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Abstract: Seismic data is difficult to analyze and classical mathematical tools reveal 

strong limitations in exposing hidden relationships between earthquakes. In this paper, we 

study earthquake phenomena in the perspective of complex systems. Global seismic data, 

covering the period from 1962 up to 2011 is analyzed. The events, characterized by their 

magnitude, geographic location and time of occurrence, are divided into groups, either 

according to the Flinn-Engdahl (F-E) seismic regions of Earth or using a rectangular grid 

based in latitude and longitude coordinates. Two methods of analysis are considered and 

compared in this study. In a first method, the distributions of magnitudes are approximated 

by Gutenberg-Richter (G-R) distributions and the parameters used to reveal the relationships 

among regions. In the second method, the mutual information is calculated and adopted as 

a measure of similarity between regions. In both cases, using clustering analysis, 

visualization maps are generated, providing an intuitive and useful representation of the 

complex relationships that are present among seismic data. Such relationships might not be 

perceived on classical geographic maps. Therefore, the generated charts are a valid alternative 

to other visualization tools, for understanding the global behavior of earthquakes. 
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1. Introduction 

Earthquakes are caused by a sudden release of elastic strain energy accumulated between the 

surfaces of tectonic plates. Big earthquakes often manifest by ground shaking and can trigger tsunamis, 

landslides and volcanic activity. When affecting urban areas, earthquakes usually cause destruction 

and casualties [1–4]. Better understanding earthquake behavior can help to delineate pre-disaster 

policies, saving human lives and mitigating the economic efforts involved in assembling emergency 

teams, gathering medical and food supplies and rebuilding the affected areas [5–8]. 

Earthquakes reveal self-similarity and absence of characteristic length-scale in magnitude, space 

and time, caused by the complex dynamics of Earth’s tectonic plates [9,10]. The plates meet each other 

at fault zones, exhibiting friction and stick-slip behavior when moving along the fault surfaces [11,12]. 

The irregularities on the fault surfaces resemble rigid body fractals sliding over each other, originating 

the fractal scaling behavior observed in earthquakes [13]. The tectonic plates form a complex system 

due to interactions among faults, where motion and strain accumulation processes interact on different 

scales ranging from a few millimeters to thousands of kilometers [14–16]. Moreover, loading rates are 

not uniform in time. Earthquakes are likely to come in clusters, meaning that a cluster is most probable 

to occur shortly after another cluster and a cluster of clusters soon after another cluster of clusters [17]. 

Earthquakes unveil long range correlations and long memory characteristics [18], which are typical of 

fractional order systems [19,20]. Some authors also suggest that Self-Organized Criticality (SOC) is 

relevant for understanding earthquakes as a relaxation mechanism that organizes the terrestrial crust at 

both spatial and temporal levels [21]. Other researchers [22,23] emphasize the relationships between 

complex systems, fractals and fractional calculus [24–27]. 

In this paper, we analyze seismic data in the perspective of complex systems. Such data is difficult 

to analyze using classical mathematical tools, which reveal strong limitations in exposing hidden 

relationships between earthquakes. In our approach global data is collected from the Bulletin of  

the International Seismological Centre [28] and the period from 1962 up to 2011 is considered.  

The events, characterized by their magnitude, geographic location and time, are divided into groups, 

either according to the Flinn-Engdahl (F-E) seismic regions of Earth or using a rectangular grid based  

on latitude and longitude coordinates. We develop and compare two alternative approaches. In a  

first methodology, the distributions of magnitudes are approximated by Gutenberg-Richter (G-R) 

distributions and the corresponding parameters are used to reveal the relationships among regions.  

In the second approach, the mutual information is adopted as a measure of similarity between events in 

the distinct regions. In both cases, clustering analysis and visualization maps are adopted as an 

intuitive and useful representation of the complex relationships among seismic events. The generated 

maps are evidenced as a valid alternative to standard visualization tools, for understanding the global 

behavior of earthquakes. 

Bearing these ideas in mind, this paper is organized as follows: in Section 2, we give a brief review 

of the techniques used. Section 3 analyses earthquakes’ data and discusses results, adopting F-E 

seismic regions. Section 4 extends the analysis to an alternative seismic regionalization of Earth. 

Finally, Section 5 outlines the main conclusions. 
  



Entropy 2013, 15 3894 

 

 

2. Mathematical tools 

This section presents the main mathematical tools adopted in this study, namely G-R distributions, 

mutual information and clustering analysis. The G-R distribution is a two-parameter power-law (PL) 

that establishes a relationship between frequency and magnitude of earthquakes [29–31]. 

The concepts of entropy and mutual information [32–35], taken from the information theory, have 

been a common approach to the analysis of complex systems [36]. In particular, mutual information is 

adopted as a general measure of correlation between two systems. Mutual information, as well as 

entropy, have found significance in various applications in diverse fields, such as in analyzing 

experimental time series [37–39], in characterizing symbol sequences such as DNA sequences [40–42] 

and in providing a theoretical basis for the notion of complexity [43–47], just to name a few. 

Clustering analysis consists on grouping objects in such a way that objects that are, in some  

sense, similar to each other are placed in the same group (cluster). Clustering is a common technique 

for statistical data analysis, used in many fields, such as data mining, machine learning, pattern 

recognition, image analysis, information retrieval and bioinformatics [48–50]. 

2.1. Gutenberg-Richter Law 

The G-R law is given by: 

bMaN 10log  (1)

where N  N is the number of earthquakes of magnitude greater than or equal to M  R, occurred in a 

specified region and period of time. Parameters (a, b)  R represent the activity level and the scaling 

exponent, respectively. The former is a measure of the level of seismicity, being related to the number 

of occurrences. The later has regional variation, being in the range b  [0.8, 1.06] and b  [1.23, 1.54] 

for small and big earthquakes, respectively [30]. 

2.2. Mutual Information 

Mutual information measures the statistical dependence between two random variables. In other 

words, it gives the amount of information that one variable “contains” about the other. Let X and Y 
represent two discrete random variables with alphabet X and Y, respectively. The mutual information 

between X and Y, I(X, Y), is given by [51]: 
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where p(x, y) is the joint probability distribution function of (X, Y), and p(x) and p(y) are the marginal 

probability distribution functions of X and Y, respectively. Mutual information is always symmetrical 

(i.e., I(X, Y) = I(Y, X)). If the two variables are independent, the mutual information is zero. 
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2.3. K-means Clustering 

K-means is a popular non-hierarchical clustering method, extensively used in machine learning  

and data mining. K-means starts with a collection of N objects XN ={x1, x2, …, xN}, where each  

object xn (1  n < N) is a point in D-dimensional space (xn  RD), and a user specified number of 

clusters, K. The K-means method aims to partition the N objects into K ≤ N clusters, CK = {c1, c2, …, cK}, 

so as to minimize the sum of distances, J, between the points and the centers of their clusters,  

MK = {µ1, µ2, …, µK}: 


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1 1

2  (3)

where rnk  {0, 1} is a parameter denoting whether object xn belongs to cluster k [52]. The result can 

be seen as partitioning the data space into K Voronoi cells. 

The exact optimization of the K-means objective function, J, is NP-hard. Several efficient heuristic 

algorithms are commonly used, aiming to converge quickly to local minima. Among others [53] 

Lloyd’s algorithm, described in the sequel, is one of the most popular. It initializes computing the 

cluster centers MK = {µ1, µ2, …, µK}. This can is done randomly choosing the centers, adopting K 

objects as the cluster centers, or using other heuristics. After initialization, the algorithm iterates 

assigning each object to its closest cluster center: 

}minarg:{
2
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k

k xknc   (4)

where ck represents the set of objects closest to µk. 

New cluster centers, μk, are then calculated using: 
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and Equations (4) and (5) are repeated until some criterion is met (e.g., cluster centers do not change in  

space anymore). 

One way to select the appropriate number of clusters, K, for the K-means algorithm is plotting the 

K-means objective, J, versus K, and looking at the “elbow” of the curve. The “optimum” value for K 

corresponds to the point of maximum curvature. 

2.4. Hierarchical Clustering 

Hierarchical clustering aims to build a hierarchy of clusters [54–57]. In agglomerative clustering 

each object starts in its own singleton cluster and, at each step, the two most similar (in some sense) 

clusters are greedily merged. The algorithm iterates until there is a single cluster containing all objects. 

In divisive clustering, all objects start in one single cluster. At each step, the algorithm removes the 

“outsiders” from the least cohesive cluster, stopping when each object is in its own singleton cluster. 

The results of hierarchical clustering are usually presented in the form of a dendrogram. 

The clusters are combined (for agglomerative), or split (for divisive) based on a measure of 

dissimilarity between clusters. This is often achieved by using an appropriate metric (a measure of the 
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distance between pairs of objects) and a linkage criterion, which defines the dissimilarity between 

clusters as a function of the pairwise distances between objects. The chosen metric will influence the 

composition of the clusters, as some elements may be closer to one another, according to one metric, 

and farther away, according to another. 

Given two clusters, R and S, any metric can be used to measure the distance, d(xR, xS), between 

objects (xR, xS). The Euclidean and Manhattan distances are often adopted. Based on these metrics,  

the maximum, minimum and average linkages are commonly used, being, respectively: 
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While non-hierarchical clustering produces a single partitioning of K clusters, hierarchical 

clustering can give different partitioning spaces, depending on the chosen distance threshold. 

3. Analysis Global Seismic Data 

The Bulletin of the International Seismological Centre (ISC) [28] is adopted in what follows. The 

ISC Bulletin contains seismic events since 1904, contributed by more than 17,000 seismic stations 

located worldwide. Each data record contains information about magnitude, geographic location and 

time. Occurrences with magnitude in the interval M  [–2.1, 9.2], expressed in a logarithm scale 

consistent with the local magnitude or Richter scale, are available [28]. In the first period of registers 

(about half a century) the number of records is remarkable smaller and lower magnitude events are 

scarce, when compared to the most recent fifty years. This may be justified by the technological 

constraints associated to the instrumentation available in the early decades of the last century. 

Therefore, to prevent misleading results, we study the fifty-year period from 1962 up to 2011. The 

events are divided into the fifty groups corresponding to the Flinn-Engdahl (F-E) regions  

of Earth [58,59], which correspond to seismic zones usually used by seismologists for localizing 

earthquakes (Table 1). 

Table 1. Flinn-Engdahl regions of Earth and characterization of the seismic data. 

Region 
number 

Region name 
Number 
of events 

Minimum 
Magnitude 

Maximum 
Magnitude 

Average 
Magnitude 

1 Alaska-Aleutan arc 38,976 0.9 8.0 3.7 
2 Southeastern Alaska to Washington 19,389 0.3 7.1 2.6 
3 Oregon, California and Nevada 26,188 0.0 7.6 2.9 
4 Baja California and Gulf of California 7,621 1.1 7.2 2.7 
5 Mexico-Guatemala area 29,991 1.9 7.9 3.9 
6 Central America 20,524 0.0 7.5 3.8 
7 Caribbean loop 48,592 0.7 7.3 3.0 
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Table 1. Cont. 

Region 
number 

Region name 
Number 
of events 

Minimum 
Magnitude 

Maximum 
Magnitude 

Average 
Magnitude 

8 Andean South America 81,209 1.2 8.5 3.5 
9 Extreme South America 2,544 0.0 6.3 3.2 

10 Southern Antilles 6,102 0.3 7.5 4.4 
11 New Zealand region 58,270 −0.1 8.1 3.2 
12 Kermadec-Tonga-Samoa Basin area 50,129 1.7 8.1 4.1 
13 Fiji Islands area 23,723 1.0 7.2 4.0 
14 Vanuatu Islands 29,062 −1.4 7.9 4.1 
15 Bismarck and Solomon Islands 29,600 −1.4 8.0 4.0 
16 New Guinea 24,991 −0.2 7.8 4.0 
17 Caroline Islands area 5,016 0.0 7.0 4.1 
18 Guam to Japan 33,998 1.2 7.5 3.7 
19 Japan-Kuril Islands-Kamchatka Peninsula 865,579 0.0 8.3 1.6 
20 Southwestern Japan and Ryukyu Islands 583,992 0.1 7.4 1.1 
21 Taiwan area 285,357 −0.8 7.9 2.2 
22 Philippine Islands 31,277 0.0 8.4 3.9 
23 Borneo-Sulawesi 34,279 0.0 7.5 4.0 
24 Sunda arc 46,430 0.0 8.4 4.0 
25 Myanmar and Southeast Asia 7,853 0.0 7.4 3.1 
26 India-Xizang-Sichuan-Yunnan 29,361 −0.6 8.0 2.7 
27 Southern Xinjiang to Gansu 15,464 0.0 8.0 2.9 
28 Lake Issyk-Kul to Lake Baykal 32,330 1.3 7.4 2.6 
29 Western Asia 21,621 0.0 8.1 3.2 
30 Middle East-Crimea-Eastern Balkans 220,607 3.1 8.4 2.7 
31 Western Mediterranean area 194,094 −0.5 7.2 1.9 
32 Atlantic Ocean 37,502 −0.3 7.0 2.8 
33 Indian Ocean 12,848 0.0 7.7 4.1 
34 Eastern North America 15,104 −2.1 7.3 2.7 
35 Eastern South America 67 0.0 5.7 4.3 
36 Northwestern Europe 91,190 0.0 5.9 1.6 
37 Africa 49,370 0.0 7.4 2.5 
38 Australia 7,759 2.2 6.5 2.5 
39 Pacific Basin 3,003 2.3 7.0 2.9 
40 Arctic zone 18,786 2.1 6.9 2.4 
41 Eastern Asia 13,790 1.6 7.8 2.6 
42 Northeast. Asia, North. Alaska to Greenland 6,823 1.8 7.6 3.1 
43 Southeastern and Antarctic Pacific Ocean 6,943 0.0 7.1 4.3 
44 Galápagos Islands area 2,351 −0.6 6.4 4.2 
45 Macquarie loop 1,743 2.2 7.8 4.3 
46 Andaman Islands to Sumatera 20,762 0.9 9.2 4.0 
47 Baluchistan 4,101 0.3 7.6 3.9 
48 Hindu Kush and Pamir area 39,669 0.0 7.3 3.0 
49 Northern Eurasia 60,082 1.1 5.9 1.4 
50 Antarctica 64 1.9 5.5 4.0 
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3.1. K-means Analysis Based on G-R Law Parameters 

In this subsection the data is analyzed in a per region basis. Events with magnitude M  4.5 are 

considered [60]. Above this threshold the cumulative number of earthquakes obeys the G-R law.  

The corresponding (a, b) parameters, as well as the coefficients of determination of each fit, R, are 

shown in Table 2. 

Table 2. G-R law parameters corresponding to the data of each F-E region. The time 

period of analysis is 1962–2011. Events with magnitude M  4.5 are considered. 

Region number a b R 

1 8.7 1.08 0.99 
2 6.5 0.88 0.99 
3 7.0 0.89 0.99 
4 7.5 1.06 0.99 
5 8.4 1.10 0.98 
6 8.4 1.12 0.99 
7 8.6 1.19 0.99 
8 8.9 1.08 0.99 
9 7.4 1.08 0.97 

10 8.3 1.07 0.92 
11 7.6 0.97 0.99 
12 9.4 1.15 0.97 
13 9.3 1.24 0.97 
14 8.5 1.02 0.98 
15 8.5 1.02 0.98 
16 8.6 1.05 0.96 
17 8.3 1.16 0.97 
18 9.5 1.27 0.98 
19 9.0 1.06 0.99 
20 8.0 1.05 0.99 
21 7.6 0.95 0.99 
22 8.9 1.11 0.98 
23 9.3 1.18 0.96 
24 9.2 1.14 0.98 
25 7.4 0.99 0.99 
26 8.1 1.07 0.99 
27 7.3 0.97 0.99 
28 7.2 0.96 0.99 
29 8.3 1.12 0.98 
30 8.4 1.12 0.97 
31 8.3 1.18 0.98 
32 9.1 1.21 0.99 
33 8.8 1.16 0.98 
34 7.4 1.10 0.96 
35 6.9 1.24 0.97 

  



Entropy 2013, 15 3899 

 

 

Table 2. Cont. 

Region number a b R 

36 8.1 1.35 0.98 
37 8.3 1.14 0.99 
38 7.6 1.15 0.97 
39 7.6 1.07 0.98 
40 7.9 1.11 0.98 
41 7.1 0.94 0.99 
42 6.8 0.96 0.98 
43 8.4 1.10 0.96 
44 8.9 1.32 0.98 
45 7.1 0.94 0.91 
46 8.0 1.00 0.99 
47 7.5 1.05 0.99 
48 8.7 1.19 0.99 
49 6.1 0.97 0.94 
50 6.0 1.09 0.98 

The (a, b) parameters are analyzed using the non-hierarchical clustering technique K-means.  

We adopt K = 9 clusters as a compromise between a reliable interpretation of the maps and how  

well-separated the resulting clusters are. The obtained partition is depicted in Figure 1, where the axes 

values are normalized by the corresponding maximum values. Figure 2 shows the silhouette diagram. 

The silhouette value, for each object, is a measure of how well each object lies within its cluster [61]. 

Silhouette values vary in the interval S = –1 to S = +1 and are computed as 

)}(),(max{

)()(
)(

nanb

nanb
nS


  (9)

where a(n) is the average dissimilarity between object n and all other objects in the cluster to which the 

object n belongs, ck.  On the other hand, b(n) represents the average dissimilarity between object n and 

the objects in the cluster closest to ck. Silhouette values closer to S = +1 correspond to objects that  

are very distant from neighboring clusters and, therefore, they are assigned to the right cluster. For  

S = 0 the objects could be assigned to another cluster. When S = –1 the objects are assigned to the  

wrong cluster. 
From Figure 1, we obtain the K = 9 clusters: A = {4, 9, 34, 38, 39, 40, 47}, B = {36, 44},  

C = {10, 14, 15, 16, 20, 26, 46}, D = {2, 3, 11, 21, 25, 27, 28, 41, 42, 45}, E = {49, 50},  

F = {1, 8, 19, 22, 24}, G = {5, 6, 7, 17, 29, 30, 31, 33, 37, 43, 48}, H = {12, 13, 18, 23, 32},  

I = {35}. Adopting the same colour map used in Figure 1, we depict the F-E regions in the 

geographical map of Figure 3. It can be noted that the obtained clusters correspond quite well to large 

contiguous regions. 
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Figure 1. K-means clustering of all F-E regions and Voronoi cells. Analysis based on the 

(a, b) parameters of the G-R law. The time period of analysis is 1962–2011. Events with 

magnitude M  4.5 are considered. 
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Figure 2. Silhouette corresponding to the K-means clustering of all F-E regions. Analysis 

based on the (a, b) parameters of the G-R law. The time period of analysis is 1962–2011. 

Events with magnitude M  4.5 are considered. 
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Figure 3. Geographical map of the F-E regions adopting the same colour map used in 

Figure 1 (green lines correspond to tectonic faults). 
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3.2. Analysis by Means of Mutual Information 

In this subsection we take the magnitude of the events as random variable and adopt the mutual 

information as a measurement of similarities between regions i and j (i, j = 1, …, 50). To avoid the 

systematic bias that occurs when estimating the mutual information from finite data samples we use 

the expression [62]: 
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where m  N is the number of data samples, (Nx, Ny) represent number of bins, [Dx(r), Dy(s)]  

denote the ratios of points belonging to the (rth, sth) bins and Dxy(r, s) is the ratio of points in  

the intersection of the (rth, sth) bins of the random variables. This means that probability density  

functions p(x), p(y) and p(x, y) are estimated via a histogram method, where p(x) = Dx(r)δx(r)−1,  

p(y) = Dy(s)δy(s)−1, p(x, y) = Dxy(r, s)δx(r)−1δy(s)−1, and [δx(r), δy(s)] represent the size of the (rth, sth) 

bins. Parameters (Bx, By) represent the number of bins, where [Dx(r)  0, Dy(s)  0] and Bxy is the 

number of bins where Dxy(r, s)  0. In this study we adopt Nx = Ny = 94. 

Based on the mutual information, a 50 × 50 symmetric matrix, IXY, is computed and hierarchical 

clustering analysis is adopted to reveal the relationships between the F-E regions under analysis.  

Figure 4a depicts the mutual information as a contour map. As can be seen, the mutual information 

between F-E regions #35, #49 and #50 and the rest is remarkable higher, hiding the relationships 
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among most regions. We removed F-E regions #35, #49 and #50 and plotted the corresponding mutual 

information contour map in Figure 4b. 

Figure 4. Mutual information represented as a contour map. (a) all F-E regions are 

considered; (b) F-E regions #35, #49 and #50 were deleted. The time period of analysis is 

1962–2011. 
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(b) 

As the graphs in Figure 4 are difficult to analyze, a hierarchical clustering algorithm is adopted for 

comparing results (Section 2.4.). We used the phylogenetic analysis open source software PHYLIP [63].  

The corresponding circular phylograms are generated by successive (agglomerative) clustering  

and represented in Figure 5a (for all F-E regions) and 5b (for all F-E regions except #35, #49 and #50). 

The leaves of the phylograms represent F-E regions. An average-linkage method was used to generate 

the trees. 
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Figure 5. Circular phylogram, based on mutual information, used to compare F-E regions.  

(a) all F-E regions are considered. (b) F-E regions #35, #49 and #50 were deleted. The 

time period of analysis is 1962–2011. 
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(b) 

Regarding Figure 5a, cluster {35, 49, 50} is clearly different from the rest, as expected.  

Moreover, clusters {9, 34, 36, 38}, {11, 28, 42}, {26, 39, 47} and {2, 4, 7, 45} can be identified.  

A larger cluster contains all the rest. Additionally, in Figure 5b, the clusters {3, 27, 29, 31, 40} and  

{8, 12, 13, 14, 15, 30}, for example, are easily noted, as well as the main larger cluster composed by 

the remaining F-E regions. Comparing the results coming from the analysis by means of G-R law 

parameters and mutual information, namely Figure 1 and Figure 5, we can see that the latter is easier to 

interpret. However, deciding for one or another approach necessitates a more detailed analysis based 

on specific evidences and practical knowledge in the field. In conclusion, the proposed analysis, based 

in seismic data catalogues, can help in understanding the overall complex dynamics of earthquakes. 

4. Analysis of Rectangular Grid-Based Regions 

In this section, instead of F-E regions, an alternative seismic regionalization is considered.  

The mathematical tools presented in Section 3 are also adopted. We propose dividing Earth into  
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14  14 rectangular cells and, as previously, analyzing data in a per region basis. Events with 

magnitude M  4.5 and time period 1962–2011 are considered. The G-R law parameters (a, b) are 

computed for each region and the results are depicted in Figures 6 and 7, respectively. 

Figure 6. Regional variation of G-R parameter a. A 14  14 rectangular grid is  

adopted and events with magnitude M  4.5 are considered. The time period of analysis is 

1962–2011. 

 

Figure 7. Regional variation of G-R parameter b. A 14  14 rectangular grid is adopted  

and events with magnitude M  4.5 are considered. The time period of analysis is 1962–2011. 

 

It can be seen that the activity level parameter, a, assumes larger values in areas of larger seismicity 

that develop closer to tectonic faults. The scaling exponent, b, reveals identical behavior, being 

remarkable higher in Scandinavia, Northern Atlantic, Arabic Peninsula, Russian Far East, Brazilian 

Northeast and Fiji/Tonga/Samoa region. Alternatively, the mutual information is computed and a 

phylogram is generated to facilitate visualization for the 14  14 grid (Figures 8 and 9). 
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Figure 8. Contour plot representing the mutual information. A 14  14 rectangular grid is 

adopted and events with magnitude M  4.5 are considered. The time period of analysis is 

1962–2011. 
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Figure 9. Circular phylogram based on mutual information. A 14  14 rectangular grid  

is adopted and events with magnitude M  4.5 are considered. The time period of analysis 

is 1962–2011. 
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We observe that the analysis based on the Cartesian grid leads to a more comprehensive 

visualization of the information than the Flinn-Engdahl regions. Therefore, this approach should be 

considered as an important alternative to classical definitions of geographical layouts for studying the 

mutual influence of earthquake and geological data. 

5. Conclusions 

Based on the magnitudes of the seismic events available in the ISC global catalogue, two schemes 

were proposed to compare the seismic activity between Earth’s regions. A first method consisted in 

approximating the data by R-G law and analyzing the parameters that define the distributions shape. 

The second method used the mutual information as a measure of similarity between regions. In both 

cases clustering analysis was adopted to visualize the relationships between the data. Different 

measures lead to distinct results. The mutual information based measure gives results easier to interpret. 

Both measures can help in understanding the overall complex dynamics of earthquake phenomena. 
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