y)
= −λ

is the same everywhere in equilibrium. Consider a simple case of scalar y and constant a priori capacity
A = const.

� The translational case of γ = 1. With Equation (27), Equation (31) takes the form:

lnq

(
1

cqf̃(y)

)
+ sy(y) + λ = 0

that with sy(y) = ky, A = cqq and λ = −ky∗ results in the pdf and cdf given by:

f(y, y∗) =
qkH(y∗ − y)

expq(k (y∗ − y))
= qkH(y∗ − y) expq2 (k (y − y∗)) (32)

F (y, y∗) =

{
expQ(k (y − y∗) /Q) if y ≤ y∗

1 if y > y∗
(33)

where Q = 1/q and q2 = 2 − q. Since y∗ is arbitrary in this case, the distribution can be freely
shifted along y. The location of y∗ is determined by Equation (30).

� The multiplicative case of γ = q. Equations (27) and (31) take the form:

lnq

(
expq(sy(y))

cqf̃(y)

)
+ λ = 0 (34)
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that, with, A = 1 and sy(y) = k (y − y∗), results in the pdf:

f(y, y∗) =
H(y∗ − y)

Zq
expq(k (y − y∗)) (35)

with the arbitrary value ofZq depending on λ. This value can be determined from the normalisation
requiring that Zq = k−1/(2 − q). The corresponding cdf, FQ(y, y∗), is the same as Equation (33)
with the q-parameter given by Q = Zqk = 1/(2− q).

In the case of physical thermodynamics, Tsallis et al. [6] recommend using γ = q in conjunction
with the escort distribution for the energy constraints as the best option. Competitive thermodynamics,
as considered here, does not have any energy constraints (assuming that the conservative properties
are limited to the number of particles, we do not have any energy defined for the system), and the
selection of γ needs to be considered again. The choice of γ for competitive systems is determined by
the physics of the problem and can be different for different processes. If infrequently positive mutations
are present and the distribution with a fixed number of particles escalates by gradually increasing y∗ in
time, then γ = 1 is preferable. Indeed, while y∗ increases, the definition of entropy remains exactly
the same, and the escalation is seen as a natural process of increasing entropy in the system. If γ = q,
the definition of entropy is dependent on the position of the leading particle. The choice of γ = q is
more suitable for competitions between subsystems placed at fixed locations, but with the numbers of
particles that can be altered due to exchanges. Gibbs mutations correspond to q = 1, and the choices,
γ = 1 and γ = q, coincide in this case. In the previous work [1], the Boltzmann–Gibbs entropy
was used for non-Gibbs mutations by artificially making the phase volume dependent on the leading
particle position A = A(y,y∗). Unlike the Tsallis entropy considered in the present work, the old
treatment of the problem [1] did not allow for a unified definition of entropy valid for different y∗ (i.e.,
the Boltzmann–Gibbs entropy provides a unified, y∗-independent definition of competitive entropy only
for the Gibbs mutations).

5. Equilibria in Competing Systems

A competitive system can be divided into subsystems, and the question of equilibrium conditions
between these subsystems appears. If the system is subdivided into K subsystems I = 1, 2, ..., K and
subsystem I has the bI-th fraction of the particles, we may characterise each of these subsystems by its
own normalised distribution φI(y), as specified by Equations (9) and (10). Assuming that equilibrium or
steady-state conditions are achieved within each subsystem, the major equilibrium cases include:

� Equilibria in isolated subsystems. Isolated subsystems do not exchange mutations and do not
compete against each other. Equilibria are established in isolated subsystems independently of the
other subsystems (see Figure 5a)

� Competing equilibria. Particles in these subsystems compete against each other, but mutations do
not cross the subsystem boundaries as illustrated in Figure 5b. Competing equilibria tend to be less
stable than the connected equilibria considered below and, generally, are impossible in transitive
competitions. Indeed, if y∗I > y∗J (i.e., the leading element of subsystem I is more competitive
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than the leading element of subsystem J), y∗I cannot lose to any element of subsystem J , while y∗J
will eventually lose to leading elements of I . There is no equilibrium in the transitive competition
depicted in Figure 5d, since the subsystem I = 1 is going to win all particle resources for itself.
If y∗I = y∗J , then the two leaders will eventually meet in competition, and due to their equivalent
strength, the winner of this round (which ultimately belongs to the winning subsystem) is to be
selected at random. Competing equilibria are nevertheless possible in intransitive competitions.
This, obviously, requires that:

RI = R([φI ], [f ]) = 0 (36)

for all I = 1, ..., K, or, otherwise, nI would grow for RI > 0 and decrease for RI < 0. As
discussed in the Appendix of [1], oscillations are to appear in competing equilibria between
subsystems 1, ..., K, unless:

RIJ = R([φI ], [φJ ]) = 0 (37)

for every I and J , Constraint (37) implies all subsystems should have the same relative strength
[φI ] ' [φJ ], which is a stronger condition than [φI ] ' [f ] required by (36). Condition (37) is
necessary to avoid oscillations between the subsystems. If present, the oscillations can be stable,
neutral or unstable. The example in [1] demonstrates the case when oscillations are unstable.
Competing equilibria exist only in competitive systems and, it seems, do not have an analog in
conventional thermodynamics.

Figure 5. Equilibrium in competitive systems: (a) isolated, (b) competing and (c) connected,
while case (d) illustrates the impossibility of competing equilibria in transitive competition.
Dashed arrows show the direction of mutations; dotted arrows indicate the transport of
particles due to competition.
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� Connected equilibria. In this case, the subsystems I = 1, ..., K are connected by both
competition and mutations. For Gibbs mutations (q = 1), the competitive H-theorem applies
ensuring the detailed balance of the equilibrium state [1]. This implies that, in equilibrium,
the connection between any two elements or groups of elements can be severed without any
effect on the state of the system. Severing connection between two elements terminates both
competition and mutations between these elements. This is illustrated in Figure 5c, where
the direct connection between points A and B is severed, although A and B remain connected
through other elements, as shown by the dashed line. The equilibrium conditions are given by
the equivalence of all competitive potentials χI = χJ for every I and J , where the formula for
competitive potential: [1,9]

χI =
∂S

∂nI
= ln

(
ZI
enI

)
(38)

is obtained by differentiating entropy with respect to nI . The partition functions, ZI , are evaluated
for each subsystem, I , as an integral over the subsystem domain, DI :

ZI =

∫
DI

AI(y) exp (sy(y)) dy (39)

Equilibrium in competitive systems with Gibbs mutations resembles most the equilibria of
conventional thermodynamics. In the case of general non-positive mutations (i.e., non-Gibbs
mutations), the state of the system depends on the type of contact. Here, we distinguish two
cases of interest:

– Point of contact. Two subsystems, I and J , have a point of contact at y = y◦ when the
elements from the vicinity of y = y◦ effectively belong to the both subsystems, while the
other elements are isolated within their subsystems. Hence, at equilibrium, the density of
particles representing competing elements must be the same in both subsystems at the point
of contact:

nIφI(y
◦)

AI(y◦)
=
nJφJ(y◦)

AJ(y◦)
(40)

The phase volume associated with the distributions is likely to be the same on both sides
AI(y

◦) = AJ(y◦). The existence of a single point of contact (or several points of contact that,
as discussed below, do not form a loop, while connecting several subsystems) changes nI , but
does not affect the distributions, φI(y). More than one point of contact between two systems
with non-Gibbs mutations is likely to change not only nI , but, also, the distributions, φI(y).

– Complete merger. The subsystems are merged into a single system with the overall
stationary distribution f = f0(y). Unless mutations are limited to Gibbs mutations, the
subsystems are likely to undergo complex adjustments, changing their distributions. If the
term equilibrium is used for this steady state, it should be remembered that, generally,
there is no detailed balance in the system. The overall stationary distribution is inseparable:
f0(y) may change if the contact between any two locations is severed. Note that, although
unusual, inseparable systems exist in conventional thermodynamics: objects with negative
heat capacity [15] may serve as an example.
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Among different types of equilibria in competitive systems, the equilibrium at a point of
contact is most suitable for thermodynamic analysis, even when mutations substantially deviate from
Gibbs mutations.

6. Entropy for Equilibrium through a Point of Contact

Connections through a point of contact can be given different interpretations. Figure 6a, shows two
subsystems with the same property, y, that are connected at location y = y◦. Another interpretation,
which is illustrated in Figure 6b, is that y1 and y2 are internal properties of the subsystems, generally not
related to each other, while the point of contact is an agreement that establishes the correspondence of
two locations, y◦1 and y◦2 , that are called open portals. Particles can freely move between these portals
through the bridge connecting the portals. Note that subsystems can have more than one open portal (see
Figure 6d), as long as connections between these portals do not form a loop. Figure 6e illustrates such a
loop that can make particle densities at two open portals that belong to a single subsystem inconsistent
with each other. This would change the shapes of particle distributions φI(y) within the subsystems.

Figure 6. Point of contact equilibrium when the subsystems have (a) the same ranking
and a direct connection, (b) autonomous ranking and agreed connection through portals,
(c) multiple connections through portals that are unique for each subsystem, (d) multiple
connections through multiple portals without forming a loop and (e) multiple connections
through multiple portals with a loop. Note that the last case can be inconsistent with the
point of contact equilibrium.
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The case that is most interesting from the thermodynamic perspective is shown in Figure 6c: each
subsystem has only one open portal: this ensures that the number of particles nI within each subsystem
changes, while the subsystem distributions, φI(y), remain the same (presuming that each subsystem
always converges to its internal steady state). Each portal can be connected to one or more of the portals
that belong to the other subsystems. This connection is characterised by the subsystem particle numbers,
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nI , converging to their equilibrium values and by the detailed equilibrium between the subsystems
(although the detailed balance is not necessarily achieved for the steady states within each subsystem).
Assuming that the portal, y◦I , of subsystem I is connected to the portal, y◦J , of subsystem J , the
equilibrium condition (40) is now rewritten as:

nIφI(y
◦
I)

AI(y◦I)
=
nJφJ(y◦J)

AJ(y◦J)
(41)

Let us consider how this equilibrium between K subsystems can be characterised by Tsallis entropy,
which is defined as:

S([ϕ]) =
K∑
I=1

∫
∞

(
ϕ̃I(y) lnq

(
1

ϕ̃I(y)

)
+ ϕ̃I(y)qsI(y)

)
A◦I(y)dy (42)

with constraints on the overall number of particles in the system:

K∑
I=1

nI = n, ϕ̃IA
◦
I(y) = ϕI(y) = nIφI(y),

∫
φI(y)dy = 1 (43)

where A◦I(y) is the effective phase volume in the subsystems defined by:

A◦I(y) = a◦IAI(y) (44)

Here, AI(y) is the true phase volume and a◦I is the correcting coefficient, which depends on the location
of the portal, y◦I . The value of a◦I is determined later from the equilibrium conditions specified by
Equation (41). Note that the definition of entropy is extensive with respect to the superposition of the
subsystems, but is generally non-extensive within each of the subsystems:

S =
K∑
I=1

SI(ϕI), (45)

SI =

∫
∞

(
ϕ̃I(y) lnq

(
1

ϕ̃I(y)

)
+ ϕ̃I(y)qsI(y)

)
A◦I(y)dy

=

∫
∞

(
ϕ̃I(y) lnq

(
expq (sI(y))

ϕ̃I(y)

))
A◦I(y)dy (46)

As demonstrated by Abe [5], the extensivity of entropy simplifies equilibrium analyses and removes the
need to distinguish nominal and physical values of intensive properties. The general scaling laws that
ensure the extensivity of the entropy have been considered by Hanel and Thurner [7]. Here, extensivity
with respect to the superposition of the subsystems is simply enforced by the definition of the entropy in
Equation (45).

Maximisation of S is conducted first over for the shape of ϕI(y) under constraint:∫
DI

ϕ̃I(y)A◦I(y)dy = nI (47)

and, then, with respect to nI , under condition ΣInI = n. The first step results in:

lnq

(
e
sI(y)
q

cqϕI(y)

)
= λI (48)
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that is:
ϕI(y)

nI
= φI(y) = A◦I(y)

ϕ̃I(y)

nI
= A◦I(y)

e
sI(y)
q

cqZ◦I
(49)

where λI are the Lagrangian multipliers associated with Constraint (47) and the effective partition
function Z◦I is determined in terms of the true partition function, ZI , by the normalisation condition:

Z◦I = a◦IZI , ZI =

∫
DI

e
sI(y)
q

cq
AI(y)dy (50)

The substitution of ϕI(y) into Equation (46) results in the following problem of finding
entropy extremum:

S =
K∑
I=1

SI(ϕI), SI = nI lnq

(
Z◦I
nI

)
,

K∑
I=1

nI = n (51)

Maximisation of S in (51) yields:

χI =
∂S

∂nI
= lnq

(
Z◦I
cqnI

)
= lnq

(
a◦IZI
cqnI

)
= λ◦ (52)

where χI is the competitive potential of the I-th subsystem and λ◦ is the I-independent Lagrangian
multiplier associated with fixing the overall number of particles to n in Equation (51). The equilibrium
distribution of particles between subsystems is then given by:

nI = Ca◦IZI , C =

∑
I nI∑
I Z
◦
I

(53)

Note that Equations (52) and (53) imply the detailed equilibrium χI = χJ for any I and J . The
consistency of Equation (53) with Equation (41) determines the correcting coefficients:

a◦I = const
AI(y

◦
I)

φI(y◦I)ZI
(54)

The constant in this equation is arbitrary (since it does not affect the equilibrium state) and can be set to
unity without loss of generality.

Assuming thatAI = 1 and all ZI are the same, we obtain a◦I = 1/φI(y
◦
I) and the following expression

for the overall entropy:

S =
K∑
I=1

nI lnq

(
1

nIφI(y◦I)

)
(55)

Thus, equilibrium through a point of contact results in defining the effective phase volumes of the
subsystems, which are responsible for the equilibrium conditions. The competitors’ perception of the
phase volume of a subsystem depends on the location of its portal. The perceived volume is larger, and
the subsystem has higher competitive potential, χI , when the portal is located at lower ranks. Assuming
that portal connections are consistent with the true competitiveness of the elements, we conclude that
more competitive subsystems tend to possess higher effective phase volume.
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7. Intransitivity, Transition to Complexity and the Risk/Benefit Dilemma

If competition becomes intransitive and intransitive triplets (4) exist, absolute ranking in not possible
in such systems, and there is no absolute entropy (since the entropy potential is attached to the absolute
ranking). Some intransitive systems may still retain local transitivity in smaller subdomains. In
this case, the system may behave locally in the same way as transitive systems do, and it is still
possible to use local absolute ranking and local entropy. In this case, the analog of the zeroth law
of thermodynamics becomes invalid, allowing for the intransitivity of competitive potentials, such as
χ1 ≺ χ2 ≺ χ3 ≺ χ1 (consider the subsystems I = 1, 2, 3 shown in Figure 5b, assuming that these
subsystems are connected), and for cyclic evolutions. The system shown in Figure 1b is locally transitive
and globally intransitive. Assuming that some positive mutations are present, this system evolves
transitively in the vicinity of point A by escalating in the direction of increase of the local ranking,
but the overall evolution appears to be cyclic, moving from A to B, then from B to C and, finally, from
C back to A. When intransitivity becomes stronger (denser) and intransitive triplets can be found in the
vicinity of any point, even local evolution of the system may become inconsistent with the principles of
competitive thermodynamics. In complex systems, this evolution may result in competitive degradation
(a process accompanied by slow, but noticeable, gradual decrease of competitiveness) and in competitive
cooperation (the formation of structures with a reduced level of internal competition and violating the
Stosszahlansatz). From the perspective of competitive thermodynamics, these processes are abnormal
(see [1,9] for further discussion).

In this section, we consider a different example that involves punctuated evolution: for most of the
time, the system seems to behave transitively and escalate towards higher ranks and higher entropy. This
escalation is nevertheless punctuated by occasional crisis events, where the state of the system collapses
to (or near to) the ground state. The system then repeats the slow growth/sudden collapse cycle. Note
that only the cyclic component of evolution is considered here, while competitive evolutions may also
involve a translational component (or components) and become spiral [9]. Cycles and collapses are
common in real-world complex competitive systems of different kinds [16,17].

The present example of punctuated evolution is based on the risk/benefit dilemma (RBD): when
comparing the available strategies, we would like to have low risk and high benefits; hence the problem
has two parameters: the risk is denoted by y(1) and the benefit denoted by y(2). While high y(2) and low
y(1) are most attractive, some compromises increasing the risk to increase the benefit or lowering the
benefit to lower the risk may be necessary. When comparing two strategies, yA and yB, the choice is
performed according to the following co-ranking:

ρ (yA,yB) =
(
y
(2)
A − y

(2)
B

)
−

(
y
(1)
A − y

(1)
B

)m
h

(56)

that is, strategy A is preferred over strategy B when ρ (yA,yB) > 0. We consider two choices
of parameters:

RBD1: m = 3, h = 1

RBD2: m = 1, h = 3
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One can easily see that choice RBD2 is transitive, allowing for absolute ranking:

ρ (yA,yB)RBD2 = r(yA)− r(yB), r(y) = y(2) − y(1)/3 (57)

In the case RBD2, our assessment of the risk and the benefit is linear, so that evolutions maximising
the absolute ranking, r, are expected. In case RBD1, however, we tend to neglect small increases in
risk and opt for higher benefits, but a large increase in risk becomes the major concern that overweighs
even significant benefits. Choice RBD1 appears to be strongly (densely) intransitive: as illustrated in
Figure 7a, there are intransitive triplets (4) in the vicinity of every point. Both cases, RBD1 and RBD2,
deploy the same mutations, which are predominately small, but can be large on rare occasions. Mutations
reaching the prohibited area are banned.

Figure 7b shows the computational domain. The gray area y(2) >
(
y(1)
)1/3 is prohibited, reflecting

the fact that one cannot have large benefits without being exposed to significant risks. The strategies
superior with respect to A are in the small dark area, causing the system to evolve to higher risks and
higher benefits. In the transitive case, the system grows to reach the equilibrium point maximising the
absolute ranking, r(y), and then remains in the this state of relatively high benefits and reasonable risks
forever. In intransitive case, the system does not stay in equilibrium, but collapses into a defensive
strategy involving low risks and low benefits. The reason for this collapse is illustrated in Figure 7b.
Aggressive strategy A is preferred over defensive strategy C, but as the system evolves even into a more
aggressive strategy B, the risk associated with B becomes too high, and at a certain moment, defensive
strategy C becomes more attractive than B. This results in the collapse of the growth and the rapid
transition to defensive strategies.

Figure 7. Intransitivity in the risk/benefit dilemma: (a) strong intransitivity of intransitive
triplets A, B and C densely present in the domain; (b) intransitivity of aggressive strategy B
winning over A, but losing to defensive strategy C, which is considered to be inferior to A.

risk

benefit

A’s inferiors        
X: (X,A) < 0

A’s superiors   
X: (X,A) > 0

A’s peers       
X:  (X,A) = 0

ACBA 

risk

benefit

A B

C

domain of allowed 
superiors of A

ACBA 

(a)                                                    (b)

domain of Cs forming 
an intransitive triplet 
with A and B

0 0

prohibited  area

allowed domain
B

A
C

For the transitive case, the entropy is defined by Equation (26). The translational case γ = 1 with the
entropy potential depending linearly on ranking sy(y) = kr(y) is chosen. The parameters q = 1/Q =
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1/1.2 and kq = 70 are selected to match the equilibrium distribution discussed below. The entropy
definition takes the following form:

S =

∫
∞

(
f(y) lnq

(
1

f(y)

)
+ f(y)kr(y)

)
dy (58)

In the case under consideration, the entropy is practically dominated by the ranking term, and the
difference between conventional logarithmic entropy and Tsallis entropy is not large.

Figure 8 illustrates intransitive and transitive evolutions in the risk/benefit dilemma. The transitive
branch is obtained by switching parameters from RBD1 to RBD2 at 410 time steps. The following
intransitive and transitive evolutions seem to be very similar, but only up to a point, where maximal S
is reached. The same definitions of ranking (57) and entropy (58) are used for both cases, transitive and
intransitive. Then, the evolutions diverge: the transitive branch remains in an equilibrium state near the
point of maximal entropy and maximal ranking, while the intransitive branch falls down into the region
of defensive strategies. Video files covering these evolutions between steps 1 and 590 is offered as an
electronic supplement to this article (see the Appendix for more details).

If the underlying competition rules and long-term history of the evolution are unknown, determining
how a system is going to behave in the future by analysing the current distributions may be very difficult.
Figure 9 illustrates this point. This figure shows the cdf of ranking r for transitive evolution (RBD2)
and intransitive evolution (RBD1) at 590 time steps. Both distributions are very similar and can be
approximated quite well by the q-exponential cdf (33) with Q = 1.2 and k/Q = 70.

Figure 8. Simulations of the risk/benefit dilemma. Solid curve, intransitive (RBD1)
simulation; dashed curve, transitive (RBD2) simulation initiated at 410 time steps. (Top)
Normalised entropy S/k versus time steps; (bottom) risk y(1) versus time steps. The vertical
dotted line shows 590 time steps.
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Figure 9. The cdf for the rank distribution at 590 time steps (the same simulation as in
Figure 8, rmax ≈ 0.65). Solid curve, intransitive (RBD1) simulation; dashed curve, transitive
(RBD2) simulation; solid curve with dots, approximation by the q-exponent with Q = 1.2

and k/Q = 70.
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The competitive mechanism represented by the risk/benefit dilemma can be one of the forces enacting
economic cycles in the real world. From the economic perspective, the strategies reflected by RBD2 are
seen as rational behaviours of individual players (say, investment agents). The benefit is represented
by returns on investments, and ranking r is conventionally called utility in economics [18]. This
utility weighs different factors against each other and enforces the transitivity of economic decisions.
The intransitive strategies reflected by RBD1 would be seen by economists as semi-rational. Since
risk and benefit do not represent directly comparable categories and the evaluation of risk is always
subject to greater uncertainty, overlooking small risks and being overly concerned with high risks is a
plausible economic strategy for any individual or company. While switching from the linear RBD2 to
non-linear RBD1 seems like a minor adjustment for an economic element, it has a major effect on the
functioning of the whole system: economic growth is interrupted by collapses, and the system evolves
cyclically. Competition forces the competing elements to take higher and higher risks, until the risk
becomes unsustainable.

8. Conclusions

In competitive systems with Gibbs mutations, the distributions tend to be exponential (assuming
the isotropy of the property space). This case is described by the strongest similarity to conventional
thermodynamics and the existence of detailed balance in the system. When the distribution of mutations
deviates from that of Gibbs mutations, the q-exponents become very good approximations characterising
the existence of long or short tails in the distributions caused by biases in taxing and supplying. In
competitive thermodynamics, this corresponds to replacing conventional Boltzmann–Gibbs entropy by
Tsallis entropy.
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Unlike in conventional thermodynamics, competitive systems allow different types of equilibria
possessing different degrees of similarity with the conventional thermodynamic equilibrium.
Competition between subsystems without the exchange of mutations tends to be less stable than the
connected equilibria, where subsystems exchange particles through both competition and mutations.
Among connected equilibria, the case of Gibbs mutations bears the highest resemblance to conventional
thermodynamics. When mutations are not of the Gibbs type, the point of contact equilibrium preserves
this resemblance more than the other cases. The point of contact equilibrium has been analysed
using Tsallis entropy. This analysis results in equilibrium conditions determined by the equivalence
of competitive potentials. These potentials are linked to the introduced effective phase volumes of
subsystems that depend on the location of the point of contact.

The thermodynamic analogy requires the transitivity of competition rules. In the case of intransitive
competition rules, the system may behave anomalously when considered from the perspective of
competitive thermodynamics. This involves the formation of structures, competitive degradations and
cycles. The present work uses the example of the competitive risk/benefits dilemma and analyses the
case of punctuated evolutions. For most of the time, the evolution of an intransitive competitive system,
which represents the dilemma, closely resembles evolutions of transitive systems, which increase ranking
and the associated entropy. At some moments, however, this evolution is punctuated and results in an
abrupt collapse, which decreases ranking and the associated competitive entropy; this cannot possibly
happen when the competition is transitive. Then, the system starts to grow and repeats the cycle again.
While the consideration of competitive processes in this work is generic, similar behaviours can be found
in biological, economic and other systems.
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Appendix

Video Files with the Simulations of the Risk/Benefit Dilemma

Simulations of the cases, RBD1 and RBD2, involving 10,000 Pope particles are offered as video
supplements to this article:

� RBD1.avi, 3MB, 1–590 steps,

� RBD2.avi, 1MB, 410–590 steps.

Competition is intransitive in RBD1 and transitive in RBD2. The cases are branched apart at 410 time
steps with the same distribution of particles. The format of the videos is explained in Figure A1. In the
intransitive simulations of the risk/benefits dilemma, competition forces competitors to undertake more
and more aggressive strategies, while the distribution moves from D to A. This leads to unsustainably
high risk and the punctuation of continuous evolution by a sudden collapse of the system by elements
seeking refuge in defensive strategies near D. While the evolution is punctuated in the intransitive case,
the transitive version of the simulations safely reaches equilibrium and remains there forever. In spite of
principal differences, the ascending fragments of both simulations are very similar.
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Figure A1. Simulations of the risk/benefit dilemma: notations used in the video files.
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