
Entropy 2013, 15, 3762-3795; doi:10.3390/e15093762
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Improved Time Complexities for Learning Boolean Networks
Yun Zheng 1,* and Chee Keong Kwoh 2,*

1 Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming
650500, Yunnan, China

2 School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798,
Singapore

* Authors to whom correspondence should be addressed; E-Mails: zhengyun5488@gmail.com (Y.Z.);
asckkwoh@ntu.edu.sg (C.K.K.); Tel.: +86-871-65920570 (Y.Z.); +65-6790-6057 (C.K.K);
Fax: +86-871-65920570 (Y.Z.); +65-6792-6559 (C.K.K).

Received: 27 May 2013; in revised form: 2 September 2013 / Accepted: 3 September 2013 /
Published: 11 September 2013

Abstract: Existing algorithms for learning Boolean networks (BNs) have time complexities
of at least O(N · n0.7(k+1)), where n is the number of variables, N is the number of samples
and k is the number of inputs in Boolean functions. Some recent studies propose more
efficient methods with O(N · n2) time complexities. However, these methods can only be
used to learn monotonic BNs, and their performances are not satisfactory when the sample
size is small. In this paper, we mathematically prove that OR/ANDBNs, where the variables
are related with logical OR/AND operations, can be found with the time complexity of
O(k·(N+ logn)·n2), if there are enough noiseless training samples randomly generated from
a uniform distribution. We also demonstrate that our method can successfully learn most
BNs, whose variables are not related with exclusive OR and Boolean equality operations,
with the same order of time complexity for learning OR/AND BNs, indicating our method
has good efficiency for learning general BNs other than monotonic BNs. When the datasets
are noisy, our method can still successfully identify most BNs with the same efficiency.
When compared with two existing methods with the same settings, our method achieves a
better comprehensive performance than both of them, especially for small training sample
sizes. More importantly, our method can be used to learn all BNs. However, of the two
methods that are compared, one can only be used to learn monotonic BNs, and the other one
has a much worse time complexity than our method. In conclusion, our results demonstrate
that Boolean networks can be learned with improved time complexities.

Entropy 2013, 15 3763

Keywords: Boolean networks; gene regulatory networks; mutual information; entropy;
time complexity

1. Introduction

Gene Regulatory Networks (GRNs) are believed to be the underlying mechanisms that control
different gene expression patterns. Every regulatory module in the genome receives multiple disparate
inputs and processes them in ways that can be mathematically represented as combinations of logical
functions (e.g., “AND” functions, “SWITCH” functions, and “OR” functions) [1]. Then, different
regulatory modules are weaved together into complex GRNs, which give specific outputs, i.e., different
gene expression patterns (like in developmental processes), depending on their inputs, i.e., the current
status of the cell. Hence, the architecture of GRN is fundamental for both explaining and predicting
developmental phenomenology [2,3].

Boolean networks (BNs) [4] as models have received much attention in reconstructing GRNs
from gene expression data sets [5–21]. Many algorithms are computationally expensive, with their
complexities on the order of O(N · nk+1), as summarized in Table 1. Liang et al. [13] proposed the
REVEALalgorithm, with O(N · nk+1) complexity, to reconstruct BNs from binary transition pairs.
Akutsu et al. [5] introduced an algorithm for the same purpose, but the complexity of their method
is O(k · 22k · N · nk+1), which is worse than that of REVEAL. Akutsu et al. [6] proposed another
algorithm with a complexity of O(Nω−2 · nk+1 + N · nk+ω−2), where ω = 2.376 to find the BNs
with high probability. Schmulevich et al. [19,20] introduced an algorithm with a complexity of
O(22

k · N · nk+1). Lähdesmäki et al. [12] proposed an algorithm with O(
(
n
k

)
· n · N · poly(k))

complexity, where poly(k) is k in most cases. Laubenbacher and Stigler [11] proposed a method based
on algebra with a complexity of O(n2N2) + O((N3 + N)(logp)2 + N2n2) + O(n(N − 1)2cN+N−1),
where p is the size of the state set, S, and c is a constant. Nam et al. [18] proposed a method with
an average time complexity of O(N · nk+1/(logN)k−1). Kim et al. [10] introduced an algorithm with
O(n2+n1,j ·(n−1))+O(22

k ·
∑n

j=1

∑n1,j

i=1

(
n2,ij

k

)
·N ·poly(k)), where n1,j is the number of first selected

genes for the jth gene and n2,ij is the number of second selected genes when the ith gene is selected in
the first step.

In the field of machine learning, there are also many algorithms introduced for learning Boolean
functions [22–30]. If these algorithms are modified to learning BNs of a bounded indegree of k, i.e., n
Boolean functions with k inputs, their complexities are at least O(N · nk+1).

More efficient algorithms are indispensable to simulate GRNs with BNs on a large scale.
Akutsu et al. [8] proposed an approximation algorithm called GREEDY1with the complexity of
O((2lnN + 1) ·N · n2), but the success ratio of the GREEDY1 algorithm is not satisfactory, especially
when k is small. For example, the success ratio of the GREEDY1 algorithm is only around 50%,
no matter how many learning samples are used when k = 2 for the general Boolean functions. An
efficient algorithm was also proposed by Mossel et al. [31] with a time complexity of O(nk+1)

ω
ω+1 ,

which is about O(n0.7(k+1)), for learning arbitrary BNs, where ω < 2.376. Arpe and Reischuk [32]
showed that monotonic BNs could be learned with a complexity of poly(n2, 2k, log(1/δ), γ−d

a , γ−1
b)

Entropy 2013, 15 3764

under (γa, γb)-bounded noise. A Boolean function is monotonic if for every input variable, the
function is either monotonically increasing or monotonically decreasing in that variable [16]. Recently,
Maucher et al. [16] proposed an efficient method with a time complexity of O(N · n2). However,
this method, as well as its improvement in [17], is only applicable to BNs containing only monotonic
Boolean functions, and its specificity is unsatisfactory when the sample size is small. In our work [21],
we introduced the Discrete Function Learning (DFL) algorithm with the expected complexity of
O(k · (N + log n) · n2) for reconstructing qualitative models of GRNs from gene expression datasets.

Table 1. The summary of the complexities of different algorithms for learning BNs.

Time Complexity Reference

O(N · nk+1) [13]
O(k · 22k ·N · nk+1) [5]
O(Nω−2 · nk+1 +N · nk+ω−2), where ω = 2.376 [6]
O(22

k ·N · nk+1) [19,20]
O(

(
n
k

)
· n ·N · poly(k)) [12]

O(n2n2) +O((N3 +N)(logp)2 +N2n2) +O(n(N − 1)2cN+N−1) [11]
O(nk+1)

ω
ω+1 , where ω < 2.376 [31]

O(N · nk+1/(logm)k−1) [18]
poly(n2, 2k, log(1/δ), γ−d

a , γ−1
b) ∗ [32]

O(n2 + n1,j · (n− 1)) +O(22
k ·

∑n
j=1

∑n1,j

i=1

(
n2,ij

k

)
·m · poly(k)) [10]

O(N · n2) ∗ [16]
∗ for BNs of monotonic Boolean functions.

Until now, there is still an open question about learning general BNs with a complexity better than
n(1−o(1))(k+1) [31,32]. In this work, as an endeavor to meet the challenge, we prove that the complexity
of the DFL algorithm is strictly O(k · (N + log n) · n2) for learning the OR/AND BNs in the worst
case, given enough noiseless random samples from the uniform distribution. This conclusion is also
validated through comprehensive experiments. We also demonstrate that the complexity of the DFL
algorithm is still O(k · (N + log n) · n2) for learning general BNs, whose input variables are not
related with exclusive OR (XOR) and Boolean equality (the inversion of exclusive OR, also called
XNOR) operations. Even for exclusive OR and Boolean equality functions, the DFL algorithm can still
correctly identify the original networks, although it uses more time, with the worst case complexity of
O((N + log n) · nk+1). Furthermore, even when the datasets are noisy, the DFL algorithm shows a more
competitive performance than the existing methods in [12,16] without losing its efficiency, especially
when the sample size is small.

2. Background and Theoretical Foundation

We first introduce the notation. We use capital letters to represent random variables, such as X and Y ,
lower case letters to represent an instance of the random variable, such as x and y, bold capital letters,
like X, to represent a set of variables, and lower case bold letter, like x, to represent an instance of X. P̂

Entropy 2013, 15 3765

and Î mean the estimations of probability P and mutual information (MI) I using the training samples,
respectively. In Boolean functions, we use “∨”, “∧”, “¬”, “

⊕
” and “ ≡” to represent logical OR, AND,

INVERT (also named NOT or SWITCH), exclusive OR (XOR) and Boolean equality (the inversion of
exclusive OR, also XNOR), respectively. For the purpose of simplicity, we represent P (X = x) with
p(x), P (Y = y) with p(y), and so on. We use log to stand for log2, where its meaning is clear. We use
X(i) to mean the ith selected input variable of the function to be learned.

In this section, we first introduce BN as a model of GRN. Then, we cover some preliminary knowledge
of information theory. Next, we introduce the theoretical foundation of our method. The formal
definition of the problem of learning BNs and the quantity of data sets are discussed in the following.

2.1. BN as a Model of GRN

In qualitative models of GRNs, the genes are represented by a set of discrete variables, V = {X1, . . . ,

Xn}. In GRNs, the expression level of a gene, X , at time step, t+1, is controlled by the expression levels
of its regulatory genes, which encode the regulators of the gene, X , at time step t. Hence, in qualitative
models of GRNs, the genes at the same time step are assumed to be independent of each other, which is
a standard assumption in learning GRNs, as adopted by [5,6,8,12,13,21]. Formally, ∀1 ≤ i, j ≤ n, Xi(t)

and Xj(t) are independent. Additionally, the regulatory relationships between the genes are expressed
by discrete functions related to variables. Formally, a GRN G(V,F) with indegree k (the number of
inputs) consists of a set, V = {X1, . . ., Xn}, of nodes representing genes and a set, F = {f1, . . ., fn},
of discrete functions, where a discrete function, fi(Xi1, . . ., Xik), with inputs from specified nodes,
Xi1, . . ., Xik, at time step t is assigned to the node, Xi, to calculate its value at time step t+1. As shown
in the following equation:

Xi(t+ 1) = fi(Xi1(t), . . . , Xik(t)) (1)

where 1 ≤ i ≤ n and Xij(t), j = 1, . . . , k, to mean the jth selected input variable of the function
related to Xi(t + 1). We call the inputs of fi the parent nodes of Xi(t + 1), and let Pa(Xi(t + 1)) =

{Xi1(t), . . . , Xik(t)}.
The state of the GRN is expressed by the state vector of its nodes. We use v(t) = (x1(t), . . . , xn(t))

to represent the state of the GRN at time t and v(t + 1) = (x1(t + 1), . . . , xn(t + 1)) to represent the
state of the GRN at time t + 1. v(t + 1) is calculated from v(t) with F. A state transition pair is
(v(t),v(t+1)). Hereafter, we use X ′

i to represent Xi(t+1), Pa(X ′
i) to represent Pa(Xi(t+1)), V′ to

represent V(t+ 1), and so on.
When fis in Equation (1) are Boolean functions, i.e., fi : {0, 1}k 7→ {0, 1}, the G(V,F) is a BN

model [4,5,21]. When using BNs to model GRNs, genes are represented with binary variables with two
values: ON (1) and OFF (0).

Entropy 2013, 15 3766

2.2. Preliminary Knowledge of Information Theory

The entropy of a discrete random variable, X , is defined in terms of the probability of observing a
particular value, x, of X as [33]:

H(X) = −
∑
x

P (X = x) logP (X = x) (2)

The entropy is used to describe the diversity of a variable or vector. The more diverse a variable or vector
is, the larger entropy it has. Generally, vectors are more diverse than individual variables; hence, they
have larger entropy. The MI between a vector, X, and Y is defined as [33]:

I(X;Y) = H(Y)−H(Y |X) = H(X)−H(X|Y) = H(X) +H(Y)−H(X, Y) (3)

MI is always non-negative and can be used to measure the relation between two variables, a variable
and a vector (Equation (3)) or two vectors. Basically, the stronger the relation between two variables
is, the larger MI they have. Zero MI means that the two variables are independent or have no
relation. Formally:

Theorem 1 ([34](p. 27)) For any discrete random variables, Y and Z, I(Y ;Z) ≥ 0. Moreover,
I(Y ;Z) = 0, if and only if Y and Z are independent.

The conditional MI, I(X;Y |Z) [34](the MI between X and Y given Z), is defined by:

I(X;Y |Z) =
∑
x,y,z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)

Immediately from Theorem 1, the following corollary is also correct.

Corollary 1 ([34](p. 27)) I(Y ;Z|X) ≥ 0 with equality, if and only if Z and Y are conditionally
independent given X.

Here, conditional independence is introduced in [35].
The conditional entropy and entropy are related to Theorem 2.

Theorem 2 ([34](p. 27)) H(X|Y) ≤ H(X) with equality, if and only if X and Y are independent.

The chain rule for MI is given by Theorem 3.

Theorem 3 ([34](p. 22))

I(X1, X2, . . . , Xn;Y) =
n∑

i=1

I(Xi;Y |Xi−1, Xi−2, . . . , X1)

In a function, we have the following theorem.

Theorem 4 ([36](p. 37)) If Y = f(X), then I(X;Y) = H(Y).

Entropy 2013, 15 3767

2.3. Theoretical Foundation of The DFL Algorithm

Next, we introduce Theorem 5, which is the theoretical foundation of our algorithm.

Theorem 5 ([34](p. 43)) If the mutual information between X and Y is equal to the entropy of Y , i.e.,
I(X;Y) = H(Y), then Y is a function of X.

In the context of inferring BNs from state transition pairs, we let X = {X(1), . . . , X(k)} with X(j) ∈ V

(j = 1, . . . , k), and Y ∈ V
′ . The entropy, H(Y), represents the diversity of the variable, Y . The MI,

I(X;Y), represents the relation between vector X and Y . From this point of view, Theorem 5 actually
says that the relation between vector X and Y is very strong, such that there is no more diversity for Y
if X has been known. In other words, the value of X can fully determine the value of Y .

In practice, the empirical probability (or frequency), the empirical entropy and MI estimated from a
sample may be biased, since the number of experiments is limited. Thus, let us restate Borel’s law of
large numbers about the empirical probability, p̂(x).

Theorem 6 (Borel’s Law of Large Numbers)

lim
N→∞

p̂(x) =
Nx

N
= p(x)

where Nx is the number of instances in which X = x.

From Theorem 6, it is known that if enough samples, p(x), as well as H(X) and I(X;Y), can be
correctly estimated, which ensures the successful usage of Theorem 5 in practice.

We discuss the probabilistic relationship between X, Y and another vector, Z ∈ V\X.

Theorem 7 (Zheng and Kwoh, [37]) If I(X;Y) = H(Y), X = {X(1), . . . , X(k)},∀Z ⊂ V\X, Y and
Z are conditionally independent given X.

Immediately from Theorem 7 and Corollary 1, we have Corollary 2.

Corollary 2 If I(X;Y) = H(Y), X = {X(1), . . . , X(k)}, ∀Z ⊂ V\X, then I(Z;Y |X) = 0.

Theorem 7 says that if there is a subset of features, X, that satisfies I(X;Y) = H(Y), the remaining
variables in V do not provide additional information about Y , once we know X. If Z and X are
independent, we can further have Theorem 8, whose proof is given in the Appendix.

Theorem 8 If I(X;Y) = H(Y), and X and Z are independent, then I(Z;Y) = 0.

In the context of BNs, remember that ∀1 ≤ i, j ≤ n, Xi(t) and Xj(t) in V are independent. Thus,
∀Z ⊂ V \Pa(X ′

i), Z and Pa(X
′
i) are independent.

Entropy 2013, 15 3768

2.4. Problem Definition

Technological development has made it possible to obtain time series gene expression profiles with
microarray [38] and high-throughput sequencing (or RNA-seq) [39]. The time series gene expression
profiles can thus be organized as input-output transition pairs whose inputs and outputs are the expression
profile of time t and t+1, respectively [6,13]. The problem of inferring the BN model of the GRN from
input-output transition pairs is defined as follows.

Definition 1 (Inference of the BN) Let V = {X1, . . . , Xn}. Given a transition table, T = {(vj,v
′
j)},

where j goes from one to a constant, N , find a set of Boolean functions F = {f1, f2, · · · , fn}, so that
Xi(t+ 1) is calculated from fi as follows:

Xi(t+ 1) = fi(Xi1(t), . . . , Xik(t))

Akutsu et al. [6] stated another set of problems for inferring BNs. The CONSISTENCYproblem
defined in [6] is to determine whether or not there exists a Boolean network consistent with the given
examples and an output of one if it exists. Therefore, the CONSISTENCY problem is the same as the
one in Definition 1.

2.5. Data Quantity

Akutsu et al. [5] proved that Ω(2k + klog2n) transition pairs are the theoretic lower bound to learn a
BN. Formally:

Theorem 9 (Akutsu et al. [5]) Ω(2k + klog2n) transition pairs are necessary in the worst case to
identify the Boolean network of maximum indegree ≤ k.

3. Methods

In this section, we briefly reintroduce the DFL algorithm, which can efficiently find the target subsets
from

∑k
i=1

(
n
i

)
subsets of V with less than or equal to k variables. The detailed steps, the analysis of

complexities and the correctness of the DFL algorithm are stated in our early work [21,37,40].

3.1. A Brief Introduction of the DFL Algorithm

Based on Theorem 5, the motivation of the DFL algorithm is to find a subset of features that satisfies
I(U;Y) = H(Y). To efficiently fulfill this purpose, the DFL algorithm employs a special searching
strategy to find the expected subset. In the first round of its searching, the DFL algorithm uses a
greedy strategy to incrementally identify real relevant feature subsets, U, by maximizing I(U;Y) [37].
However, in some special cases, such as the exclusive OR functions, individual real input features have
zero MI with the output feature, although for a vector, X, with all real input variables, I(X;Y) = H(Y)

is still correct in these special cases. Thus, in these cases, after the first k features, which are not
necessarily the true inputs, are selected, a simple greedy search fails to identify the correct inputs with
a high probability. Therefore, the DFL algorithm continues its searching until it checks all subsets with

Entropy 2013, 15 3769

≤ k variables after the first round of greedy searching. This strategy guarantees the correctness of the
DFL algorithm even if the input variables have special relations, such as exclusive OR.

The main steps of the DFL algorithm are listed in Tables 2 and 3. The DFL algorithm has two
parameters, the expected cardinality, k, and the ϵ value. The k is the expected maximum number of
inputs in the GRN models. The DFL algorithm uses the k to prevent the exhaustive searching of all
subsets of attributes by checking those subsets less than or equal to k variables. The ϵ value will be
discussed below and has been introduced in detail in our early work [21,37,40].

Table 2. The Discrete Function Learning (DFL) algorithm.

Algorithm: DFL(V, k,T)
Input: V with n genes, indegree k,
T = {(v(t),v(t+ 1))}, t = 1, · · · , N .
Output: F = {f1, f2, · · · , fn}
Begin:

1 L← all single element subsets of V;
2 ∆Tree.F irstNode← L;
3 for every gene Y ∈ V {
4 calculate H(Y ′); //from T

5 D ← 1; //initial depth
6 ∗ F. Add (Sub(Y,∆Tree,H(Y ′), D, k));

}
7 return F;

End
∗ The Sub() is a sub-routine listed in Table 3.

From Theorem 5, if an input subset, U ⊆ V, satisfies I(U;Y) = H(Y), then Y is a deterministic
function of U, which means that U is a complete and optimal input subset. U is called essential attributes
(EAs), because U essentially determines the value of Y [41].

In real life, datasets are often noisy. The noise changes the distributions of X and Y ; therefore
H(X), H(X, Y) and H(Y) are changed, due to the noise. Thus, the I(X;Y) = H(Y) in Theorem 5 is
disrupted. In these cases, we have to relax the requirement to obtain the best estimated result. Therefore,
ϵ is defined as a significance factor to control the difference between I(X;Y) and H(Y). Precisely, if a
subset, U, satisfies H(Y)− I(U;Y) ≤ ϵ×H(Y), then the DFL algorithm stops the searching process
and uses U as a best estimated subset. Accordingly, line 4 of Table 3 should be modified.

Entropy 2013, 15 3770

Table 3. The sub-routine of the DFL algorithm.

Algorithm: Sub(Y,∆Tree,H,D, k)

Input: Y , ∆Tree, entropy H(Y)

current depth D, indegree k

Output: function Y = f(X)

Begin:
1 L← ∆Tree.DthNode;
2 for every element X ∈ L {
3 calculate I(X;Y);
4 if(I(X;Y) == H) {
5 ∗ extract Y = f(X) from T;
6 return Y = f(X) ;

}
}

7 sort L according to I;
8 for every element X ∈ L {
9 if(D < k){
10 D ← D + 1;
11 ∆Tree.DthNode← ∆1(X);
12 return Sub(Y,∆Tree,H,D, k);

}
}

13 return “Fail(Y)”;
End

∗ By deleting unrelated variables and duplicate rows in T.

When choosing candidate inputs, our approach maximizes the MI between the input subsets, X, and
the output attribute, Y . Suppose that Us−1 has already been selected at step s−1, and the DFL algorithm
tries to add a new input Xi ∈ V\Us−1 to Us−1. Specifically, our method uses Equation (4) as a criterion
to add new features to U. {

X(1) = argmaxi I(Xi;Y), i = 1, . . . , n

X(s) = argmaxi I(Us−1, Xi;Y),
(4)

where ∀s, 1 < s ≤ k, U1 = {X(1)}, and Us = Us−1 ∪ {X(s)}.
To illustrate the searching strategy used by the DFL algorithm, let us consider a BN consisting of four

genes, as shown in Table 4. The set of all genes is V = {A,B,C,D}. The search procedure of the DFL
algorithm to find the Boolean function of C ′ of the example in Table 4 is shown in Figure 1. The DFL
algorithm uses a data structure called ∆Tree in its calculation [37]. For instance, the ∆Tree when the
DFL algorithm is learning C ′ is shown in Figure 2. As shown in Figure 1, the DFL algorithm searches
the first layer, L1, then it sorts all subsets according to their MI with C

′ on L1. From Theorem 8, A, C
and D have larger MI with C

′ than B has. Consequently, the DFL algorithm finds that {A} shares the

Entropy 2013, 15 3771

largest MI with C
′ among subsets on L1, as shown in Figure 2a. Next, one additional variable is added

to the selected A. Similarly to L1, the DFL algorithm finds that {A,D} shares the largest MI with C
′

on L2, as shown in Figure 2b. Then, the DFL algorithm adds one more variable to the selected {A,D}.
Finally, the DFL algorithm finds that the subset, {A,C,D}, satisfies the requirement of Theorem 5, as
shown in Figure 2c, and constructs the function, f , for C ′ with these three attributes. First, B is deleted
from the training dataset, since it is a non-essential attribute. Then, the duplicate rows of ((A,C,D), C

′
)

are removed from the training dataset to obtain the final function, f , as the truth table of C ′
= A∨C∨D

along with the counts for each instance of ((A,C,D), C
′
). This is the reason for which we name our

algorithm the Discrete Function Learning algorithm.

Table 4. Boolean functions, F, of the example.

Gene Rule

A A′ = B

B B′ = A ∨ C

C C ′ = A ∨ C ∨D

D D′ = (A ∧B) ∨ (C ∧D)

Figure 1. Search procedures of the DFL algorithm when learning C
′
= A ∨ C ∨ D.

{A,C,D}∗ is the target combination. The combinations with a black dot under them are
the subsets that share the largest mutual information (MI) with C

′ on their layers. Firstly,
the DFL algorithm searches the first layer, L1, then finds that {A}, with a black dot under
it, shares the largest MI with C

′ among subsets on the first layer. Then, it continues to
search ∆1(A) (subsets with A and another variable) on the second layer, L2. Similarly, these
calculations continue, until the target combination, {A,C,D}, is found on the third layer,L3.

{}

{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A,B,C} {A,B,D} {A,C,D}* {B,C,D}

{A,B,C,D}

Entropy 2013, 15 3772

Figure 2. The ∆Tree when searching the Boolean functions for C ′
= A ∨ C ∨D (a) after

searching the first layer of V, but before the sort step; (b) when searching the second layer
of V (the {A}, {C} and {D}, which are included in the Pa(C

′
), are listed before {B}

after the sort step); (c) when searching the third layer; {A,C,D}∗ is the target combination.
Similar to part (b), the {A,C} and {A,D} are listed before {A,B}. When checking the
combination, {A,C,D}, the DFL algorithm finds that {A,C,D} is the complete parent set
for C ′ , since {A,C,D} satisfies the criterion of Theorem 5.

{A} {B} {C} {D}

{ } { } { }

{ } { }

{ }

{A} {C} {D} {B}

{A,B} {A,C} {A,D}

{ } { }

{ }

{A} {C} {D} {B}

{A,D} {A,C} {A,B}

{A,B,D} {A,C,D }*

{ }

(a) (b) (c)

3.2. Correctness Analysis

We have proven the following theorem [37].

Theorem 10 (Zheng and Kwoh, [37]) Let V = {X1, . . . , Xn}. The DFL algorithm can find a
consistent function, Y = f(U), of maximum indegree k with O((N + log n) · nk) time in the worst
case from T = {(vi, yi) : i = 1, 2, . . . , N}.

The word “consistent” means that the function Y = f(U) is consistent with the learning samples, i.e.,
∀ui, f(ui) = yi. Clearly, the original generating function of a synthetic dataset is a consistent function
of the synthetic dataset.

From Theorem 5, to solve the problem in Definition 1 is actually to find a group of genes X(t)

= {Xi1(t), . . ., Xik(t)}, so that the MI between X(t) and X
′
i is equal to the entropy of X ′

i . Because n

functions should be learned in Definition 1, the total time complexity is O((N + log n) · nk+1) in the
worst case, based on Theorem 10.

4. The Time Complexity for Learning Some Special BNs

In this section, we first analyze the MI between variables in some special BNs where variables are
related with the logical OR(AND) operations. Then, we propose the theorems about the complexities
of the DFL algorithm for learning these BNs. The proofs of the theorems in this section are given in
the Appendix.

It should be mentioned that because the real functional relations between variables are unknown
in prior, it is infeasible to specifically design an algorithm just for one kind of special BN. Although
some special BNs are discussed in this section, the DFL algorithm can be used to learn all BNs without
knowing the real functional relations between variables a priori.

Entropy 2013, 15 3773

4.1. The MI in OR BNs

Formally, we define the OR BN as follows.

Definition 2 The OR BN of a set of binary variables V = {X1, . . . , Xn} is ∀ Xi:

X
′

i = Xi1(t) ∨ . . . ∨Xik(t) (5)

where the “∨” is the logical OR operation.

We have Theorem 11 to compute the I(Xij;X
′
i) in OR BNs.

Theorem 11 In an OR BN with an indegree of k over V, the mutual information between ∀X(j) ∈
Pa(X

′
i) = {Xi1, . . ., Xik} and X

′
i is:

I(X(j);X
′

i) =
1

2
− 2k − 1

2k
log

2k − 1

2k
+

2k−1 − 1

2k
log

2k−1 − 1

2k
(6)

From Equation (6), we see that I(X(j);X
′
i) is strictly positive and tends to be zero when k → ∞, as

shown in Figure 3a. Intuitively, when k increases, there would be more “1” values in the X
′
i column of

the truth table, while only one “0” whatever value the k is. That is to say, X ′
i tends to take the value of

“1” with higher probability or there are less uncertainties in X
′
i when k increases, which causes H(X

′
i)

to decrease. From Theorem 4, H(X
′
i) = I(Pa(X

′
i);X

′
i); thus, I(Pa(Xi);X

′
i) also decreases. Therefore,

each Xij shares less information with X
′
i when k increases.

Figure 3. MI in OR function X
′
i = Xi1 ∨ . . . ∨Xik, where the unit of MI (vertical axis) is a

bit. (a) The I(X(j);X
′
i) as a function of k, ∀X(j) ∈ Pa(X

′
i); (b) I({X(1), . . . , X(p)};X

′
i) as

a function of p, where k = 6, 10, and p goes from 1 to k.

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

p

k = 6

k = 10

(a) (b)

Similar to Theorem 11, we have Theorem 12 for computing I({X(1), . . . , X(p)};X
′
i), where X(j) ∈

Pa(X
′
i), j = 1, . . . , p. From Theorem 12, we further have Theorem 13.

Entropy 2013, 15 3774

Theorem 12 In an OR BN with an indegree of k over V, ∀1 ≤ p ≤ k, X(1), X(2), . . ., X(p) ∈ Pa(X
′
i),

the mutual information between {X(1), X(2), . . . , X(p)} and X
′
i is:

I({X(1), . . . , X(p)};X
′

i) =
p

2p
− 2k − 1

2k
log

2k − 1

2k
+

2k−p − 1

2k
log

2k−p − 1

2k
(7)

Theorem 13 In an OR BN with indegree of k over V, ∀2 ≤ p ≤ k,
I({X(1), . . . , X(p)};X

′
i) > I({X(1), . . . , X(p−1)};X

′
i).

From Theorem 13, it is known that when variables from Pa(X
′
i) are added to the candidate parent

set, U, for X ′
i , the MI, I(U;X

′
i), increases, which is also shown in Figure 3b.

4.2. The Complexity Analysis for the Bounded OR BNs

Theorems 11 to 13 show theoretical values. When learning BNs from a training dataset with limited
samples, the estimation of MI is affected by how the samples are obtained. Here, we assume that the
samples are generated randomly from a uniform distribution. According to Theorem 9, Ω(2k + klog2n)

transition pairs are necessary to successfully identify the BNs of ≤ k inputs. Then, based on Theorem 6,
if enough samples are provided, the distributions of Pa(X ′

i) and X
′
i tend to be those in the truth table of

X
′
i = f(Pa(X

′
i)). We then obtain the following theorem.

Theorem 14 For sufficiently large N(N = Ω(2k + klog2n)), if the samples are noiseless and randomly
generated from a uniform distribution, then the DFL algorithm can identify an OR BN with an indegree
of k in O(k · (N + log n) · n2) time, strictly.

Enough learning samples are required in Theorem 14. If the sample size is small, it is possible that
variables in Pa(X

′
i) do not share larger MI than variables in V \ Pa(X ′

i) do. As will be discussed in
the Discussion section and Figure 4, it is shown that when N = 20, Î(X7;X

′
i) > Î(Xj;X

′
i), j = 1, 2, 3.

However, Pa(X ′
i) = {X1, X2, X3} in this example, so it takes more steps before the DFL algorithm

finally finds the target subset of {X1, X2, X3}. Therefore, the complexity of the DFL algorithm becomes
worse than O(k · (N + log n) · n2) if N is too small, as will be shown in Figure 9.

If some variables take their inverted values in the OR BNs, these kinds of BNs are defined as
generalized OR BNs.

Definition 3 The generalized OR BN of a set of binary variables V = {X1, . . . , Xn} is, ∀ Xi:

X
′

i = Xi1(t) ∨ . . . ∨Xik(t) (8)

where the “∨” is the logical OR operation; Xijs can also take their inverted values.

For generalized OR BNs, the DFL algorithm also maintains its time complexity of O(k ·(N+log n)·n2).

Corollary 3 For sufficiently large N(N = Ω(2k + klog2n)), if the samples are noiseless and randomly
generated from a uniform distribution, then the DFL algorithm can identify a generalized OR BN with
an indegree of k in O(k · (N + log n) · n2) time, strictly.

Entropy 2013, 15 3775

Figure 4. The estimated Î(Xj;X
′
i) for OR BNs with 10 variables, where X ′

i = X1∨X2∨X3

on different datasets. The unit is a bit. The curve marked with circles is learned from the
truth table of X ′

i = X1 ∨ X2 ∨ X3, so it is the ideal case, or the Golden Rule. The curves
marked with diamonds, squares, triangles and stars represent the values obtained from truth
table of X ′

i = X1 ∨X2 ∨X3, datasets of N = 1000, N = 100, N = 20 and N = 100 with
10% noise, respectively.

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

j

In a binary system, there are only two values for variables. If we replace the zero in the OR BN truth
table with one and vice versa, the resulting BN has opposite probabilities of one and zero to those of the
original OR BN, respectively. It is easy to show that such a BN is an AND BN defined in the following.

Definition 4 The AND BN of a set of binary variables V = {X1, . . . , Xn} is, ∀ Xi:

X
′

i = Xi1(t) ∧ . . . ∧Xik(t) (9)

where the “∧” is the logical AND operation.

From Theorem 14, it is straightforward to obtain the following corollary.

Corollary 4 For sufficiently large N(N = Ω(2k + klog2n)), if the samples are noiseless and randomly
generated from a uniform distribution, then the DFL algorithm can identify an AND BN with an indegree
of k in O(k · (N + log n) · n2) time, strictly.

Similarly to generalized OR BN, we define generalized AND BN in the following and obtain Corollary 5.

Definition 5 The generalized AND BN of a set of binary variables V = {X1, . . . , Xn} is, ∀ Xi:

X
′

i = Xi1(t) ∧ . . . ∧Xik(t) (10)

where the “∧” is the logical AND operation; Xijs can also take their inverted values.

Corollary 5 For sufficiently large N(N = Ω(2k + klog2n)), if the samples are noiseless and randomly
generated from a uniform distribution, then the DFL algorithm can identify a generalized AND BN with
an indegree of k in O(k · (N + log n) · n2) time, strictly.

Entropy 2013, 15 3776

4.3. The Complexity Analysis For Unbounded OR BNs

From Theorem 14, we see that the complexity of the DFL algorithm is O((N + log n) · n3) if k

becomes n.
However, according to Theorem 9, it needs Ω(2n + nlog2n) samples to successfully find the BN

of indegree n. In other words, an exponential number of samples makes the complexity of the DFL
algorithm very high in this case, even if enough samples are provided. Therefore, it remains an
open problem whether there are efficient algorithms for inferring AND/OR functions with unbounded
indegrees, as proposed by Akutsu et al. [8].

However, if the indegree of the OR/AND BN is undetermined, but known to be much smaller than n,
the DFL algorithm is still efficient. Biological knowledge supports this situation, because in real gene
regulatory networks, each gene is regulated by a limited number of other genes [42]. In these cases, the
expected cardinality, k, can be assigned as n, and the DFL algorithm can automatically find how many
variables are sufficient for each X

′
i . From Theorem 14, the DFL algorithm still has the complexity of

O(k · (N + log n) · n2) for the OR/AND BN, given enough samples.

5. Results

We implement the DFL algorithm with the Java programming language (version 1.6). The
implementation software, called DFLearner, is available for non-commercial purposes upon request.

In this section, we first introduce the synthetic datasets of BN models that we use. Then, we perform
experiments on various data sets to validate the efficiency of the DFL algorithm. In the following, we
carry out experiments on small datasets to examine the sensitivity of the DFL algorithm. The sensitivity
is the correctly identified true input variables divided by the total number of true input variables [40].
Additionally, the specificity is the identified true non-input variables divided by the total number of
non-input variables. We next compare the DFL algorithm with two existing methods in the literature
under the same settings. The performance of the DFL algorithm on noisy datasets was also evaluated in
our early work [40].

5.1. Synthetic Datasets of BNs

We present the synthetic datasets of BNs in this section. For a BN consisting of n genes, the total
state space is 2n. The v of a transition pair is randomly chosen from 2n possible instances of V with the
Discrete Uniform Distribution, i.e., p(i) = 1

2n
, where i is a randomly chosen value from zero to 2n − 1,

inclusively. Since the DFL algorithm examines different subsets in the kth layer with lexicographic order
(see Figure 1), the run time of the DFL algorithm may be affected by the different positions of the target
subsets in the kth layer. Therefore, we select the first and the last k variables in V as the inputs for all
X

′
i . The datasets generated from the first k and last k variables are named “head” and “tail” datasets. If

the k inputs are randomly chosen from the n inputs, the datasets are named “random” datasets. There
are 22

k different Boolean functions when the indegree is k. Then, we use the OR function (OR), the
AND function (AND) or one of the Boolean functions randomly selected from 22

k possible functions
(RANDOM) to generate the v

′ , i.e., f1 = f2 = . . . = fn. If two datasets are generated by the OR

Entropy 2013, 15 3777

functions defined with the first and last k variables, then we name them OR-head and OR-tail datasets
(briefly as OR-h and OR-t), respectively, and so on. Additionally, the Boolean function used to generate
a dataset is called the generating Boolean function or, briefly, the generating function, of the dataset.
The noisy samples are generated by reversing their output values. The program used to generate our
synthetic datasets has been implemented in the Java programming language and been included in the
DFLearner package.

5.2. Experiments for Time Complexities

As introduced in Theorem 14, the complexity of the DFL algorithm is O(k · (N + log n) · n2) for the
OR/AND BNs given enough noiseless random samples from the uniform distribution. We first perform
experiments for the OR/AND BNs to further validate our analysis. Then, we perform experiments for
the general BNs to examine the complexity of the DFL algorithm for them.

5.2.1. Complexities for Bounded OR/AND BNs

In all experiments in this section, the training datasets are noiseless and the expected cardinality, k,
and ϵ of the DFL algorithm are set to k of the generating functions and zero, respectively. In this study,
we perform three types of experiments to investigate the effects of k, n and N in O(k · (N + log n) ·n2),
respectively. In each type of experiment, we change only one of k, n or N and keep the other two
unchanged. We generate 20 OR and 20 AND datasets for each k, N and n, respectively, i.e., 10 OR-h,
10 OR-t, 10 AND-h and 10 AND-t datasets. Then, we use the average value of these 20 datasets as the
run time for this k, N and n value, respectively.

Figure 5. The run times, t (vertical axes, shown in seconds), of the DFL algorithm for
inferring the bounded Boolean networks (BNs). The values shown are the average of 20
noiseless datasets. The curves marked with circles and diamonds are for OR and AND
datasets, respectively. (a) The run time vs. k, when n = 1000 and N = 600; (b) The run
time vs. N , when n = 1000 and k = 3; (c) The run time vs. n, when k = 3 and N = 200.

2 3 4 5 6
0

2000

4000

6000

8000

10000

k

t (
s)

200 400 600 800 1000
0

500

1000

1500

2000

N

t (
s)

1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5x 10
4

n

t (
s)

(a) (b) (c)

First, we perform the experiments for various k, when n = 1000 and N = 600. The run times are
shown in Figure 5a. Then, we perform the experiments for various N , when n = 1000 and k = 3. The
run times of these experiments are shown in Figure 5b. Finally, we perform the experiments for various

Entropy 2013, 15 3778

n, when k = 3 and N = 200. The run times are shown in Figure 5c. In all experiments for various k, N
and n, the DFL algorithm successfully finds the original BNs.

As shown in Figure 5, the DFL algorithm uses almost the same times to learn the OR and AND
BNs. As introduced in Theorem 14 and Corollary 4, the DFL algorithm has the same complexity of
O(k · (N + log n) · n2) for learning the OR and AND BNs. The run time of the DFL algorithm grows
slightly faster than linear with k, as shown in Figure 5a. This is due to the fact that the computation
of entropy and MI takes more time when k increases. As shown in Figure 5b, the run time of the DFL
algorithm grows linearly with N . Additionally, as in Figure 5c, the run time of the DFL algorithm grows
quasi-squarely with n. A BN with 6,000 genes can correctly be found in a modest number of hours.

5.2.2. Complexities for Unbounded OR/AND BNs

To examine the complexity of the DFL algorithm for the unbounded OR/AND BN, we generate 20
OR datasets (10 OR-h and 10 OR-t) with N = 10, 000, n = 10, and the k is chosen from two to 10.
Then, we apply the DFL algorithm to these datasets. In all experiments of this section, the expected
cardinality, k, and ϵ of the DFL algorithm are set to 10 and zero, respectively, since it is assumed that the
DFL algorithm does not know the indegrees of BNs a priori.

The DFL algorithm successfully finds the original BNs for all data sets. The average run times of the
DFL algorithm for these data sets are shown in Figure 6a. The numbers of the subsets checked by the
DFL algorithm for learning one OR Boolean function are shown in Figure 6b. As shown in Figure 6a,
the run time of the DFL algorithm grows linearly with k for the unbounded OR datasets. In Figure 6b,
the number of subsets checked by the DFL algorithm is exactly

∑k−1
i=0 (n − i) for the unbounded OR

datasets. In other words, the complexity of the DFL algorithm is O((N + log n) · n3) in the worst case
for learning the unbounded OR BNs given enough samples. The DFL algorithm checks slightly more
subsets for the OR-t data sets than for the OR-h datasets, when k < 10. This is due to the fact that the
DFL algorithm examines different subsets in the kth layer with lexicographic order.

Figure 6. The efficiency of the DFL algorithm for the unbounded OR datasets. The values
shown are the average of 20 OR noiseless datasets. (a) The run time, t (vertical axis, shown
in seconds), of the DFL algorithm to infer the unbounded BNs; (b) The number of the subsets
checked by the DFL algorithm for learning one OR Boolean function. The curves marked
with circles and diamonds are for OR-h and OR-t datasets, respectively.

2 4 6 8 10
0

5

10

15

20

25

30

k

t (
s)

2 4 6 8 10
10

20

30

40

50

60

k

(a) (b)

Entropy 2013, 15 3779

5.2.3. Complexities for General BNs

In all experiments in this section, the expected cardinality, k, and ϵ of the DFL algorithm are set to
k of the generating functions and zero, respectively. To examine the complexity of the DFL algorithm
for general BNs, we examine the BNs of k = 2, k = 3 and n = 100. There are 22

2
= 16 and

22
3
= 256 possible Boolean functions whose output values correspond to binary 0 to binary 15 and

255, respectively. We use the decimal value of the output value of a Boolean function as its index. For
instance, the index of the OR function of k = 2 is seven, since its output value is 0111, i.e., decimal 7.
Thus, we generate 16 and 256 BNs, which are determined by the 16 and 256 Boolean functions when
k = 2 and k = 3, respectively. For each BN, we generate the noiseless “head”, “random” and “tail”
data sets, and the average run times of five independent experiments of these three datasets are shown in
Figure 7.

Figure 7. The run times of the DFL algorithm for learning general BNs. (a) to (c) are run
times on noiseless head, random and tail datasets of k = 2, respectively; (d) to (f) are run
times on noiseless head, random and tail datasets of k = 3, respectively. The horizontal
axes are the index of datasets and vertical axes are the run times, t, in seconds. The average
sensitivities of the DFL algorithm are 100% for datasets of Part (a) to (c), and over 99.3%
for datasets of Part (d) to (f). The shown times are the average values of five runs. The error
bars are the standard deviations. These experiments were performed on a computer with
an Intel Xeonr 64-bit CPU of 2.66 GHz and 32 GB memory running the CENTOS Linux
operating system.

In Figure 7a–c, it is clear that all BNs of k = 2 can be learned in a few seconds, except the two
with index 6 and 9. We find that their corresponding generating Boolean functions are exclusive OR

⊕
and Boolean equality ≡, respectively, as shown in Table 5. In all experiments in Figure 7a–c, the DFL

Entropy 2013, 15 3780

algorithm successfully identifies the original generating functions of data sets, i.e., achieving sensitivities
of 100%. According to Figure 7d–f, we also check the ten BNs that the DFL algorithm uses more time
to learn and list their generating functions in Table 5. In all of these BNs, the input variables of their
generating Boolean functions are related with

⊕
or ≡ and their combinations. The average sensitivities

of the DFL algorithm are over 99.3% for experiments in Figure 7d–f. We then examine the number of
subsets that are searched when the DFL algorithm finds the target subsets. Except the ten BNs with
generating functions listed in Table 5, the DFL algorithm only checks O(k · n) subsets before finding
the true input variable subsets for each X

′
i . As to be discussed in the following sections, only 218 out

of 256 BNs of k = 3 actually have three inputs. Therefore, when the datasets are noiseless, the DFL
algorithm can efficiently learn most, > 95% (208/218), general BNs of k = 3 with the time complexity
of O(k · (N + log n) · n2) with a very high sensitivity of over 99.3%.

Table 5. The generating Boolean functions of BNs that the DFL algorithm used more
computational time to learn.

Index Generating Boolean Function

k = 2

6 X
′
i = X(1)

⊕
X(2)

9 X
′
i = X(1) ≡ X(2)

k = 3

24 X
′
i = ¬(X(1) ≡ X(2) ∨X(1) ≡ X(3))

36 X
′
i = ¬(X(1) ≡ X(2) ∨X(1)

⊕
X(3))

66 X
′
i = ¬(X(1)

⊕
X(2) ∨X(1) ≡ X(3))

105 X
′
i = X(1)

⊕
X(2)

⊕
X(3)

126 X
′
i = X(1)

⊕
X(2) ∨X(1)

⊕
X(3)

129 X
′
i = ¬(X(1)

⊕
X(2) ∨X(1)

⊕
X(3))

150 X
′
i = ¬(X(1)

⊕
X(2)

⊕
X(3))

189 X
′
i = X(1)

⊕
X(2) ∨X(1) ≡ X(3)

219 X
′
i = X(1) ≡ X(2) ∨X(1)

⊕
X(3)

231 X
′
i = X(1) ≡ X(2) ∨X(1) ≡ X(3)

5.3. Experiments of Small Datasets

From Theorem 9, it is known that the sufficient sample size for inferring BNs is related to the
indegree, k, and the number of variables, n, in the networks. Therefore, we apply the DFL algorithm
to 200 noiseless OR (100 OR-h and 100 OR-t) and 200 noiseless RANDOM (100 RANDOM-h and
100 RANDOM-t) datasets with k = 3, n = 100 and various N . Then, we apply the DFL algorithm
to 200 noiseless OR (100 OR-h and 100 OR-t) datasets, where k = 3, n = 100, 500, 1000 and various
N . Finally, we apply the DFL algorithm to 200 noiseless OR (100 OR-h and 100 OR-t) datasets, where
k = 2, 3, 4, n = 100 and various N . The relation between the sensitivity of the DFL algorithm and N

Entropy 2013, 15 3781

is shown in Figure 8. In all experiments in this section, the expected cardinality, k, and ϵ of the DFL
algorithm are set to k of the generating functions and zero, respectively.

Figure 8. The sensitivity of the DFL algorithm vs. sample size N . The values shown are
the average of 200 noiseless datasets. (a) The sensitivity vs. N for OR and RANDOM
datasets, when n = 100, k = 3. The curves marked with circles and diamonds are for
OR and RANDOM datasets, respectively; (b) The sensitivity vs. N for OR datasets, when
n = 100, 500, 1000, and k = 3. The curves marked with circles, diamonds and triangles
are for data sets of n = 100, 500 and 1000, respectively; (c) The sensitivity vs. N for OR
datasets, when k = 2, 3, 4, and n = 100. The curves marked with diamonds, circles and
triangles are for data sets of k = 2, 3 and 4, respectively.

10
1

10
2

10
30.2

0.4

0.6

0.8

1

N 10
1

10
20

0.2

0.4

0.6

0.8

1

N 10
1

10
2

0.2

0.4

0.6

0.8

1

N

(a) (b) (c)

From Figure 8, it is shown that the sensitivity of the DFL algorithm grows approximately linearly
with the logarithmic value of N , but becomes one after a certain N value, except the RANDOM datasets
in part (a). For the RANDOM datasets, the sensitivity of the DFL algorithm has increased to 99.3%
when N = 200 and, further, to 99.7% when N = 1000. This means that if the training dataset is large
enough, the DFL algorithm can correctly identify the original OR BNs and correctly find the original
RANDOM BNs with a very high probability.

As shown in Figure 8b, for the same N ∈ (0, 100), the sensitivity of the DFL algorithm shows a
small decrease when n increases. Figure 8c shows that, for the same N , the sensitivity shows a large
decrease when k increases. This is due to the different effect of k and n in determining the sufficient
sample size. In Theorem 9, the sufficient sample size, N , grows exponentially with k, but linearly with
log n. However, in both Figure 8b and c, the sensitivity of the DFL algorithm gradually converges to
100% when N increases.

We also find that when the sample size is small, the DFL algorithm may use more time than O(k ·
(N+log n) ·n2). For example, the average run times of the DFL algorithm for the 200 small OR datasets
of n = 100 and k = 3 used in this section are shown in Figure 9. The complexity of the DFL algorithm
is bad when the sample size N falls into the region from 20 to 100, but resumes linear growth after N is
bigger than 100.

Entropy 2013, 15 3782

Figure 9. The run time, t (vertical axis, shown in seconds), of the DFL algorithm for small
OR datasets, where n = 100 and k = 3. The values shown are average of 200 datasets.

20 60 100 160 200
0

5

10

15

20

25

30

N

t (
s)

5.4. Comparisons with Existing Methods

Maucher et al. [16] presented a comparison of their correlation algorithm and the best fit
algorithm [19,20] on 50 random BNs with monotonic generating functions [16]. We generate datasets
using the same settings of [16], except the generating functions. In contrast to only monotonic generating
functions used in [16], we generate the same number of samples, from 50 to 800, with 10% noise for all
22

3
= 256 BNs of k = 3, with n = 10 and 80, respectively. In the 256 Boolean functions of k = 3, there

are 38 functions whose numbers of input variables are actually less than 3. Among 22
2
= 8 Boolean

functions of k = 2, there are two constant functions and four functions with only one input. Thus, only
10 BNs really have two inputs among 16 BNs of k = 2. Hence, there are 30 functions with two inputs,
six functions with one input and two constant functions among the 256 Boolean functions of k = 3.
Only the remaining 218 BNs with three inputs are used, because the other BNs represent models of
k < 3. For each of the 218 BNs, we generate three datasets, one “head”, one “random” and one “tail”,
for each sample size. Then, the average sensitivities and specificities for each sample size are calculated
for the 218 “head”, 218 “random” and 218 “tail” datasets, respectively. Then, the results of “head”,
“random” and “tail” datasets are combined to calculate the average values and standard deviations shown
in Figure 10.

We use the ϵ-value method introduced in Methods to handle the noise issue. We try different ϵ-values
from zero to one with a step of 0.01. Because there are no subsets that satisfy I(X;Y) = H(Y) in
noisy datasets, the DFL algorithm falls into the exhaustive search of

∑k
i=1

(
n
i

)
subsets with ≤ k input

variables. Thus, we use a restricted searching method that only checks
∑k−1

i=0 (n − i) ≈ kn subsets at
each ϵ-value for the datasets of n = 80. In the restricted searching method, all subsets with one variable
are examined, and the subset, say {Xi}, with the largest MI with Y is kept. Then, the DFL algorithm
continues to check n− 1 two element subsets with Xi, and the subset with the largest MI with Y among
these n − 1 subsets, say {Xi, Xj}, is kept. This searching procedure continues, until k input variables
are chosen.

Entropy 2013, 15 3783

Figure 10. The performance of the DFL algorithm when learning general BNs from datasets
of 10% noise with different sample sizes. For each sample size, three (one “head”, one
“random” and one “tail”) datasets were generated for each of the 218 BNs of k = 3.
The sensitivities, specificities and the number of data sets, m, on which the DFL algorithm
successfully achieved 100% sensitivities and specificities were calculated on the 218 “head”,
218 “random” and 218 “tail” datasets, respectively. Then, the average values in the curves
and standard deviations (the error bars) were calculated from the averages of the “head”,
“random” and “tail” datasets. The curves marked with circles (blue), DFLr, and dots (red),
DFLx, represent the average values on the datasets of n = 80 with restricted searching
of only

∑k−1
i=0 (n − i) subsets and n = 10 with exhaustive searching of

∑k
i=1

(
n
i

)
subsets,

respectively. The curves marked with triangles (green), best-fit, and diamonds (magenta),
Corr., are the average values of the Best-fit and Correlation algorithm on noisy datasets of 50
monotonic Boolean networks with n = 80 and Gaussian noise with SD σ = 0.4 (reported
in [16]), respectively. (a) The sensitivities vs. N ; (b) The specificities vs. N ; (c) The number
of datasets, m, on which the DFL algorithm achieved 100% sensitivities and specificities.

The exhaustive search is used for the datasets of n = 10. The BNs learned with the smallest ϵ-values
are compared with the generating functions to calculate the sensitivities and specificities that are shown
in Figure 10a and b. We calculate the numbers of BNs that are learned by the DFL algorithm with 100%
sensitivities and specificities, as shown in Figure 10c. We also compare the results of the DFL algorithm
in Figure 10 to those of two existing algorithms reported in [16] (in Figure 1 of [16]).

The DFL algorithm using exhaustive search achieves good sensitivities and specificities when
N > 100 on datasets of n = 10, Figure 10a and b. In comparison with the Correlation algorithm [16],
the DFL algorithm shows much better specificities and sensitivities, especially when N < 200. When
compared with the Best-fit algorithm [12], the DFL algorithm demonstrates much better sensitivities
when N < 200 and comparable specificities.

As shown in Figure 10, the performance of the DFL algorithm using restricted searching decreases
a little bit. When compared with the Best-fit algorithm, DFL using restricted searching has better
sensitivities when N < 250, but has slightly worse specificities. DFL using restricted searching shows
better specificities than the Correlation algorithm when N < 600, but has slightly worse sensitivities
for N > 100. Remember that our datasets that are applied to the DFL algorithm also consist of
non-monotonic functions, such as those listed in Table 5. When the restricted searching is used, it

Entropy 2013, 15 3784

is possible that the DFL algorithm cannot correctly learn the original generating functions for these
datasets whose I(Xij;X

′
i) = 0. This explains why the DFL algorithm demonstrates a slightly declined

performance when the restricted searching strategy is used. Recall that the results of the Best-fit and
Correlation algorithm reported in [16] are obtained on datasets of 50 monotonic functions. Therefore,
the performance of the DFL algorithm is still comparable to these two methods, even using the restricted
searching method. It is also interesting to point out in Figure 10c that the DFL algorithm can successfully
identify about 98% BNs using the exhaustive searching and can soundly learn about 185 (85%) BNs,
even using the restricted searching when N > 200. In other words, when maintaining 100% sensitivity
and specificity, the DFL algorithm keeps its complexity of O(k · (N +log n) ·n2) for learning these 85%
BNs of k = 3 from noisy datasets.

In summary, these results demonstrate that the DFL algorithm has a better comprehensive
performance than the methods compared in this study.

6. Discussion

6.1. Advantages of the DFL Algorithm

An advantage of the DFL algorithm is that it requires less samples to achieve good sensitivities and
specificities than existing methods. As shown in Figure 10, when the sample size is larger than 100,
the DFL algorithm achieves over 98% sensitivities and specificities using exhaustive searching. Taking
the log n in Theorem 9 into consideration, the DFL algorithm needs around 200 samples to achieve over
98% sensitivities for learning BNs of n = 80. As demonstrated in Figure 10, the DFL algorithm achieves
sensitivities of about 90% and specificities of about 95% when N ≥ 200 when the restricted searching
is used, i.e., only using O(k · (N + log n) · n2) time. When compared with the DFL algorithm using
the restricted searching, the results in [16] show that the Best-fit algorithm [12] needs more samples to
achieve comparable sensitivity of 90%, and its time complexity is O(

(
n
k

)
· n · N · poly(k)), which is

much worse than O(k · (N + log n) · n2) of the DFL algorithm. The Correlation algorithm demonstrates
similar sensitivity to the DFL algorithm when N ≥ 200, but its specificities are much worse than those
of the DFL algorithm, with a value of about 78% when N = 200. Another advantage of the DFL
algorithm is that it can learn more general BNs than the Correlation algorithm [16], as shown in Figures 7
and 10. Actually, the DFL algorithm can successfully learn 208 and 185 BNs of the 218 (about 95%
and 85%, respectively) BNs of k = 3 from noiseless and noisy datasets, respectively, only using the
O(k · (N + log n) · n2) time; Figure 7d–f and Figure 10c. Furthermore, if the computation time is less
important than sensitivities and specificities, the DFL algorithm can achieve better performance for noisy
datasets by using the exhaustive searching strategy, as shown in Figure 10, for other BNs.

6.2. The Noise and Size of Training Datasets

Let us consider the factors that affect the sensitivity of the DFL algorithm. As shown in Figure 4, the
I(Xj;X

′
i) of BNs is affected by two factors, the sample size, N , and the noise levels of datasets.

One factor that affects the complexity of the DFL algorithm is the amount of noise in the training
datasets. This is because noise changes the distributions of X and Y , thus destroying the equality

Entropy 2013, 15 3785

between H(Y) and I(X;Y) if Y = f(X). Therefore, we use the ϵ-value method to learn BNs from
noisy datasets [21,37,40]. As shown in Figure 10, the DFL algorithm achieves > 99% sensitivities
and specificities when N > 100, if the exhaustive searching strategy is used. The DFL algorithm
can successfully identify most general BNs from noisy datasets, around 98%(213/218), given enough
samples, as shown in Figure 10c. The results in Figures 10a and 8a show that the performance of the
DFL algorithm is stable for noisy data sets, even when the percentage of the noise samples is increased
to 20% [40]. To keep its efficiency, a restricted searching method is also examined in Figure 10 for
the datasets of n = 80. Our results demonstrate that most BNs, about 85%, can be learned very
efficiently with the restricted searching method in a time complexity of O(k · (N + log n) · n2). Thus, it
is advantageous to use the restricted searching to find a model and to refine it with exhaustive searching
when using the DFL algorithm in practice.

In addition to the level of noise, sample size is another factor that affects the time complexity of the
DFL algorithm. As demonstrated in Figure 8, the DFL algorithm shows increasing sensitivities when
the sample sizes increases, and the sensitivity of the DFL algorithm converges to 100% when enough
samples are provided. In the meantime, in Figure 9, the running time shows an interesting convex pattern
when the sample size is small, but increases linearly when the number of samples reaches a threshold.
That is because the DFL algorithm is disturbed by other irrelevant variables when the sample size is
small. Let us use the example in Figure 4 to explain the issue. In the ideal case, or the Golden Rule,
Î(Xj;X

′
i), ∀Xj ∈ Pa(X

′
i), should be values generated from the truth table of the generating function,

and Î(Xj;X
′
i) = 0, ∀Xj ∈ V \Pa(X ′

i), based on Theorem 8. In this example, Î(Xj;X
′
i), j = 4, . . . , 10

tends to be zero given enough samples. Actually, when N = 1000, the Î(Xj;X
′
i) for j = 4, . . . , 10 is

almost zero, as shown in Figure 4. However, when N is small, the Î(Xj;X
′
i) is very different. Many

irrelevant variables have non-zero Î(Xj;X
′
i). Thus, it takes many additional computations to find the

correct Pa(X ′
i), which explains the increased computational time in Figure 9 when N is small. Even

worse, there probably exist other subsets of V, which satisfy the criterion of Theorem 5. For instance,
the DFL algorithm finds that X ′

i = f(X2, X7, X9), which is incorrect, since Î(X2, X7, X9) = Ĥ(X
′
i)

when N = 20 in the example of Figure 4. Consequently, it is possible that the DFL algorithm cannot
find the original BNs. Theorem 10 is correct no matter how many learning samples are provided. In
cases of small sample sizes, such as N = 20 in the example, the obtained BNs are still consistent with
the learning datasets. However, the sensitivity of the DFL algorithm becomes 1/3 for this example, since
only 1/3 of the edges of the original network are correctly identified. In this case, the consistency used
by [5] is not suitable for evaluating the performance of a learning algorithm. This explains why we use
the sensitivity to evaluate the performance of the DFL algorithm.

Recently, Perkins and Hallett [43] provided an improved sample complexity for learning BNs. They
also demonstrated that uncorrelated samples reduce the number of samples needed, but increase the
learning time, and strongly correlated samples have the opposite effect. Their findings suggest that the
correlation between samples should also be considered when using DFL to learn BNs, depending on the
preference of either less samples or less computational time.

Sample distribution is another point to be mentioned. Because Theorem 6 is correct regardless of
sample distribution, the MI and entropy can be correctly estimated from enough samples randomly drawn
from distributions other than the uniform distribution. Therefore, we hypothesize that Theorem 14 and

Entropy 2013, 15 3786

Corollaries 3, 4 and 5 are also correct on the training samples drawn from other distributions, although
this theorem and these corollaries require that the learning samples are randomly drawn from the Discrete
Uniform Distribution.

6.3. The BNs With More Computation Time

In some Boolean functions, such as the
⊕

functions, I(Xij;X
′
i) = 0 for Xij ∈ Pa(X

′
i). This makes it

very unlikely to rank the Xij in the front part of the list after the sort step in line 7 of Table 3. Fortunately,
in the empirical studies in Figure 7, the worst case happens with very low probability, < 5%, for inferring
general BNs with an indegree of three. The experimental results show that although the DFL algorithm
uses more steps for finding the target subsets for those functions whose I(Xij;X

′
i) = 0 than for other

functions, its complexity is still polynomial for each X
′
i .

In the context of GRNs, the exclusive OR and Boolean equality function are also unlikely to happen
between different regulators of a gene. In some cases, a gene can be activated by several activators,
and any of these activators is strong enough to activate the gene. This can be modeled as an “OR” logic
between these activators. In other cases, several activators must simultaneously bind to their binding sites
in the cis-regulatory region to turn on the gene, which can be modeled as an “AND” logic. A repressor
often turns off the gene, so it can be modeled as the “INVERT” logic. Suppose that the regulators act
with

⊕
relation; then, it needs an odd number of regulators with a high expression level (in the logic

1 state). For example, a gene, X , has one activator, A, and one repressor, R; then, X = A
⊕

R =

(A ∧ ¬R) ∨ (¬A ∧ R). The second term on the right side says that if the activator is on its low level
and the repressor is on its high level, then X will be turned on, which is clearly unreasonable. Similarly,
suppose X = A ≡ R = (¬A ∧ ¬R) ∨ (A ∧ R). The first term on the right side means that X will be
turned on if both A and R are on their low levels. This situation is also unreasonable. From the above
analysis, the exclusive OR and Boolean equality relations are unlikely to happen in a real biological
system, which is also argued in [16].

6.4. The Constant Functions

The DFL algorithm outputs that “X ′
i is a constant” for two extreme cases, i.e.,

X
′
i = f(Xi1, . . . , Xik) = 1 or 0, ∀(xi1, . . . , xik). Since, in these two cases, the X

′
i is a constant,

the entropy of X
′
i is zero. In other words, the information content of X

′
i is zero. Therefore, it is

unnecessary to know which subset of features are the genuine inputs of X ′
i in these two cases.

In case of GRNs, some genes show constant expression levels in a specific biological process. For
example, a large amount of genes do not show significant changes in their expression levels during
the yeast, Saccharomyces cerevisiae, cell-cycle in the study of [38]. These genes are considered as
house-keeping genes and removed before further analysis of the expression datasets [38].

However, it is also possible that only one output value appears in the training samples, especially
when the datasets are limited. In this case, the DFL algorithm still reports the model as a constant, which
is not true. Thus, it is advisable to check the sample size based on Theorem 9 to make sure that the
sample size is large enough if there is a possibility that the underlying generating function should not be
a constant based on prior knowledge.

Entropy 2013, 15 3787

7. Conclusions

We prove that the DFL algorithm can learn the OR/AND BNs with the O(k · (N + log n) · n2)

time complexity in the worst case given enough noiseless random samples drawn from the uniform
distribution. The experimental results validate this conclusion. Our experiments demonstrate that the
DFL algorithm can successfully learn > 95% BNs of k = 3 with the same complexity of O(k · (N +

log n) ·n2) from noiseless samples. For noisy datasets, the DFL algorithm successfully learns about 85%
of BNs of k = 3 using the O(k · (N + log n) · n2) time. Furthermore, when the datasets are noisy, the
DFL algorithm can successfully learn more BNs of k = 3, about 98%, using the exhaustive searching;
Figure 10c.

Although the learning of Boolean functions is discussed in this paper, the DFL algorithm has also
been demonstrated to learn multi-value discrete functions or GRN models. For example, we use the
DFL algorithm to learn GLFmodels [44], in which genes are related with multi-value functions, in our
early work [21,40].

Since Boolean function learning algorithms have been used to solve many problems [22–30], the DFL
algorithm can potentially find its application in other fields, such as classification [41,45–47], feature
selection [37], pattern recognition, functional dependencies retrieving and association rules retrieving.

Author’s Contributions

Yun Zheng and Chee Keong Kwoh conceived of and designed the research. Yun Zheng conducted
the theoretical analysis, implemented the method and performed the experiments. Yun Zheng and
Chee Keong Kwoh analyzed the results and wrote the manuscript. Both authors read and approved
the final manuscript.

Acknowledgements

The research is supported in part by a grant of Jardine OneSolution (2001) Pte Ltd to Chee Keong
Kwoh and a start-up grant of Kunming University of Science and Technology to Yun Zheng.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix

Proofs of the Theorems

Theorem 15 ([34](p. 33)) If Y = f(X), I(Z;X) ≥ I(Z;Y).

Theorem 8 If I(X;Y) = H(Y), and X and Z are independent, then: I(Z;Y) = 0.

Proof 1 Since X and Z are independent, based on Theorem 1, we have:

I(Z;X) = 0 (11)

Entropy 2013, 15 3788

Since I(X;Y) = H(Y), based on Theorem 5, we have Y = f(X). Then, based on Theorem 15, we have

I(Z;X) ≥ I(Z;Y) (12)

From Equations (11) and (12), we have I(Z;Y) ≤ 0. Based on Theorem 1, we have I(Z;Y) = 0. �

Theorem 11 In an OR BN with an indegree of k over V, the mutual information between ∀X(j) ∈
Pa(X

′
i) = {Xi1, . . ., Xik} and X

′
i is:

I(X(j);X
′

i) =
1

2
− 2k − 1

2k
log

2k − 1

2k
+

2k−1 − 1

2k
log

2k−1 − 1

2k
(13)

Proof. Without loss of generality, we consider I(Xi1, X
′
i). In the truth table of X

′
i , there are equal

numbers of “0” and “1” for Xi1. Thus, H(Xi1) = 1.
In the truth table of X ′

i , there are 2k lines totally. Additionally, in the column of X ′
i , there is only one

“0”, and 2k − 1 “1”. Thus,

H(X
′

i) = −
1

2k
log

1

2k
− 2k − 1

2k
log

2k − 1

2k
=

k

2k
− 2k − 1

2k
log

2k − 1

2k
(14)

There are only three possible instances for the tuple, (Xi1, X
′
i), i.e., (0, 0), (0, 1) and (1, 1). By

counting the numbers of these instances, and divided by the total number of lines, we have

H(Xi1, X
′

i) = −
1

2k
log

1

2k
− 2k−1 − 1

2k
log

2k−1 − 1

2k
− 1

2
log

1

2
(15)

Therefore, we obtain

I(Xi1, X
′

i) = H(Xi1) +H(X
′

i)−H(Xi1, X
′

i)

=
1

2
− 2k − 1

2k
log

2k − 1

2k
+

2k−1 − 1

2k
log

2k−1 − 1

2k
(16)

�
Theorem 12 In an OR BN with an indegree of k over V, ∀1 ≤ p ≤ k, X(1),X(2),. . . , X(p) ∈ Pa(X

′
i),

the mutual information between {X(1), X(2), . . . , X(p)} and X
′
i is

I({X(1), . . . , X(p)};X
′

i) =
p

2p
− 2k − 1

2k
log

2k − 1

2k
+

2k−p − 1

2k
log

2k−p − 1

2k
(17)

Proof. Similar to the proof of Theorem 11, we have

H(X
′

i) =
k

2k
− 2k − 1

2k
log

2k − 1

2k
(18)

Consider X ′
i = X1 ∨X2 ∨X3 and p = 2 first. Without loss of generality, we derive I({X1, X2};X

′
i).

For H(X1, X2), as shown in Table A1, there are 2p = 4 possible instances for (X1, X2), i.e., (0,0), (0,1),
(1,0) and (1,1). By counting the number of these instances and dividing by the total number of lines, we
get H(X1, X2) = 2p × (− 1

2p
log 1

2p
) = 2 (bits).

Entropy 2013, 15 3789

Table A1. The truth table of X ′
i = X1 ∨X2 ∨X3.

X1 X2 X3 X
′

i

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Next, we derive H(X(1), . . . , X(p), Y). There are 2p + 1 = 5 possible instances for (X1, X2, Y), i.e.,
(0,0,0), (0,0,1), (0,1,1), (1,0,1) and (1,1,1). Their probabilities are

p(0, 0, 0) =
1

2k

p(0, 0, 1) =
2k−p − 1

2k
=

2k−2 − 1

2k

p(0, 1, 1) =
2k−p

2k
=

2k−2

2k

p(1, 0, 1) =
2k−p

2k
=

2k−2

2k

p(1, 1, 1) =
2k−p

2k
=

2k−2

2k
(19)

Hence, we get

H(X1, X2, X
′

i) = − 1

2k
log

1

2k
− 2k−2 − 1

2k
log

2k−2 − 1

2k
− 3× (

2k−2

2k
log

2k−2

2k
)

=
3

2
− 1

2k
log

1

2k
− 2k−2 − 1

2k
log

2k−2 − 1

2k
(20)

Finally, we have

I({X1, X2};X
′

i) = H(X1, X2) +H(X
′

i)−H(X1, X2, X
′

i)

= − 1

2k
log

1

2k
− 2k − 1

2k
log

2k − 1

2k
+ 2

−3

2
+

1

2k
log

1

2k
+

2k−2 − 1

2k
log

2k−2 − 1

2k

=
1

2
− 2k − 1

2k
log

2k − 1

2k
+

2k−2 − 1

2k
log

2k−2 − 1

2k
(21)

By generalizing three to p, we have

H(X(1), . . . , X(p)) = 2p × (− 1

2p
log

1

2p
) = p(bits) (22)

Entropy 2013, 15 3790

From Equation (19), there is one instance of (0, . . . , 0, 0) for (X(1), . . . , X(p), X
′
i). There are

2k−p − 1 instances of (0, . . . , 0, 1) for (X(1), . . . , X(p), X
′
i). There are 2p − 1 possible instances of

(X(1), . . . , X(p), X
′
i) with the same probabilities of 2k−p

2k
. Hence,

H(X(1), . . . , X(p), X
′

i) = − 1

2k
log

1

2k
− 2k−p − 1

2k
log

2k−p − 1

2k
− (2p − 1)(

2k−p

2k
log

2k−p

2k
)

= p+
k

2k
− p

2p
− 2k−p − 1

2k
log

2k−p − 1

2k
(23)

Finally, by combing Equations (18), (22) and (23), we have the result, ∀1 ≤ p ≤ k,

I({X(1), . . . , X(p)};X
′

i) = H(X(1), . . . , X(p)) +H(X
′

i)−H(X(1), . . . , X(p), X
′

i) (24)

=
p

2p
− 2k − 1

2k
log

2k − 1

2k
+

2k−p − 1

2k
log

2k−p − 1

2k
(25)

�
When p = k, from Theorem 12, we have I(X(1), . . . , X(k);X

′
i) = k

2k
− 2k−1

2k
log 2k−1

2k
= H(X

′
i), as

shown in Equation (18). This result is exactly consistent with Theorem 4, which validates Theorem 12
from another aspect. For instance, as shown in Figure 3b, when p = 6, the I({X(1), . . . , X(p)};X

′
i)

in the curve for k = 6 is 0.116 bits, which should be equal to H(X
′
i) from Theorem 4. Then, from

Equation (18), when k = 6, H(X
′
i) =

6
64
− 63

64
· log2(6364) = 0.116 bits, too.

Theorem 13 In an OR BN with an indegree of k over V, ∀2 ≤ p ≤ k,
I({X(1), . . . , X(p)};X

′
i) > I({X(1), . . . , X(p−1)};X

′
i).

Proof. From Theorem 12, we have

I({X(1), . . . , X(p)};X
′

i) =
p

2p
− 2k − 1

2k
log

2k − 1

2k
+

2k−p − 1

2k
log

2k−p − 1

2k
(26)

Thus:

∂I

∂p
= (

p

2p
)
′
+ (

2k−p − 1

2k
log2

2k−p − 1

2k
)
′

=
1

2p
+ p(

1

2p
)
′
+ [log2

2k−p − 1

2k
+

1
2k−p−1

2k
ln2

] · (2
k−p − 1

2k
)
′

= 2−p − p · 2−p · ln2 + [log2
2k−p − 1

2k
+

1

ln2
] · (2−p)

′

= 2−p − p · 2−p · ln2 + [log2
2k−p − 1

2k
+

1

ln2
] · (−2−p · ln2)

= 2−p − p · 2−p · ln2− 2−p · ln2 · log2
2k−p − 1

2k
− 2−p

= 2−p · ln2 · (−log2
2k−p − 1

2k
− p)

= 2−p · ln2 · [k − log2(2
k−p − 1)− p]

= 2−p · ln2 · [log22k−p − log2(2
k−p − 1)] (27)

Since y = log2x monotonically increases ∀x ∈ (0,+∞), so log22
k−p > log2(2

k−p − 1); thus, ∂I
∂p

> 0,
∀1 ≤ p ≤ k. Therefore, I({X(1), . . . , X(p)};X

′
i) monotonically increases with p, ∀1 ≤ p ≤ k. So, we

have the result. �

Entropy 2013, 15 3791

The correctness of Theorem 13 is also demonstrated in Figure 3b.
Theorem 14 For sufficiently large N(N = Ω(2k + klog2n)), if the samples are noiseless and randomly
generated from a uniform distribution, then the DFL algorithm can identify an OR BN with an indegree
of k in O(k · (N + log n) · n2) time, strictly.
Proof. The datasets are generated with the original Boolean functions of the BNs. From Theorem 6, the
empirical probabilities of Pa(X ′

i) and X
′
i in the Boolean functions, X ′

i = fi(Pa(X
′
i)), tend to be the

probabilities in the truth table of fi when the sample size is large enough.
First, consider the searching process in the first layer of the search graph, like Figure 1. From

Theorem 8, we obtain limN→∞ Î(Z;X
′
i) → 0 if Z ∈ V\Pa(X ′

i). Meanwhile, from Theorem 11,
limN→∞ Î(Xij;X

′
i) = I(Xij;X

′
i) > 0. Thus, Xijs are listed in front of the other variables, Zs, after the

sort step in line 7 of Table 3.
In the following, the ∆1(Xij) (subsets with Xij and another variable) are dynamically added to the

second layer of the ∆Tree. Now, consider the MI, Î(Xij, Z;X
′
i), where Z is one of the variables in

V\Xij . First, if Z ∈V\Pa(X ′
i), from Theorem 8, limN→∞ Î(Z;X

′
i)→ 0. Since ∀Xi, Xj ∈ V, Xi and

Xj are independent variables, from Theorem 2, we get Ĥ(Xi|Xj) = Ĥ(Xi). From Theorem 3, we have:

lim
N→∞

Î(Xij, Z;X
′

i) = lim
N→∞

[Î(Z;X
′

i) + Î(Xij;X
′

i |Z)]

= lim
N→∞

Î(Xij;X
′

i |Z)

= lim
N→∞

[Ĥ(Xij|Z)− Ĥ(Xij|X
′

i , Z)]

= lim
N→∞

[Ĥ(Xij)− Ĥ(Xij|X
′

i)]

= lim
N→∞

[Î(Xij;X
′

i)]

= I(Xij;X
′

i) (28)

Second, if Z ∈ Pa(X
′
i), from Theorem 13, we have

lim
N→∞

Î({Xij, Z};X
′

i) = I({Xij, Z};X
′

i) > lim
N→∞

Î(Xij;X
′

i) = I(Xij;X
′

i). (29)

After combining the results in Equations (28) and (29), we have that ∀Z ∈ Pa(X
′
i), Î({Xij, Z};X

′
i)

is larger than the same measure when Z ∈ V\Pa(X ′
i).

Therefore, in the second layer of the ∆Tree, the combinations with two elements from Pa(X
′
i) are

listed in front of other combinations, and so on so forth, until the DFL algorithm finds Pa(X ′
i) in the kth

layer of the ∆Tree, finally.
In the searching process, only

∑k−1
i=0 (n−i) ≈ kn subsets are visited by the DFL algorithm. Therefore,

the complexity of the DFL algorithm becomes O(k · (N + log n) · n2), where log n is for sort step in
line 7 of Table 3 and N is for the length of input table T. �
Corollary 3 For sufficiently large N(N = Ω(2k + klog2n)), if the samples are noiseless and randomly
generated from a uniform distribution, then the DFL algorithm can identify a generalized OR BN with
an indegree of k in O(k · (N + log n) · n2) time, strictly.
Proof. We replace those Xijs that are taking their inverted values with another variable, X∗

ij , i.e., let
X∗

ij = ¬Xij; then, the resulting BN is an OR BN. H(X
′
i) does not change in the new OR BN.

Entropy 2013, 15 3792

To satisfy the criterion of Theorem 5, compare the MI, I(X∗
ij;X

′
i), with I(Xij;X

′
i). We have

I(X∗
ij;X

′

i) = H(X∗
ij) +H(X

′

i)−H(X∗
ij, X

′

i)

H(X
′
i) remains the same value as the corresponding item in I(Xij;X

′
i). In binary systems, there are

only two states, i.e., “0” and “1”. It is straightforward to obtain H(X∗
ij) = H(Xij). Therefore, the only

item changed in the I(X∗
ij;X

′
i) is the joint entropy, H(X∗

ij, X
′
i). Next, we prove that H(X∗

ij, X
′
i) =

H(Xij, X
′
i).

Consider the tuple, (Xij, X
′
i). If we replace “0’ of Xij with “1” and vice versa, it becomes (X∗

ij, X
′
i),

as shown in Table A2. The three instances, (0, 0), (0, 1) and (1, 1), of (Xij, X
′
i) change to (1, 0), (1, 1)

and (0, 1) of (X∗
ij, X

′
i), respectively. However, the probabilities (frequencies) of them are coincidentally

equal, respectively. Thus, H(X∗
ij, X

′
i) = H(Xij, X

′
i).

Table A2. The tuple (Xij, X
′
i) and (X∗

ij, X
′
i), where k is two.

Xij X
′

i X∗
ij X

′

i

0 0 1 0
0 1 1 1
1 1 0 1
1 1 0 1

From Theorem 14, the results are obtained. �
Corollary 4 For sufficiently large N(N = Ω(2k + klog2n)), if the samples are noiseless and randomly
generated from a uniform distribution, then the DFL algorithm can identify an AND BN with an indegree
of k in O(k · (N + log n) · n2) time, strictly.
Proof. In an AND BN, P (X

′
i = 0) and P (X

′
i = 1) are equal to P (X

′
i = 1) and P (X

′
i = 0) in a

corresponding OR BN with the same Pa(X
′
i) for all Xi, respectively. Therefore, I(Xij;X

′
i) is the same

as that of the corresponding OR BN. From Theorem 14, the result can be directly obtained. �
Corollary 5 For sufficiently large N(N = Ω(2k + klog2n)), if the samples are noiseless and randomly
generated from a uniform distribution, then the DFL algorithm can identify a generalized AND BN with
an indegree of k in O(k · (N + log n) · n2) time, strictly.
Proof. Similar to that of Corollary 3. �

References

1. Davidson, E.; Levin, M. Gene regulatory networks special feature: Gene regulatory networks.
Proc. Natl. Acad. Sci. USA 2005, 102, doi:10.1073/pnas.0502024102.

2. Davidson, E.; McClay, D.; Hood, L. Regulatory gene networks and the properties of the
developmental process. Proc. Natl. Acad. Sci. USA 2003, 100, 1475–1480.

3. Levine, M.; Davidson, E. From the cover. Gene regulatory networks special feature: Gene
regulatory networks for development. Proc. Natl. Acad. Sci. USA 2005, 102, 4936–4942.

Entropy 2013, 15 3793

4. Kauffman, S. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor.
Biol. 1969, 22, 437–467.

5. Akutsu, T.; Miyano, S.; Kuhara, S. Identification of Genetic Networks from a Small Number
of Gene Expression Patterns under the Boolean Network Model. In Proceedings of Pacific
Symposium on Biocomputing ’99, Big Island, HI, USA, 4–9 January 1999; Volume 4, pp. 17–28.

6. Akutsu, T.; Miyano, S.; Kuhara, S. Algorithm for identifying boolean networks and related
biological networks based on matrix multiplication and fingerprint function. J. Comput. Biol.
2000, 7, 331–343.

7. Akutsu, T.; Miyano, S.; Kuhara, S. Inferring qualitative relations in genetic networks and metabolic
pathways. Bioinformatics 2000, 16, 727–734.

8. Akutsu, T.; Miyano, S.; Kuhara, S. A simple greedy algorithm for finding functional relations:
Efficient implementation and average case analysis. Theor. Comput. Sci. 2003, 292, 481–495.

9. Ideker, T.; Thorsson, V.; Karp, R. Discovery of Regulatory Interactions Through Perturbation:
Inference and Experimental Design. In Proceedings of Pacific Symposium on Biocomputing,
Island of Oahu, HI, USA, 4–9 January 2000; Volume 5, pp. 302–313.

10. Kim, H.; Lee, J.K.; Park, T. Boolean networks using the chi-square test for inferring large-scale
gene regulatory networks. BMC Bioinforma. 2007, 8, doi:10.1186/1471-2105-8-37.

11. Laubenbacher, R.; Stigler, B. A computational algebra approach to the reverse engineering of gene
regulatory networks. J. Theor. Biol. 2004, 229, 523–537.

12. Lähdesmäki, H.; Shmulevich, I.; Yli-Harja, O. On learning gene regulatory networks under the
boolean network model. Mach. Learn. 2003, 52, 147–167.

13. Liang, S.; Fuhrman, S.; Somogyi, R. REVEAL, a General Reverse Engineering Algorithms for
Genetic Network Architectures. In Proceedings of Pacific Symposium on Biocomputing ’98,
Maui, HI, USA, 4–9 January 1998; Volume 3, pp. 18–29.

14. Maki, Y.; Tominaga, D.; Okamoto, M.; Watanabe, S.; Eguchi, Y. Development of a System
for the Inference of Large Scale Genetic Networks. In Proceedings of Pacific Symposium on
Biocomputing, Big Island, HI, USA, 3–7 January 2001; Volume 6, pp. 446–458.

15. Müssel, C.; Hopfensitz, M.; Kestler, H.A. BoolNet-an R package for generation, reconstruction
and analysis of Boolean networks. Bioinformatics 2010, 26, 1378–1380.

16. Maucher, M.; Kracher, B.; Kühl, M.; Kestler, H.A. Inferring Boolean network structure via
correlation. Bioinformatics 2011, 27, 1529–1536.

17. Maucher, M.; Kracht, D.V.; Schober, S.; Bossert, M.; Kestler, H.A. Inferring Boolean functions via
higher-order correlations. Comput. Stat. 2012, doi:10.1007/s00180-012-0385-2.

18. Nam, D.; Seo, S.; Kim, S. An efficient top-down search algorithm for learning boolean networks
of gene expression. Mach. Learn. 2006, 65, 229–245.

19. Shmulevich, I.; Saarinen, A.; Yli-Harja, O.; Astola, J. Inference of genetic regulatory networks
via best-fit extensions. In Computational and Statistical Approaches to Genomics; Zhang, W.,
Shmulevich, I., Eds.; Springer: New York, NY, USA, 2003; Chapter 11, 197–210.

20. Shmulevich, I.; Yli-Harja, O.; Astola, J.; Core, C.G. Inference of Genetic Regulatory Networks
Under the Best-Fit Extension Paradigm. In Proceedings of the IEEE—EURASIP Workshop on

Entropy 2013, 15 3794

Nonlinear Signal and Image Processing (NSIP-01), Baltimore, MD, USA, 3–6 June 2001; Kluwer
Academic Publishers: Norwell, MA, USA, 2002; pp. 3–6.

21. Zheng, Y.; Kwoh, C.K. Dynamic Algorithm for Inferring Qualitative Models of Gene Regulatory
Networks. In Proceedings of the 3rd Computational Systems Bioinformatics Conference, CSB
2004, Stanford, CA, USA, 16–19 August 2004; IEEE Computer Society Press: Stanford, CA,
USA, 2004, pp. 353–362.

22. Birkendorf, A.; Dichterman, E.; Jackson, J.; Klasner, N.; Simon, H.U. On restricted-focus-of-
attention learnability of boolean functions. Mach. Learn. 1998, 30, 89–123.

23. Bshouty, N.H. Exact learning Boolean functions via the monotone theory. Inf. Comput. 1995,
123, 146–153.

24. Eiter, T.; Ibaraki, T.; Makino, K. Decision lists and related Boolean functions. Theor. Comput. Sci.
2002, 270, 493–524.

25. Huhtala, Y.; Kärkkäinen, J.; Porkka, P.; Toivonen, H. TANE: An efficient algorithm for discovering
functional and approximate dependencies. Comput. J. 1999, 42, 100–111.

26. Littlestone, N. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Mach. Learn. 1988, 2, 285–318.

27. Mannila, H.; Raiha, K. On the complexity of inferring functional dependencies. Discret. Appl.
Math. 1992, 40, 237–243.

28. Mannila, H.; Räihä, K.J. Algorithms for inferring functional dependencies from relations. Data
Knowl. Eng. 1994, 12, 83–99.

29. Mehta, D.; Raghavan, V. Decision tree approximations of Boolean functions. Theor. Comput. Sci.
2002, 270, 609–623.

30. Rivest, R.L. Learning decision lists. Mach. Learn. 1987, 2, 229–246.
31. Mossel, E.; O’Donnell, R.; Servedio, R.A. Learning functions of k relevant variables. J. Comput.

Syst. Sci. 2004, 69, 421–434.
32. Arpe, J.; Reischuk, R. Learning juntas in the presence of noise. Theor. Comput. Sci. 2007,

384, 2–21.
33. Shannon, C.; Weaver, W. The Mathematical Theory of Communication; University of Illinois

Press: Urbana, IL, USA, 1963.
34. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: New York, NY, USA, 1991.
35. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan

Kaufmann: San Mateo, CA, USA, 1988.
36. Gray, R.M. Entropy and Information Theory; Springer: New York, NY, USA, 1991.
37. Zheng, Y.; Kwoh, C.K. A feature subset selection method based on high-dimensional mutual

information. Entropy 2011, 13, 860–901.
38. Spellman, P.; Sherlock, G.; Zhang, M.; Iyer, V.; Anders, K.; Eisen, M.; Brown, P.; Botstein, D.;

Futcher, B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces
cerevisiae by microarray hybridization. Mol. Biol. Cell 1998, 9, 3273–3297.

39. Trapnell, C.; Williams, B.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.; Salzberg, S.;
Wold, B.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515.

Entropy 2013, 15 3795

40. Zheng, Y.; Kwoh, C.K. Dynamic algorithm for inferring qualitative models of gene regulatory
networks. Int. J. Data Min. Bioinforma. 2006, 1, 111–137.

41. Zheng, Y.; Kwoh, C.K. Identifying Simple Discriminatory Gene Vectors with An Information
Theory Approach. In Proceedings of the 4th Computational Systems Bioinformatics Conference,
CSB 2005, Stanford, CA, USA, 8–11 August 2005; pp. 12–23.

42. Arnone, M.; Davidson, E. The hardwiring of development: Organization and function of genomic
regulatory systems. Development 1997, 124, 1851–1864.

43. Perkins, T.J.; Hallett, M.T. A trade-off between sample complexity and computational complexity
in learning boolean networks from time-series data. IEEE/ACM Trans. Comput. Biol. Bioinforma.
2010, 7, 118–125.

44. Thomas, R.; d’Ari, R. Biological Feedback; CRC Press: Boca Raton, FL, USA, 1990.
45. Zheng, Y.; Hsu, W.; Lee, M.L.; Wong, L. Exploring Essential Attributes for Detecting

MicroRNA Precursors from Background Sequences. In Data Mining and Bioinformatics, Revised
Selected Papers of First International Workshop, VDMB 2006, Seoul, Korea, 11 September 2006;
Dalkilic, M.M., Kim, S., Yang, J., Eds.; Volume 4316, Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2006; pp. 131–145.

46. Zheng, Y.; Kwoh, C.K. Cancer classification with MicroRNA expression patterns found by an
information theory approach. J. Comput. 2006, 1, 30–39.

47. Zheng, Y.; Kwoh, C.K. Informative MicroRNA Expression Patterns for Cancer Classification. In
Data Mining for Biomedical Applications, Proceedings of PAKDD 2006 Workshop, BioDM 2006,
Singapore, Singapore, 9 April 2006; Li, J., Yang, Q., Tan, A.-H., Eds.; Volume 3916, Lecture Notes
in Computer Science; Springer: New York, NY, USA, 2006; pp. 143–154.

c⃝ 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Background and Theoretical Foundation
	BN as a Model of GRN
	Preliminary Knowledge of Information Theory
	Theoretical Foundation of The DFL Algorithm
	Problem Definition
	Data Quantity

	Methods
	A Brief Introduction of the DFL Algorithm
	Correctness Analysis

	The Time Complexity for Learning Some Special BNs
	The MI in OR BNs
	The Complexity Analysis for the Bounded OR BNs
	The Complexity Analysis For Unbounded OR BNs

	Results
	Synthetic Datasets of BNs
	Experiments for Time Complexities
	Complexities for Bounded OR/AND BNs
	Complexities for Unbounded OR/AND BNs
	Complexities for General BNs

	Experiments of Small Datasets
	Comparisons with Existing Methods

	Discussion
	Advantages of the DFL Algorithm
	The Noise and Size of Training Datasets
	The BNs With More Computation Time
	The Constant Functions

	Conclusions
	Author's Contributions
	Acknowledgements
	Conflicts of Interest
	Appendix
	Proofs of the Theorems

